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Adaptive Delta-modulation Coding for Networked Controlled Systems

Fabio Gómez-Estern, Carlos Canudas-de-Wit, Francisco R.Rubio and José Fornés

Abstract— This paper investigates the closed-loop properties
of the differential coding scheme known as Delta–Modulation
(∆-M ) when used in feedback loops within the context of linear
systems controlled through some communication network. We
propose a new modified scheme of the original form of the
∆-M algorithm which improves the closed-loop properties.
Semiglobal stability with convergence to a finite ball is proved
in this framework, where the domain of attraction may be
arbitrarily enlarged by tuning a quantization factor ∆, in
tradeoff with the precision at steady state. In a further step,
parameter ∆ is made adaptive, by defining an adaptation
law exclusively in terms of information available at both the
transmitter and receiver. With this approach, global asymptotic
Stability of the Networked Controlled System is achieved for a
class of unstable plants.

Index Terms— Differential coding, delta modulation, stabi-
lization of linear systems in Networked controlled systems.

I. I NTRODUCTION

This paper proposes anadaptiveextension a offixed-gain
differential coding scheme previously introduced by the same
authors (see [2]) in the context of linear systems intercon-
nected through some transmission network. The problem is
of interest in the area of Networked Controlled Systems
(NCS), where we find several applications calling for data-
compression algorithms aiming at reducing the amount of
information that may be transmitted throughout the commu-
nication channel.

Delta modulation (∆-M ) is a well-known differential
coding technique used for reducing the data rate required
for voice communication, see [9]. The standard technique
is based on synchronizing a state predictor on emitter and
receiver and just sending a onebit error signal corresponding
to the innovation of the sampled data with respect to the
predictor. The prediction is then updated by adding a positive
or negative quantity (determined by the bit that has been
transmitted) of absolute value∆, a known parameter shared
between emitter and receiver.

In [2] we have analyzed stability issues that appear when
the (fixed-gain)∆-modulation scheme was embedded in a
control system between the device measuring the state and
the actuator. Delta modulation (∆-M ) algorithm can also be
understood as the coarsest two-level (1-bit) quantizer. Thus,
this technique is a simple alternative to works concerning the
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use of quantizers in the context of NCS, i.e. [5], [3], [8], [6],
[10], [7], among others. Compared to these approaches, the
modified formof the (∆-M ) algorithm proposed in [2], has
the ability of providing a kind of separation principle, where
the feedback gain if first designed assuming instantaneous
unconstrained communication, and then the coding scheme is
designed in order to preserve stability when embedded in the
feedback loop. It is worth to remark that thismodified form
of the ∆-M coding structure explicitly contains information
about the model plant and the controller feedback gain.

For a constant∆ it was shown in [2] that only a limited
domain of attraction was obtained. In addition, the state was
only guaranteed to converge asymptotically to a finite ball,
begin its size related to the parameters of the open-loop plant,
and on the the userdefined parameter∆.

By making∆ an adaptive quantity, more effective schemes
of ∆-modulation have been already proposed in the com-
munication community [9]. The idea is to design an update
law for ∆, defined exclusively in terms of the information
available both at the receiver and transmitter, aiming at im-
proving the resolution of the differential coding by reducing
the gain∆ for slowly varying signals, while enlarging∆
in case of rapid change of the input, and hence allowing for
faster signal tracking and higher bandwidth of the transmitted
signals. So far in the communication area, adaptation laws for
∆ have been proposed under somewhat heuristic criteria, as
little information is supposed to be available on the dynamics
of the source signal. However, when dealing with feedback
systems, the dynamical properties of the plant become very
useful in designing the adaptive law. This problem, to which
this paper is devoted, is framed as shown in Figure 1.

