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Abstract

The notion of a Hall matrix, associated with a possibly anisotropic conducting material in the
presence of a small magnetic �eld, is introduced. Then, for any material having a microstructure
we prove a general homogenization result satis�ed by the Hall matrix in the framework of theH -
convergence of Murat-Tartar. Extending a result of Bergman, it is shown that the Hall matrix can
be computed from the corrector associated with the homogenization problem when no magnetic
�eld is present. Finally, we give an example of a microstructure for which the Hall matrix is positive
isotropic a.e., while the homogenized Hall matrix is negative isotropic.

1 Introduction

It is well known that a charged particle moving perpendicular to a magnetic �eld h will experience a
force perpendicular to both the direction of motion of the particle and to the magnetic �eld. When
applied to a charge carrier moving in a conductor, the classical explanation of the Hall e�ect is that this
force has to be balanced by a transverse electric �eld, and in an isotropic material, the ratio between
the transverse component of the electric �eld and the current de�nes the Hall coe�cient. This simple
picture underlies the statement found in some elementary Physics textbooks (see e.g. [12] page 163),
that in classical physics the sign of the Hall coe�cient determines the sign of the charge carrier. But is
this really correct, even within the framework of classical physics? If it were, it would suggest that an
electrically isotropic composite constructed from materials with positive Hall coe�cients for which the
carriers had a negative charge, would necessarily also have a positive e�ective Hall coe�cient. But we
will see that this is not always the case. The situation is a little reminiscent to that of thermoelasticity
where it was found by Lakes [8] and Sigmund and Torquato [13, 14] that one can construct a composite
that contracts when heated, although the three constituent materials all expand when heated. (The
void phase in these constructions can be replaced by a highly compressible phase with a very small
positive thermal expansion coe�cient.)

Before presenting the example of an electrically isotropic composite having a negative Hall coef-
�cient even though it is built from three phases each having a positive Hall coe�cient (equal to 1
or 
 � 1), we �rst place the theory of the Hall e�ect in composites in a general mathematical frame-
work. For anisotropic materials we will see that it is natural to introduce the concept of a Hall matrix.
An extension of the analysis of Bergman [3] shows that for composites this matrix can be obtained
from the electric �elds (more precisely the correctors) associated with the material when the magnetic
�eld is absent.

We consider a small constant magnetic �eldh in a three-dimensional microstructure which occupies
a bounded domain 
 of R3, and which is characterized by ah-dependent conductivity � " or resistivity
� " = ( � " ) � 1. Here, as usual in homogenization theory," labels one microstructure in a general sequence
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of microstructures. Mathematically speaking the Hall e�ect induces a perturbed resistivity � " (h), with
parameter h, which admits the �rst-order expansion at h = 0:

� " (h) = � " + R"
1 � h + o(h); (1.1)

where R"
1 is a third-order tensor. The �rst-order term of expansion (1.1), which is necessarily an

antisymmetric matrix, contains the local Hall e�ect. At this point we address the following question:
What is the e�ective or the homogenized Hall e�ect of the composite material, i.e. associated with
the homogenized microstructure?

Assuming a periodic microstructure, Bergman [3] �rst answered that the e�ective Hall coe�cient
induced by a constant magnetic �eld parallel to some vector e3 ((e1; e2; e3) being an orthonormal
basis ofR3), can be obtained from the local periodic Hall coe�cient combined with the two periodic
current �elds of average e1; e2 orthogonal to e3, which solve the conductivity equation in the absence
of magnetic �eld. In dimension two the Bergman approach was rigorously justi�ed and extended in
the paper [4] in the H -convergence framework of Murat-Tartar [11], which is not restricted to the
periodic case.

The two-dimensional case leads us naturally to a unique Hall coe�cient since any antisymmetric
matrix is proportional to the 90 � rotation matrix J . Then, the �rst-order term of the expansion
of � " (h) reads asr " hJ while the corresponding homogenized one reads asr � hJ . So, r " is the Hall
coe�cient associated with the microstructure and r � is the e�ective Hall coe�cient. A remarkable
property of the two-dimensional Hall e�ect is that r " does keep the sign ofr � , i.e. r " � 0 a.e. in 

implies that r � � 0 a.e. in 
.

De�ning in a general way the three-dimensional Hall coe�cients for any constant magnetic �eld is
more delicate than in dimension two. In this paper we extend the Bergman approach by introducing
the concept of a Hall matrix. Using the Levi-Civita third-order tensor E (see De�nition 3.1), the
antisymmetric �rst-order term of expansion (1.1) can be expressed asE(R" h) for a certain choice of
the matrix R" and the homogenized can be expressed asE(R� h) for a certain choice of the matrix R� .
So, it is natural to de�ne R" as the Hall matrix and R� as the homogenized one. One appealing feature
of this de�nition is that if R" does not depend on" , then R" and R� agree (see Proposition 4.1).

Moreover, extending the above mentioned Bergman periodic formula for the e�ective Hall co-
e�cients, we prove (see Theorem 3.6) that the e�ective Hall matrix R� is obtained from the Hall
matrix R" combined with the current �eld � " P " , where P " is the corrector associated with� " , i.e.
the electric �eld weakly converging to I and solving the conductivity equation in the absence of a
magnetic �eld (see De�nition 2.4).

We then show that in contrast to the two-dimensional Hall e�ect studied in [4], the homogenization
process fromR" to R� in three dimensions does not preserve any positivity property. Indeed, we give
(see Theorem 4.2) an example of a microstructure for whichR" is positive isotropic a.e., while R�

is a constant negative isotropic matrix. This surprising result is linked to the change of sign of the
corrector's determinant derived in [5].

The paper is organized as follows. In Section 2 we recall a few results ofH -convergence which
provides a general framework for studying the Hall e�ect. In Section 3 we introduce the notion of
the three-dimensional Hall matrix associated with a microstructure and we prove a homogenization
result about the Hall matrix. Section 4 is devoted to the example where the composite is electrically
isotropic, but the e�ective Hall coe�cient has opposite sign to that of the constituents.