The problem of quantization with time–varying resolution
in feedback loops has been addressed in [4] and [1]. The
first of these works presents, in the case of fixed resolution,
a scheme similar to [2], in the sense that the state estimation
is computed trough a filter built upon the closed–loop system
matrix. However, the extension to variable–scale quantization
is only defined in thezooming–indirection, and hence
the initial states are upper bounded by the initial choice
of the zoom factor. As a consequence, only semi–global
stabilization is achieved. Here we propose a∆–update law
that works well for bothin–and–outzooming directions, thus
providing a means to capture unbounded initial states in
the zooming–outstage and guaranteeing global asymptotic
stability. Moreover, by defining an explicit∆–update law
in both directions, if the state is driven temporarily out
of the domain of attraction at any time due to unattended
disturbances, the system will recover the stability, unlike the
case of [4].
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Fig. 1. Block diagram of the problem set up studied in this paper.

On the other hand, the work of [1] also guarantees global
asymptotic stability with time–varying full–state quantization
in two subsequent stages. Although our approach can be
roughly understood as a particular case of the Theorems
provided there, an important new feature introduced here is
a state predictor that reduces the amount of data transmitted
per sample by only sending the quantized prediction error.
This reduces the data–rate to a minimum of 1 bit per sample,
while the data–rate in Theorem 3 of [1] islog2(2M), a value
that cannot be taken arbitrarily low.M is actually defined as
a function of the matricesA,B,K of the control system, and
it must be large enough to make the (thereby defined) scale
factor small. In Theorem 4 of [1] a 1-bit per sample data–rate
transmission scheme is also discussed, but here the separation
principle is not present, as the feedbacku = H(q(x)) is no
longer a linear feedback of the state estimated on the receiver
side. But probably the most significant difference between
that approach and the one presented here is the zooming
factor. In [1], it is calculated in terms of the convergence of
the state to an attractive ellipsoid, whose geometry depends
in a complex way on the system matrices. In our approach
the zoom factor is updated at all times with a simple law that
only depends on the last two state estimations, irrespective
of the system matrices (and hence not subject to the side
effects of bad identification).

First, we recall some of the results in [2] showing the
main modification imparted to the standard∆-M algorithms,
and its resulting stability properties underfixed-gain∆. The
main paper contribution is the introduction of an adaptation
mechanisms consists of making time variant the quantization
interval∆. This type of adaptation law, although well known
in the communication field, is used and analyzed for the
first time in the feedback configuration shown in Figure 1.
It is also shown that this adaptive coding structure, modified
as proposed in [2], is proven to yield closed-loop global
asymptotic stability for a class of open-loop unstable linear
systems.

II. F IXED-GAIN ∆-M CODING IN FEEDBACK

In this section we recall some of the results in [2] which
are pertinent for introducing the need for an adaptation law
for ∆. To make the presentation as simplest as possible, we
just present the one-dimension noiseless case. In reference
[2] readers can find the extension of this results to the n-
dimensional case, the consideration of noise, and the case

of output feedback. These results concerns the case offixed
modulation gain, under the feedback configuration shown in
Figure 1.

A. Assumptions

The hypothesis used in the results presented in this section,
but also all along the paper, are the following:

• The transmitted information is binaryδk ∈ {−1, 1}
• Only encoder-to-decoder information transmission is

allowed (feedback between decoder to encoder is for-
bidden),

• Reliable noiseless channel transmission is considered
(no data lost, or information distortion is considered),

• Transmission delays are neglected,
• Channel rate capacity isR[b.p.s.],
• Data is sent at a bounded rate (we select the sampling

frequency in order to transmit only oneδk at a time).

B. One-dimension system example

Consider the following one-dimensional discrete time-
system, together with the control law, and the differential
coding modified law:

• Open-loop system, and encoder:

xk+1 = axk + buk (1)

x̂k+1 = [a− bK]x̂k + ∆ · δk (2)

δk = sgn(x̃k) (3)

• Transmitted information:δk ∈ {−1, 1},
• Control law and decoder:

x̂k+1 = [a− bK]x̂k + ∆ · δk (4)

uk = −Kx̂k (5)

with, K ∈ R, a > 1, ac = (a − bK); |ac| < 1, and
x̃k = xk − x̂k.