Notations

� Y denotes the cube (� 1; 1)d, d � 2, and 
 a bounded open set of Rd;

� I denotes the unit matrix of Rd� d;

� for any A 2 Rd� d, AT denotes the transpose ofA, det(A) its determinant, tr( A) its trace,
and Cof(A) its cofactor matrix;
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� j � j denotes the euclidian norm inRd and the subordinate norm in Rd� d, i.e., for any A 2 Rd� d,
jAj := sup fj Ax j : jxj = 1g;

� Rd� d
a denotes the set of the antisymmetric matrices inRd� d;

� for any �; � > 0, M (�; � ; 
) is the set of the matrix-valued functions A : 
 �! Rd� d such that

8 � 2 Rd; A(x)� � � � � j� j2 and A � 1(x)� � � � � � 1 j� j2; a.e. x 2 
; (1.2)

� H 1
# (Y ) denotes the space of functions which areY-periodic in Rd and belong to H 1

loc(Rd);

� for any u : Rd �! R, r u :=
�

@u
@xi

�

1� i � d
;

� for any U : Rd �! Rd, U = ( u1; u2; u3), DU :=
�

@uj
@xi

�

1� i;j � d
;

� for any � : Rd �! Rd� d, Div ( � ) :=
�

@�ij
@xi

�

1� j � d
and Curl ( � ) :=

�
@�ik
@xj

�
@�jk
@xi

�

1� i;j;k � d
;

� for any sequence of functionsf " : O �! H , " > 0, where O is a neighbourhood of 0 inRd

and (H; k � k) a Banach space, we use the following convention

f " (h) = oH (h) () lim
h! 0

�
1

jhj
sup
"> 0

kf " (h)k
�

= 0 ; (1.3)

i.e. the oH (h) is uniform with respect to " ;

� D0(
) denotes the space of the distributions on 
.

2 Review of homogenization

2.1 H -convergence

Let 
 be a bounded open set of Rd and let �; � > 0. We recall here the de�nition of H -convergence due
to Murat and Tartar [11] of a sequence of matrix-valued functions in M (�; � ; 
) (see notation (1.2)),
some properties of theH -convergence, and the de�nition of a corrector:

De�nition 2.1. (Murat-Tartar) A sequenceA " in M (�; � ; 
) is said to H -converge toA � in M (�; � ; 
)
if any sequenceu" in H 1

0 (
) such that div ( A " r u" ) strongly converges tof in H � 1(
) as " ! 0, weakly
converges inH 1

0 (
) to the solution u of div (Ar u) = f , and the sequenceA " r u" weakly converges
to A � r u in L 2(
) d. Then, the matrix-valued function A � is called the homogenized matrix or the
H -limit of A " .

Theorem 2.2. (Murat-Tartar) Any sequence inM (�; � ; 
) admits a subsequence whichH -converges
to a matrix-valued function in M (�; � ; 
) .

Proposition 2.3. (Murat-Tartar) If A " is a sequence inM (�; � ; 
) which H -converges toA � , then
(A " )T H -converges to(A � )T .

De�nition 2.4. (Murat-Tartar) Let A " be a sequence inM (�; � ; 
) which H -converges toA � . Any
matrix-valued function P " in L 2(
) 3 satisfying

8
>><

>>:

P " � * I weakly in L 2(
) d� d

Curl ( P " ) �! 0 strongly in H � 1(
) d� d� d

Div ( A " P " ) �! Div ( A � ) strongly in H � 1(
) d� d;

(2.1)
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is called a corrector associated withA " . In this case, the following convergence also holds true

A " P " � * A � weakly in L 2(
) d� d: (2.2)

The following result allows us to build correctors:

Proposition 2.5. Let A " be a sequence inM (�; � ; 
) which H -converges toA � . Let U" be the solution
in H 1(
) 3 of the equation (

Div ( A " DU " ) = Div ( A � ) in 


U" (x) = x on @
 :
(2.3)

Then, DU " is a corrector associated withA " and, for any corrector P " associated withA " , the sequence
P " � DU " strongly converges to0 in L 2

loc(
) 3� 3.

Example 2.6. Let A be aY-periodic matrix-valued function in M (�; � ; Rd) and de�ne, for any " > 0,
A " (x) := A( x

" ) a.e. x 2 
. Then, the sequence A " H -converges to a constant matrix. Moreover, ifU
is the unique solution, with zero Y-average, of equation

(
Div ( ADU ) = 0 in D0(Rd)

U(y) � y 2 H 1
# (Y )d;

(2.4)

then the matrix-valued function de�ned by P " (x) := DU ( x
" ) is a corrector associated withA " .

2.2 H -convergence with a parameter

We now consider a sequenceA " (h) in M (�; � ; 
), with a parameter h belonging to a neighbourhood
of 0 in Rd. We have the following di�erentiability result satis�ed by the homogenized matrix A � (h)
at h = 0:

Theorem 2.7. (i ) Assume that A " (h) in M (�; � ; 
) satis�es the uniform Lipschitz condition

9 C > 0; 8 h; h0 2 O; jA " (h) � A " (h0)j � C jh � h0j; (2.5)

and the di�erentiability at h = 0 (see notation (1.3))

A " (h) = A " + A "
1 � h + oL 1 (
) d� d (h); (2.6)

whereA " := A " (0) and A "
1 is a bounded sequence inL 1 (
) d� d� d. Then, there exists a subsequence, still

denoted by" , such that, for any h 2 O, A " (h) H -converges to someA � (h) in M (�; � ; 
) . Moreover,
the H -limit A � satis�es the �rst-order expansion at h = 0

A � (h) = A � + A �
1 � h + oL 2 (
) d� d (h); (2.7)

where A � := A � (0) and A �
1 2 L 2(
) d� d� d.

(ii ) Also assume that the matrixA " of (2.6) is symmetric and let P " be a corrector (2.1) associated
with A " . Then, the following convergence holds true in the sense of distributions:

8 h 2 O; (P " )T (A "
1 � h) P " � * A �

1 � h in D0(
) d� d: (2.8)

Remark 2.8. Part ( i ) of Theorem 2.7 is proved in [4]. It is an extension of Theorem 2.5 in [6]
whereA " (h) is of classCn with respect to h and its n+1 derivatives satisfy the Lipschitz condition (2.5).
Under this stronger assumption of regularity the H -limit is also of class Cn and its derivatives are
uniformly Lipschitz. Here, we only assume the di�erentiability (2.6) at h = 0 combined with (2.5). In
return, the �rst-order expansion (2.7) of A � (h) is only valid in the sense of theL 2(
) d� d-norm.

Part ( ii ) of Theorem 2.7 is proved in the appendix.
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3 The Hall e�ect and homogenization

3.1 The three-dimensional Hall e�ect

The dimension is d = 3 from now onwards. Let 
 be a bounded open subset of R3, let O be a
ball of R3 centered at 0, and let �; � > 0. Consider a sequence� " (h), for " > 0 and h 2 O, of
matrix-valued functions in M (�; � ; 
), which represents the conductivity matrix of a heterogeneous
conducting material in the presence of a constant magnetic �eldh, and the microstructure of which
is measured by the small parameter" . From the physics of the problem it can be shown (see e.g.
Section 21 of [9] pages 132-135) that� " (h) satis�es the property

8 h 2 R3; � " (h)T = � " (� h); (3.1)

which implies that the symmetric part of � " (h) is even and the antisymmetric one is odd with respect
to h. Then, in the presence of a low magnetic �eldh we can assume that the following �rst-order
expansion holds ath = 0:

� " (h) = � " + S"
1 � h + oL 1 (
) 3� 3 (h); (3.2)

where � " = � " (0) and S"
1 is a bounded sequence inL 1 (
) 3� 3� 3. We also assume that� " (h) satis�es

the uniform Lipschitz condition (2.5) in O. Therefore, it is easy to check that the resistivity � " (h) :=
� " (h) � 1 belongs to M (� � 1; � � 1; 
), and also satis�es the uniform Lipschitz condition (2.5) in O, as
well as the �rst-order expansion

� " (h) = � " + R"
1 � h + oL 1 (
) 3� 3 (h); (3.3)

where� " := � " (0) and R"
1 is a bounded sequence inL 1 (
) 3� 3� 3. The �rst-order term of expansion (3.3)

corresponds to the Hall e�ect due to the magnetic �eld h which perturbs the resistivity � " .
By virtue of property (3.1) the matrix-valued functions � " and � " are symmetric while S"

1 � h
and R"

1 � h are antisymmetric for any h 2 O. Therefore, the third-order tensors S"
1 and R"

1 de�ne two
linear mappings from R3 into the spaceR3� 3

a of antisymmetric matrices in R3� 3. This leads us to the
following de�nition of the Hall matrix:

De�nition 3.1. Let E be the Levi-Civita third-order tensor (see e.g. [17]) de�ned by the one-to-one
linear mapping

E : R3 �! R3� 3
a

� 7�! E(� ) := [ eijk � k ]1� i;j � 3;
(3.4)

with the Einstein convention of summing over the repeated subscript, and where

eijk :=

8
<

:

1 if ( i; j; k ) is an even permutation of (1; 2; 3)
� 1 if ( i; j; k ) is an odd permutation of (1; 2; 3)
0 otherwise:

(3.5)

Then, the Hall matrix R" associated with the resistivity � " (h) is de�ned from the �rst-order term
of (3.3) by

R" h := E� 1 (R"
1 � h) ; for any h 2 O; (3.6)

to ensure that
� " (h) = � " + E(R" h) + oL 1 (
) 3� 3 (h): (3.7)

Notice that the action of E� 1 is easy to compute, since in coordinates

E� 1

0

@
0 a1 a2

� a1 0 a3

� a2 � a3 0

1

A =

0

@
a3

� a2

a1

1

A for a1; a2; a3 2 R: (3.8)
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Remark 3.2. Since by assumption R"
1 is a bounded sequence inL 1 (
) 3� 3� 3, R" is a bounded

sequence of matrix-valued functions inL 1 (
) 3� 3. Similar to (3.7) there exists a bounded sequenceS"

in L 1 (
) 3� 3 such that the �rst-order expansion (3.2) reads as

� " (h) = � " + E(S" h) + oL 1 (
) 3� 3 (h): (3.9)

Remark 3.3. In dimension two the Hall matrix is replaced by a scalar coe�cient (see [4]).

3.2 Homogenization of the Hall e�ect

On the one hand, due to the Lipschitz condition (2.5) and the compactness of theH -convergence in
Theorem 2.2, there exists a subsequence of" , still denoted by " , such that the conductivity � " (h)
H -converges to some� � (h) in M (�; � ; 
), for any h 2 O. Since � " (h)T = � " (� h) H -converges
to � � (h)T by Proposition 2.3, we also get� � (h)T = � � (� h) for any h 2 O. Therefore, by the �rst-
order expansion (2.7) of Theorem 2.7 and similar to (3.2), there exists a matrix-valuedS� in L 2(
) 3� 3

such that
� � (h) = � � + E(S� h) + oL 2 (
) 3� 3 (h); (3.10)

where � � = � � (0) 2 M (�; � ; 
).
On the other hand, taking the inverse of expansion (3.10) the e�ective resistivity � � (h) := [ � � (h)] � 1

satis�es the similar expansion

� � (h) = � � + E(R� h) + oL 2 (
) 3� 3 (h); (3.11)

where � � = � � (0) 2 M (� � 1; � � 1; 
). This leads us to the following de�nition:

De�nition 3.4. The matrix-valued R� de�ned by the �rst-order expansion (3.11) is the e�ective Hall
matrix of R" de�ned by (3.7).

To distinguish the Hall matrices R" ; R� from the matrices S" ; S� , the last ones will be called the
S-matrices in what follows. Similarly, with regard to the Hall coe�cients r " ; r � , the coe�cients s" ; s�

will be called the s-coe�cients.