The modified differential coder (2)-(4) differs from its
standard form in that the term within the square brackets
depends on the system model parametersa, and b, and on
the control gainK. In thestandardform this term is equal to
one, i.e. the encoder is described by a delayed integral term.
The advantages of this modification is that the coding error
equations become decoupled from the system state equations,
allowing for a simple analysis, and more important, for a
design of the feedback gainK independent to the coding
structure (sort of separation principle). Therefore, the closed-
loop matrixac can be designed by the sole and well known
stabilization conditions for linear systems.

This algorithm gives the following error equations, with
cascade structure:

xk+1 = acxk + bKx̃k (6)

x̃k+1 = ax̃k − ∆sgn(x̃k) (7)

as |ac| < 1, stability of the whole system can thus be tacked
by only studying the stability of the coding error equation
(7), as is presented in Proposition 3 of [2]).

Below we provide a modified version of that Proposition
where an additional restriction on parametera is considered.
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Theorem 1:∆-M ALGORITHM WITH FIXED-GAIN

(MODIFICATION OF [2]). Consider system (1)-(5), with
constant∆ anda < 2. Then if the initial conditions of the
coding error are such that

|x̃0| < r2

then the following hold:

• |x̃k| < r2, ∀k > 0,
• ∃k0 : |x̃k| 6 r1 ∀k > k0, and
• limk→∞ d(xk,Bγ) = 0.

wherer1 andr2 are:

r1 =
a− 1

a2 − 1
∆, r2 =

a+ 1

a2 − 1
∆

andd(xk,Bγ) is the minimum distance fromxk to any point
within the interval

Bγ := {x ∈ R : |x| < γ}, γ =
Kb

1 − ac

r1

Proof: The main argument can be read in [2], and
the following analysis justifies the upper bound ona. Let
Vk = x̃2

k, and∇Vk = Vk+1 − Vk. Then,

∇Vk = x̃2
k+1 − x̃2

k

= (a2 − 1)x̃2
k − 2a∆|x̃k| + ∆2

This expression is negative on the regionr1 < |x̃k| < r2.
However, when|x̃k| < r1, ∇Vk takes positive values, up to
a maximum of∆2 at x̃k0 = 0. In that case,∇Vk = ∆2

and at the following sampling time|x̃k0+1| = ∆. In order
to ensure that the state remains within the region|x̃k| < r2
it is required that

∆ < r2 =
a+ 1

a2 − 1
∆

and this is satisfied if and only ifa < 2, so this is the
condition required for asymptotic stability.

For some constant∆, this results means that if the initial
condition |x̃0| are taken smaller thanr2, the error coding
variable is locally attracted to a threshold delimited by the
value of r1, which depends linearly on the coding gain∆.
This gains also delimits the stability borderr2, as shown
the above expressions. Therefore, larger values for∆ will
make the system more stable but less precise, and inversely
reduction of the gain∆ will lead to small estimation error,
but will at the same time reduce the domain where the system
is keep stable.

This result displays an inherent trade–off between stability
and precision when the gain∆ is fixed. This suggests the
search for other coding strategies with variant gains. Note
also that, as the sampling time1 is chosen small,a approaches
1 and the precision is increased. Indeed,lima→1 r1(a) = 0,
thus by makingTs infinitely small, the limit case of the
continuous-time infinite precision is approached.

1The pole of the discrete-time system is related to the pole,ωol, of the
open-loop continuous, one asa = eωolTs .

III. A DAPTIVE ∆-M CODING SCHEME

In this section we propose a∆–adaptation law resulting
in a global asymptotic convergence of the estimation error
and system states to zero. This is a significant achievement
with respect to the fixed-gain scheme presented before which
was limited to finite domains of attraction (though arbitrarily
large) and convergence to finite balls.