Proposition 3.5. The Hall matrices R" ; R� and the S-matrices S" ; S� are linked by the following
relations

S" = � Cof(� " )R" and S� = � Cof(� � )R� : (3.12)

The homogenization problem is now to derive the pair (� � ; S� ) (or equivalently the pair ( � � ; R� ))
of homogenized matrices from the sequence (� " ; S" ) (or from ( � " ; R" )). The result for S� (or for the
e�ective Hall matrix R� ) simply depends on the solutions for the �elds (electric or current) without
any magnetic �eld present as shown by the following result:

Theorem 3.6. Let P " be a corrector associated with the conductivity sequence� " according to De�ni-
tion 2.4. Then, the homogenizedS-matrix S� (3.10) is derived from the sequenceS" by the following
convergence in the distribution sense

Cof(P " )T S" � * S � in D0(
) 3� 3; (3.13)

while the e�ective Hall matrix R� (3.11) is given by

Cof(� " P " )T R" � * Cof(� � )T R� = Cof( � � )R� in D0(
) 3� 3: (3.14)

Remark 3.7. The electric �eld P " arises in the homogenization process (3.13) giving theS-matrix S�

associated with the conductivity � � by (3.10). However, it is the current �eld � " P " which arises in
the limit process (3.14) giving the e�ective Hall matrix R� .
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3.3 Proof of the results

The proof of Theorem 3.6 is based of the following algebraic result:

Lemma 3.8. For any vector � in R3 and any symmetric matrix P in R3� 3, the Levi-Civita tensor E
de�ned by (3.4) satis�es the relation

PT E(� ) P = E
�
Cof(P)T �

�
: (3.15)

Proof. Let � 2 R3, let P be an invertible matrix in R3� 3, and set � := P � 1� . Let i; j 2 f 1; 2; 3g, we
have using Einstein's convention

�
PT E(P � )P

�
ij = ( PT ) ik [E(P � )]kl Plj = Pki eklm [P � ]m Plj = eklm Pki Plj Pmn � n : (3.16)

Fix i; j; n 2 f 1; 2; 3g. If two integers among i; j; n are equal, for examplei = j , we have

eklm Pki Plj Pmn = eklm Pli Pki Pmn = � elkm Pli Pki Pmn = � eklm Pki Plj Pmn ; (3.17)

henceeklm Pki Plj Pmn = 0 = det( P) eijn . Now, assume thati; j; n are distinct integers. If (i; j; n ) is an
even permutation of (1; 2; 3), sinceeklm is invariant by an even permutation of (k; l; m ), we have

eklm Pki Plj Pmn = eklm Pk1Pl2Pm3 = det( P) = det( P) eijn : (3.18)

Otherwise, sinceeklm changes sign by an odd permutation of (k; l; m ), we have

eklm Pki Plj Pmn = � eklm Pk1Pl2Pm3 = � det(P) = det( P) eijn : (3.19)

In all cases we geteklm Pki Plj Pmn = det( P) eijn , and hence by (3.16)
�
PT E(P � )P

�
ij = det( P) eijn � n = det( P) [E(� )] ij for any i; j 2 f 1; 2; 3g; (3.20)

i.e. PT E(P � )P = det( P) E(� ). This combined with the equality Cof( P)T = det( P) P � 1 thus yields

PT E(� )P = E
�
det(P) P � 1�

�
= E

�
Cof(P)T �

�
; (3.21)

which proves the claim for any invertible matrix P. The result holds for any matrix P by a density
argument.

Proof of Theorem 3.6. Let P " be a corrector associated with the resistivity� " . By Lemma 3.8 we
have for any h 2 O,

(P " )T E(S" h)P " = E
�
Cof(P " )T S" h

�
: (3.22)

Therefore, using the fact that the �rst-order terms of (3.7) and (3.11) are respectivelyE(S" h) and E(S� h),
we deduce from (2.8) the convergences

8 h 2 O; E
�
Cof(P " )T S" h

�
� * E(S� h) in D0(
) 3� 3: (3.23)

Since E is an invertible linear mapping, the desired convergence (3.13) thus follows from the former
ones. Now, the convergence (3.14) is a straightforward consequence of the convergence (3.13) combined
with relations (3.12) and the multiplicativity of the cofactor matrix.

Proof of Proposition 3.5. By the �rst-order expansions (3.7) and (3.9) we have for anyh 2 O and
any t > 0 small enough,

0 = � I + � " (th) � " (th) = � I +
�
� " + E(tS " h)

� �
� " + E(tR " h)

�
+ oL 1 (
) 3� 3 (th)

= t � " E(R" h) + t E(S" h) ( � " ) � 1 + oL 1 (
) 3� 3 (th):
(3.24)

Then, dividing by t the previous equality and letting t tend to zero we obtain by the symmetry of � "

E(S" h) = � � " E(R" h)� " = � (� " )T E(R" h)� " : (3.25)

Therefore, by Lemma 3.8 we get

E(S" h) = � E
�
Cof(� " )T R" h

�
= � E(Cof(� " )R" h) ; (3.26)

which yields the �rst equality of (3.12) using the invertibility of E.
The proof of the second one is quite similar starting from (3.10) and (3.11).
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4 Properties of the homogenized Hall matrix

4.1 Statement of the properties

Let 
 be a bounded open subset of R3, let O be a ball of R3 centered at 0, and let �; � > 0. We
consider a conductivity sequence� " (h), for " > 0 and h 2 O, in M (�; � ; 
) which is associated
with the resistivity sequence � " (h) := [ � " (h)] � 1 in M (� � 1; � � 1; 
). We make the assumptions of
Section 3.1 to ensure that the Hall matrix R" and its homogenizedR� de�ned by (3.7) and (3.11)
satisfy convergence (3.14).

We have the following result of stability satis�ed by the Hall matrices R" ; R" and the S-matrices
S" ; S" :

Proposition 4.1. Assume that there exist two matrix-valued functions�; R in L 1 (
) 3� 3 such that
� " = � and R" = R a.e. in 
 . Then, we haveR� = R a.e. in 
 .
Assume that there exists a matrix-valued functionS in L 1 (
) 3� 3 such that S" = S a.e. in 
 . Then,
we haveS� = S a.e. in 
 .

Note that the previous result about the homogenizedS-matrix S� was already known to Stroud
and Bergman [15].

Proof. The �rst part of Proposition 4.1 is immediate since we then have � " = � � = � and P " = I
in the convergence (3.14). Let us now prove the second part. LetP " := DU " be the corrector
associated with � " , where U" is the solution of equation (2.3) with A " := � " . The continuity of
the null Lagrangians (see e.g. Corollary 2.8 p. 179 of [7]) combined with the convergence ofP " to I
in L 2(
) 3� 3, implies that the cofactor matrix Cof( P " ) converges toI in D0(
) 3� 3. Moreover, thanks to
the Meyers estimate [10] the sequenceP " is also bounded inL p

loc(
) 3� 3, for somep > 2. Therefore, the

sequence Cof(P " ) is bounded in L p=2
loc (
) 3� 3 and weakly converges toI in L p=2

loc (
) 3� 3. This combined
with the convergence (3.13) and the fact thatS 2 L 1 (
) 3� 3 yields

Cof(P " )T S" = Cof( P " )T S � * S = S� weakly in L p=2
loc (
) 3� 3; (4.1)

which concludes the proof.

In addition to this stability property, the two-dimensional e�ective Hall coe�cient keeps the sign
of the Hall coe�cient associated with the microstructure (see [4]). However, this positivity property
is not preserved in dimension three as shown by the following result:

Theorem 4.2. There exists a microstructure with conductivity � " (h) := � " + E(S" h), such that the
conductivity � " is isotropic and the Hall matrix R" is positive isotropic a.e. in 
 , while the e�ective
Hall matrix R� is a constant negative isotropic matrix.

Remark 4.3. The fact that the Hall coe�cient keeps its sign in the two-dimensional homogenization
process is strongly linked to the nonnegativity of the corrector's determinant det(DU " ) de�ned by (2.3).
This nonnegativity is proved in [2] assuming that the homogenized matrix is constant, which holds in
particular for periodic microstructures. By contrast, we proved in [5] that the corrector's determinant
may change sign in dimension three (see also [1] using a similar geometry for a di�erent purpose). Using
a suitable modi�cation of the geometry of the counter-example from [5], we will build a microstructure
which establishes the claim of Theorem 4.2.

4.2 Proof of Theorem 4.2

The proof of Theorem 4.2 is divided into three steps. In the �rst step we build a microstructure with
cubic symmetry in which the electric �eld in some areas points in the opposite direction to the applied
�eld. In the second step we de�ne an isotropicS-matrix S" = s" I in such a way that the homogenized
S-matrix S� = s� I is also isotropic. In the third and �nal step we prove that the parameters of the

8



Figure 1: A sheet of chain mail. Reprinted with kind permission from Dylon Whyte,
http://artofchainmail.com/patterns/japanese/hitoye gusari.html, copyright 1998-2004.

model can be chosen so that thes-coe�cients s" and s� have opposite signs, which completes the proof.
Indeed, due to the cubic symmetry and the local isotropy of� " the homogenized conductivity � � is
known to be isotropic: this is obvious since the eigenspaces of� � must inherit the cubic symmetry and
cannot have preferred directions. Therefore, by virtue of relations (3.12) the isotropy and the change
of sign satis�ed by the S-matrices S" ; S� also hold for the Hall matrices R" ; R� .

First step: The microstructure and the induced symmetry properties.
The microstructure is de�ned by the three following steps:

� First, we start from the geometry of [5] restricted to the strip ( � 1; 1) � R2. It consists of
separate chains parallel to thex3 axis, with the chain axes spaced a distance 2 apart. Each link
is isometric to a closed torus of outer radiusR 2 ( 1

2 ; 1) and of inner radius r 2 ( 1
2 ; R). The

links each have a central axis alternatively parallel to thex1 and x2 axes. Those links oriented
with their central axes parallel to the x1 axis have centers at the points (0; `; m), where ` and m
are even integers, while those links oriented with their central axes parallel to thex2 axis have
centers at the points (0; `; m + 1).

� Second, in the strip (� 1; 1) � R2 we add to the previous array of chains a set of orthogonal
cross links, each with the same dimensions as the original links and having a central axis parallel
to x3, and centered at the points (0; ` + 1 ; m). In this way we form a sheet � of chain mail (as in
Middle Age armor) with square symmetry, as shown in �gure 1. The sheet � is 2-periodic with
respect tox2; x3, symmetric with respect to the planesx1Ox2, x1Ox3, and invariant by rotation
of 90� in the plane x2Ox3.

� Third, we construct cubic chain mail de�ned by the following union of appropriately translated

9



Figure 2: Two sheets of cubic chain mail. Reprinted with kind permission from Dylon Whyte,
http://artofchainmail.com/patterns/japanese/hitoye gusari.html, copyright 1998-2004.

sheets �:
Q# :=

[

k2 Z

�
(k; k; k) + �

�
: (4.2)

To convey the idea, �gure 2 represents two sheets ofQ# made of a subset of � [
�
(1; 1; 1) + �

�
.

Set Y := ( � 1; 1)3. The set Q# is closed,Y -periodic and has cubic symmetry. Within the cell Y
�gure 3 represents the structure Q# \ Y of Q# (for the sake of clarity only the boundary of the
rings is represented and some connected components ofQ# \ Y are not), and �gure 4 represents two
cross-sections ofQ# \ Y .