A. Adaptation law design

Adaptive∆–modulation aims at improving the resolution
of the differential coding scheme according to the size of
the signals to be transmitted (in our case the states), hencea
reasonable approach is to enlarge∆k for large values of the
estimated states, and decrease it for smaller values. This is
the main guideline for designing an adaptation law with the
premise that the variations assigned to∆k should be defined
exclusively in terms of the information available both at the
receiver and transmitter; that is onδk.

In order to design an∆–adaptive mechanism to achieve
global asymptotic stability two opposite behaviors must be
observed. These stem from the Theorem 1:

• For large values of the statẽx when the condition for
state decrease is not fulfill, i.e.|x̃k| 6 r2, ∆k must grow
monotonicallyat a higher rate than the plant escape
velocity. This suggest an exponential growth law for
∆k when the state is detected to be escaping from the
origin.

• When the state is trapped into a domain of attraction
|x̃k| < r2, ∆k must decrease (for improving resolution)
at a slower ratethan the state convergence in order to
preventing it from getting to small relative to the state
and hence breaking again condition|x̃k| < r2 needed
for convergence.

These behaviors indicate a trade–off design of the expo-
nential reduction rate of∆k as compared to the potential
growing (decreasing) rate of the open-loop plant. A key
question underlying these issues is the way receiver supposed
to distinguish between the cases where the error escaping or
converging towards the origin. As̃x is not available at the
decoder side, the growth law will be designed on the basis
of the transmitted data, i.e.δk = sgn(x̃k) and, possible, on
its past values.

Based on the previous considerations, we propose an adap-
tive scheme with minimal storage and computation power
requirements for updating∆k based on the following criteria:

1) If δk = δk−1 then the state is assumed to be escaping,
thus∆k must be increased.

2) If δk 6= δk−1 then the state is assumed to converge
(oscillating close to zero) and∆k must be decreased.

The following update law is proposed:

∆k+1 = φk+1∆k (8)

φk+1 = λ− +
1

2
(λ+ − λ−) |δk+1 + δk| (9)

where0 < λ− < 1 is exponential decay rate of∆k, and
λ+ > 1 is exponential growth rate. This adaptation law can
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be seen as a generalization of the (1970) adaptation Jayant’s
rule which can be consulted in [9]. The Jayant’s rule is
described by∆k+1 = λ

δk+1δk

0 ∆k, with λ0 > 1. Hence this
is a special case of our proposed rule withλ+ = λ0, and
λ− = 1/λ0. As it will be seen later, allowingλ+ andλ− to
be freely choosing, the stability conditions turnout to be less
conservative.

B. Error equations

The complete feedback systems with the adaptive delta
∆–modulation coding scheme is then:

• Open-loop system (10), and encoder (11)-(13):

xk+1 = axk + buk (10)

x̂k+1 = [a− bK]x̂k + ∆k · δk (11)

∆k+1 = φk+1∆k (12)

φk+1 = λ− +
1

2
(λ+ − λ−) |δk+1 + δk| (13)

• Decoder (14)-(16) and control law (17):

x̂k+1 = [a− bK]x̂k + ∆k · δk (14)

∆k+1 = φk+1∆k (15)

φk+1 = λ− +
1

2
(λ+ − λ−) |δk+1 + δk| (16)

uk = −Kx̂k (17)

With the above definitions, the closed–loop error dynamics
become

x̃k+1 = ax̃k − ∆k · δk

∆k+1 = φk+1∆k, ∆0 > 0 (18)

φk+1 = λ− +
1

2
(λ+ − λ−) |δk+1 + δk|

The causality of the system is guaranteed by the fact that all
times the computation of̃xk+1 is only based on thẽxk and
older values. The following Proposition states the stability
of the closed–loop system

C. Main result (stability analysis)

Theorem 2:The error trajectories̃xk of system (18), re-
sulting from the adaptive∆-modulation coding scheme (10)-
(17), globally asymptotically converge to zero ask → ∞ if
there exist parametersλ+ > 1, λ− ∈ (0, 1) satisfying the
following inequalities:

λ+ > a (19)

λ− < (λ+)−
β
2 , (20)

where

β(a, λ−, λ+)
△
= 1 + logρ

(

1 +
a (a− λ−) (ρ− 1)

(λ−)2

)

ρ
△
=

λ+

a
,

Moreover, ∆k also converges to zero regardless it initial
value∆0.