In the absence of a magnetic �eld the conductivity associated with this microstructure is de�ned,
for a �xed � > 1, by

� �;" (x) := � �
� x

"

�
where � � (y) :=

�
�I if y 2 Q#

I elsewhere:
(4.3)

According to Example 2.6 the corrector associated with� �;" is de�ned by

P " (x) := DU �
� x

"

�
; for x 2 
 ; (4.4)

whereU � is the zeroY-average solution of equation (2.4) withA := � � . Following the arguments of [5]
we can prove that U � strongly converges inH 1

loc(R3), as � ! + 1 , to the zero Y-average functionU
which is the solution of the equation (see �gure 4)

(
� U = 0 in R3 n Q#

U(y) � y 2 H 1
# (Y )3;

with

8
>>>><

>>>>:

U = (0 ; 0; 0) in link 0 U = (1 ; 1; 0) in link 5
U = (0 ; 0; 1) in link 1 U = ( � 1; 1; 0) in link 6
U = (0 ; 1; 0) in link 2 U = ( � 1; � 1; 0) in link 7
U = (0 ; 0; � 1) in link 3 U = (1 ; � 1; 0) in link 8 :
U = (0 ; � 1; 0) in link 4

(4.5)
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Figure 3: The cubic chain mail within the cell ( � 1; 1)3, missing some connected components

Now, let us show the symmetry properties satis�ed by the function U � as a consequence of the
symmetries satis�ed by the set Q# and the function � � . On the one hand, we can check thatQ#

and � � are left invariant by the orthogonal transformations

� 1(x) := ( x1; x3; x2) and � 2(x) := ( x3; x2 + 1 ; x1); (4.6)

and thus by the compound transformations � := � 2 � � 1 and � � � given by

� (x) = ( x2; x3 + 1 ; x1) and (� � � )(x) = ( x3 + 1 ; x1 + 1 ; x2): (4.7)

This combined with the de�nition (2.4) of U � and the isotropy of � � leads us to the following relations,
for a.e. x 2 R3, 8

><

>:

u�
1(x) = u�

3(x2; x3 + 1 ; x1) = u�
2(x3 + 1 ; x1 + 1 ; x2)

u�
2(x) = u�

1(x2; x3 + 1 ; x1) = u�
3(x3 + 1 ; x1 + 1 ; x2)

u�
3(x) = u�

2(x2; x3 + 1 ; x1) = u�
1(x3 + 1 ; x1 + 1 ; x2):

(4.8)

These properties easily imply that the cofactor matrix Cof(DU � ) = [ c�
ij ]1� i;j � 3 satis�es the following

transformations, for a.e. x 2 R3,

Cof(DU � )(x2; x3 + 1 ; x1) =

0

@
c�

22 c�
23 c�

21
c�

32 c�
33 c�

31
c�

12 c�
13 c�

11

1

A (x)

Cof(DU � )(x3 + 1 ; x1 + 1 ; x2) =

0

@
c�

33 c�
31 c�

32
c�

13 c�
11 c�

12
c�

23 c�
21 c�

22

1

A (x);

(4.9)

where the elements on the right hand sides are obtained from the elements of Cof(DU � )(x) according
to the permutations (1; 2; 3) ! (2; 3; 1), (1; 2; 3) ! (3; 1; 2) respectively.

11



Figure 4: Sectionsx2Ox3 and x1Ox2 of the period cell: 0 is an entire link, 1; 2; 3; 4 are half-links, and
5; 6; 7; 8 are quarter-links.
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On the other hand, due to the symmetries ofQ# and � � (4.3) one can check that thei -th coor-
dinate u�

i of UK is odd with respect to the variable x i and even with respect to x j for j 6= i . This
implies that, for a.e. x 2 R3,

DU � (� x1; x2; x3) =

0

B
B
@

@u�1
@x1

� @u�2
@x1

� @u�3
@x1

� @u�1
@x2

@u�2
@x2

@u�3
@x2

� @u�1
@x3

@u�2
@x3

@u�3
@x3

1

C
C
A (x); DU � (x1; � x2; x3) =

0

B
B
@

@u�1
@x1

� @u�2
@x1

@u�3
@x1

� @u�1
@x2

@u�2
@x2

� @u�3
@x2

@u�1
@x3

� @u�2
@x3

@u�3
@x3

1

C
C
A (x);

(4.10)
and hence the cofactor matrix Cof(DU � ) satis�es the same changes of sign

Cof(DU � )( � x1; x2; x3) =

0

@
c�

11 � c�
12 � c�

13
� c�

21 c�
22 c�

23
� c�

31 c�
32 c�

33

1

A (x);

Cof(DU � )(x1; � x2; x3) =

0

@
c�

11 � c�
12 c�

13
� c�

21 c�
22 � c�

23
c�

31 � c�
32 c�

33

1

A (x):

(4.11)

Second step:Construction of the isotropic Hall matrices.
Let � 2 (1 � r; r ) be a parameter which will be chosen more precisely in the third step. Consider the
three points in R3 n Q# de�ned by

x̂ := (0 ; 0; � ); ŷ := (0 ; � + 1 ; 0) and ẑ := ( � + 1 ; 1; 0); (4.12)

and, for � 2 ( 1
2 ; 1), the matrix de�ned by

S�
� := �

Z

B (x̂;� )
Cof(DU � )T (x) dx + �

Z

B (ŷ;� )
Cof(DU � )T (y) dy + �

Z

B (ẑ;� )
Cof(DU � )T (z) dz; (4.13)

where B (x̂; � ) denotes the open ball of center ^x and radius � .
Let us prove that the S-matrix S�

� is isotropic. On the one hand, the symmetry of the ballB (x̂; � )
with respect to the plane x2Ox3 combined with relations (4.11) yields

Z

B (x̂;� )
Cof(DU � )(x) dx = 2

Z

B (x̂;� )\f x1> 0g

 
c�

11 0 0
0 c�

22 c�
23

0 c�
32 c�

33

!

(x) dx: (4.14)

Then, using the symmetry of the half-ball B (x̂; � ) \ f x1 > 0g with respect to the plane x1Ox3, we get
Z

B (x̂;� )
Cof(DU � )(x) dx = 4

Z

B (x̂;� )\f x1 ;x2> 0g

 
c�

11 0 0
0 c�

22 0
0 0 c�

33

!

(x) dx: (4.15)

On the other hand, making the changes of variablesy = ( x2; x3 + 1 ; x1), z = ( x3 + 1 ; x1 + 1 ; x2) in the
balls B (ŷ; � ), B (ẑ; � ) respectively, and using the relations (4.9) we have

Z

B (ŷ;� )
Cof(DU � )(y) dy =

Z

B (x̂;� )

 
c�

22 c�
23 c�

21
c�

32 c�
33 c�

31
c�

12 c�
13 c�

11

!

(x) dx;

Z

B (ẑ;� )
Cof(DU � )(z) dz =

Z

B (x̂;� )

 
c�

33 c�
31 c�

32
c�

13 c�
11 c�

12
c�

23 c�
21 c�

22

!

(x) dx:

(4.16)

This combined with relations (4.9) yields, similarly to (4.15),
Z

B (ŷ;� )
Cof(DU � )(y) dy = 4

Z

B (x̂;� )\f x1 ;x2> 0g

 
c�

22 0 0
0 c�

33 0
0 0 c�

11

!

(x) dx;

Z

B (ẑ;� )
Cof(DU � )(z) dz = 4

Z

B (x̂;� )\f x1 ;x2> 0g

 
c�

33 0 0
0 c�

11 0
0 0 c�

22

!

(x) dx:

(4.17)
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Therefore, from the de�nition (4.13) of S�
� , (4.15) and (4.17) we deduce that

S�
� = s�

� I; where s�
� := �

Z

B (x̂;� )\f x1 ;x2> 0g
tr

�
Cof(DU � )

�
(x) dx: (4.18)

Now, consider the microstructure with conductivity � �;" (h) = � �;" + E(S" h), where � �;" is de�ned
by (4.3) and the S-matrix S" is de�ned, for a �xed 
 2 (0; 1) and a.e.x 2 
, by

S" (x) := s" (x) I; s " (x) := s#

� x
"

�
; s# := 
 + (1 � 
 )

�
1#

B (x̂;� ) + 1 #
B (ŷ;� ) + 1 #

B (ẑ;� )

�
; (4.19)

where 1#
E denotes the characteristic function of the setE , extended by Y-periodicity to the whole

spaceR3. In other words, the s-coe�cient s" is equal to 1 in the set composed by the three balls
B (" x̂; "� ), B (" ŷ; "� ), B (" ẑ; "� ) repeated by "Y -periodicity in R3, and to 
 elsewhere. Due to the
convergence (3.14) combined with the"Y -periodicity of the corrector P " (4.4) and of the S-matrix
S" (4.19), the homogenizedS-matrix S� is given by the weak convergence

Cof(P " )T S" � * S � = �
Z

Y
s# (x) Cof(DU � )T (x) dx weakly in L 1(
) 3� 3: (4.20)

Since Cof is a null Lagrangian andDU � is Y -periodic, we have

�
Z

Y
Cof(DU � )(x) dx = I: (4.21)

Therefore, by the de�nition (4.13) of S�
� we get

S� = 
 I + (1 � 
 )
jB (x̂; � )j

jY j
S�

� = 
 I + (1 � 
 )
�
6

� 3 S�
� : (4.22)

By the de�nition (4.18) of s�
� the S-matrix S� also reads as

S� = s� I; where s� :=
�
6

� 3 s�
� + 


�
1 �

�
6

� 3 s�
�

�
: (4.23)

Let us conclude. The de�nition (4.19) clearly shows that S" is positive isotropic a.e. in 
. Therefore,
by virtue of (4.23) it remains to prove that r; R; �; � can be chosen in such a way thats�

� < 0. This is
the aim of the third step.

Remark 4.4. The previous analysis is su�cient to ensure the isotropy of the homogenizedS-
matrix S� . In some sense the choice of the three points (4.12) is the minimal way to obtain isotropy,
since these points allow us to get the permutations of the diagonal coe�cients of Cof(DU � ) in (4.17).
However, the microstructure (4.19) of theS-matrix S" has not the cubic symmetry of the conductivity
matrix (4.3). In order to obtain this symmetry we can consider the three extra points

x̂0 := (0 ; 0; � � ); ŷ0 := (0 ; � � + 1 ; 0); ẑ0 := ( � � + 1 ; 1; 0); (4.24)

and the isotropic S-matrix S0
" := s0

# ( x
" ) I now de�ned with six balls by (compare to (4.19))

s0
# := 
 + (1 � 
 )

�
1#

B (x̂;� ) + 1 #
B (ŷ;� ) + 1 #

B (ẑ;� ) + 1 #
B (x̂0;� ) + 1 #

B (ŷ0;� ) + 1 #
B (ẑ0;� )

�
: (4.25)

Then, the matrix-valued function Cof( P " )T S0
" has cubic symmetry. Therefore, according to the prin-

ciple that any e�ective tensor inherits the symmetries of the associated microstructure (this can be
rigorously checked for example by arguments similar to the above analysis) the constant homogenized
S-matrix S0

� as weak limit of Cof(P " )T S0
" (see (4.20)) is necessarily isotropic, i.e.S0

� := s0
� I . By

linearity the trace of Cof( P " )T S0
" weakly converges to the trace ofS0

� , which leads to

3s0
� = 3 
 +

(1 � 
 )
jY j

Z

B (x̂;� )[ B (ŷ;� )[ B (ẑ;� )[ B (x̂0;� )[ B (ŷ0;� )[ B (ẑ0;� )
tr

�
Cof(DU � )

�
(x) dx: (4.26)
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Again using the cubic symmetry and the de�nition (4.18) of s�
� , we obtain

s0
� = 
 +

�
3

� 3 (1 � 
 ) �
Z

B (x̂;� )
tr

�
Cof(DU � )

�
(x) dx =

�
3

� 3 s�
� + 


�
1 �

�
3

� 3 s�
�

�
: (4.27)

Third step: Negativity of the homogenizeds-coe�cient s� .
Since the sequenceDU � strongly converges toDU (4.5) in L 2

loc(R3), and since the function DU is
continuous at the point x̂ (by the harmonicity of U in R3 n Q# ), we have by de�nition (4.18)

lim
� ! 0

�
lim

� ! + 1
s�

�

�
= tr

�
Cof(DU )

�
(x̂): (4.28)

Moreover, since the functionui is even with respect to the variablex j for j 6= i , we have @ui
@xj

(x̂) = 0
for any j = 1 ; 2 and i 6= j , hence

lim
� ! 0

�
lim

� ! + 1
s�

�

�
=

@u1
@x1

(x̂)
@u2
@x2

(x̂) +
@u1
@x1

(x̂)
@u3
@x3

(x̂) +
@u2
@x2

(x̂)
@u3
@x3

(x̂): (4.29)

Let us prove that there exists r 2 ( 1
2 ; 1) such that this limit is negative.