Proof: The claim will be proved in two steps. First,
a new variable is defined in order to capture the proportion
betweenx̃k and∆k, namely

yk
△
=
x̃k

∆k

and boundedness of that variable will be proved. Secondly,
it will be shown that∆k asymptotically converges to zero.
Consequently, convergence ofx̃k to the origin is directly
implied.

Along the trajectories (18), variableyk evolves along the
dynamics

yk+1 =
1

φk

(ayk − sgn(yk)) . (21)

Fact 1. Trajectories ofyk cross the zero axis in finite time.

This means that starting from any initial condition,x̃0 and
∆0, and thusy0, there must be a future timek0 < ∞ such
that yk0−1 · yk0

< 0. This is easily shown by imagining a
trajectory with no zero crossings onyk (hence oñxk as∆k

is always positive). Assuming initially positivẽx, i.e. starting
from y0 > 0, we have,

yk+1 =
1

λ+
(ayk − 1) , (22)

hence

yk+1−yk =
1

λ+
(ayk − 1)−yk =

( a

λ+
− 1

)

yk−
1

λ+
< −

1

λ+

for the given choice ofλ. Then, starting fromy0 > 0, we
have

yk < y0 −
k

λ+
,

and hence there is some constantk0 6 y0λ
+ such that

yk0−1 > 0 andyk0
< 0. Due to the symmetry of the system

equations, a similar argument applies if the trajectory starts
from y0 < 0.

Fact 2. Trajectories ofyk are bounded after finite time.

Immediately after a zero crossing of the system (assuming
+ to - without loss of generality) ,yk0

is bounded as follows

yk0
=

1

λ+
(ayk0−1 − 1) > −

1

λ+
(23)

hence|yk0
| < 1

λ+ , as yk0−1 > 0 and yk0
< 0. Now if we

search for bounds on subsequent samples we must update
the growth factor of∆ to λ− and compute

yk0+1 =
1

λ−
(ayk0

+ 1) , (24)

and it is easy to see that the the right hand side of the last
expression is positive, as from the bound0 > yk0

> −1/λ+

we have

yk0+1 >
1

λ−

(

−
a

λ+
+ 1

)

> 0.

Moreover,|yk0+1| < 1/λ−. These observations are summa-
rized in Fig. 2, where the necessity of double zero crossing
after a set of positive values is illustrated, as well as the
upper bounds inferred by the switching dynamics.
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Fig. 2. Behavior ofyk at zero crossings.

In order to conclude the analysis on the bounds, one step
further must be taken on the switching dynamics. Using0 <
yk0+1 < 1/λ−, we have

yk0+2 =
1

λ−
(ayk0+1 − 1) ,

and hence

−
1

λ−
< yk0+2 <

1

λ−

( a

λ−
− 1

)

,

As illustrated in Fig. 2, two situations (a) and (b) are then
identified,

(a) − 1
λ−

< yk0+2 < 0. This situation (including the norm
bound) is exactly the one found at instantk0 + 1, then
it has been already considered

(b) yk0+2 > 0. In this case we have two subsequent positive
samples, i.e. the situation ofyk0−1 is recovered. In that
case, the dynamic equation turns into (23) and along it
the mapyk → yk+1 is contracting, hence the norm will
be decrease until a future sign change.