On the one hand, sincer > 1 � r , u3(0; 0; r ) = 0 and u3(0; 0; 1 � r ) = 1 (see �gure 4 and (4.5)), there
exists � r 2 (1 � r; r ) such that

@u3
@x3

(0; 0; � r ) =
1

1 � 2r
: (4.30)

On the other hand, the Hopf maximum principle implies the positivity of the normal derivative of ui

with respect to the plane x3� i Ox3 for i = 1 ; 2 (see [5] for details), hence

@ui
@xi

(x̂) > 0; for i = 1 ; 2: (4.31)

Let ! := ( � 1; 0) � R2 n Q# and let v1 be the function de�ned by

v1(x) := u1(x) �
x1

1 � R
; for x 2 !: (4.32)

The function v1 is harmonic in ! sinceu1 is. Moreover, we have for anyx 2 @!,

� v1(x) = 0 if x1 = 0,

� v1(x) = R
1� R > 0 if x1 = � 1,

� for any connected componentL of Q# such that u1jL = � 1, v1(x) = � 1 � x1
1� R � 0 if x 2 L ,

since the distance ofL to the plane x1 = 0 is greater or equal to 1� R (see �gure 4).

Hence, v1 � 0 on @!. Therefore, since jv1j is bounded from above by an a�ne function in the
unbounded domain ! , the maximum principle implies that v1 � 0 in ! . As a consequence, since
u1(x̂) = 0, we obtain for any � 2 (1 � r; r ),

@u1
@x1

(x̂) = lim
x1 ! 0
x1< 0

�
u1(x1; 0; � )

x1

�
= lim

x1 ! 0
x1< 0

�
v1(x1; 0; � )

x1
+

1
1 � R

�
�

1
1 � R

: (4.33)

A similar result holds for i = 2, hence by (4.31) we get

0 <
@ui
@xi

(x̂) �
1

1 � R
; for i = 1 ; 2: (4.34)

This combined with (4.30) implies that, for any r 2 ( 1
2 ; 3

2 � R), the point x̂r := (0 ; 0; � r ) satis�es the
inequalities

0 <
@u1
@x1

(x̂r )
@u2
@x2

(x̂r )
�

@u1
@x1

(x̂r ) +
@u2
@x2

(x̂r )
� � 1

�
1

2(1 � R)
<

1
2r � 1

= �
@u3
@x3

(x̂r ); (4.35)
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hence the limit (4.29) is negative for x̂r . Therefore, there exist r; R; �; � such that s�
� < 0. For

such values ofr; R; �; � , the homogenizeds-coe�cient s� de�ned by (4.23) is thus negative for small
enough
 , which concludes the proof of Theorem 4.2.
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A Proof of part (ii ) of Theorem 2.7

The corrector P " (h), for h 2 O, of Proposition 2.5 associated with the matrix-valued function A " (h),
reads as

P " (h) = I + D
� �

Div ( A " (h)D �)
� � 1�

Div ( A � (h) � A " (h))
� �

; (A.1)

where Div (A " (h)D �) is an invertible operator from H 1
0 (
) d onto H � 1(
) d. Hence, sinceA " (h)

and A � (h) admit a �rst-order expansion in the neighbourhood of h = 0 and the operator Div ( A " (0)D �)
is invertible, P " (h) also admits the following �rst-order expansion

P " (h) = P " + P"
1 � h + oL 2 (
) d� d (h); (A.2)

where P " = P " (0) is the corrector of Proposition 2.5 associated withA " = A " (0). As P"
1 is the

�rst derivative of P " (h) at h = 0, P"
1 � h is also a gradient for any h 2 O. Moreover, sinceP " (h)

and P " weakly converge toI in L 2(
) d� d as " ! 0, the expansion (A.2) combined with the lower
semicontinuity of the L 2-norm implies that P"

1 weakly converges (up to a subsequence) to someP1

in L 2(
) d� d� d, such that P1 � h = oL 2 (
) d� d (h), hence P1 = 0. By uniqueness of the limit the whole
sequenceP"

1 weakly converges to 0.
On the other hand, the �rst-order expansions (2.6) and (A.2) yield

P " (h)T A " (h)P " (h)

= ( P " + P"
1 � h)T (A " + A "

1 � h) (P " + P"
1 � h) + oL 1 (
) d� d (h)

= ( P " )T A " P " + ( P " )T (A "
1 � h)P " + ( P " )T A " (P"

1 � h) + ( P"
1 � h)T A " P " + oL 1 (
) d� d (h)

= ( P " )T A " P " + ( P " )T (A "
1 � h)P " + ( A " P " )T (P"

1 � h) + ( P"
1 � h)T A " P " + oL 1 (
) d� d (h);

(A.3)

by using the symmetry of A " . SinceA " P " has a compact divergence inH � 1(
) d and P " (h), P " , P"
1 � h

are sequences of gradients which weakly converge inL 2(
) d� d respectively to I , I , 0, the div-curl
lemma implies that

(P " )T (A "
1 � h)P " + oL 1 (
) d� d (h) � * A � (h) � A � weakly-� in M (
) d� d; (A.4)

where M (
) denotes the space of the Radon measures on 
. Therefore, thanks to the boundedness
of (P " )T (A "

1 � h)P " in L 1(
) d� d, combined with the linearity of A "
1, there exists a subsequence"0 such

that, for any h 2 O and any t 2 R,

A � (th) = A � + t lim
M (
) d� d

(P " 0
)T (A " 0

1 � h)P " 0
+ oL 1 (
) d� d (t); (A.5)

where limM (
) d� d denotes the limit as"0 ! 0 in the weak-� sense of the Radon measures. Equating the
above expression with (2.7) in whichh is replaced byth, and dividing the resulting equality by t 6= 0,
then passing to the limit as t ! 0, we get

lim
M (
) d� d

(P " 0
)T (A " 0

1 � h)P " 0
= A �

1 � h: (A.6)

Using a uniqueness argument the former limit holds actually for the whole sequence" , which yields
the desired convergence (2.8).
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