The previous analysis yields that after the first sign change,
the stateyk remains bounded as

|yk| <
1

λ−

( a

λ−
− 1

)

(25)

With the above facts, the proof of the proposition reduces
to show asymptotic convergence to zero of∆k, and hence
concluding convergence o the statex̃. With this objective we
will use the following definition,

Definition 3.1: Given a sequence of positive (negative)
samples ofyk, thefly–timeis the number of sampling instants
elapsed between the two zero–crossings that enclose the
signal. For its computation, the first and the last positive
(negative) samples are considered.

This magnitude is viewed in Fig. 3. We will compute a
non–conservative upper bound on it. Indeed, consideringy0
as the first positive sample (i.e. resetting the time count),we
have along the dynamics (23),

yk = ρk

(

y0 −
1

a

(

ρk − 1

ρ− 1

))

(26)

then, the zero crossing occurs at the next sampling instant

−1 0 1 2 3 4

−0.1

0

0.1

0.2

Fly time =4

Fig. 3. Definition of fly–time.

after the time the right hand side of this equation vanishes.
Therefore, the fly–timek∗ is bounded as

k∗ 6 1 + logρ(1 + y0a(ρ− 1))

6 1 + logρ

(

1 +
a (a− λ−) (ρ− 1)

(λ−)2

)

= β(a, λ−, λ+)

for which we have used the finite–time bound onyk (and
hencey0) computed in (25).

On the other hand, the fly–time can be regarded as the
exact number of times the∆ factor is increased via the
exponential law∆k+1 = λ+∆k, then the net value of∆
after the flying period, starting from∆0 is

∆k = (λ+)k∆0,

Hence a condition for asymptotic convergence of∆k to zero
is that, on zero crossings, the net decrease in∆ compensates
the net amount increase over the flying period. This is
guaranteed by choosingλ− such that, consideringk0 as the
first negative sample (again as in Fig. 2)

∆k0+2 = (λ−)2∆k0 < (λ−)2(λ+)β∆0

where the power in(λ−)2 has been introduced using the fact
that after a flying period, two consecutive zero crossings must
occur (see argument of Fact 2). This gives a less restrictive
condition onλ−. Hence, the condition of net decrease of∆
after a flying period is

∆k0+2 < ∆0 ⇐ (λ−)2(λ+)β < 1,

or, equivalently,

λ− < (λ+)−
β
2 ,

which is the condition (20) stated at the Proposition.
¿From the net convergence of∆k to zero and the bound-

edness ofyk, we conclude that

lim
k→∞

x̃k = 0

This completes the proof.
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IV. PARAMETER VALIDITY REGION

The choice of parametersλ+ andλ− fulfilling the stability
conditions (19)-(20) is nontrivial. Indeed, (20) is an implicit
equation whereλ− appears both at the left and the right hand
sides, and the solvability depends on the particular value of
a.

Defining ψ(λ+, λ−, a)
△
= λ− − (λ+)−

β
2 from (20), it is

clear that there is a set of valid parameters if and only if
ψ(·) becomes negative somewhere in theIR2 region

[λ− ∈ (0, 1)] × [λ+ ∈ (a,∞)],

however, some calculations that will be presented elsewhere
show that any solution of (20) must lie within the setΩa :
[λ− ∈ (0, 1)] × [λ+ ∈ (a, λ+

max(a))], where

λ+
max(a)

△
= a

1 +
√

1 + 4
a(a−1)

2
,

For a given value of the open–loop polea, if there is no
pair (λ+, λ−) ∈ Ωa makingψ(·) negative, then there is no
valid solution for (19)-(20). Therefore,Ωa is the region that
should be numerically scanned for solutions.

Unfortunately, for some valuesa there is no such solution,
while, as can be easily calculated, the conditiona < 1.313
guarantees the existence of solutions.

Fig. 4 (left) clearly shows that fora = 1.2 there is a set
of values ofλ+ andλ− for which the plotted expression is
negative, i.e. the conditions are fulfilled. On the other hand,
for values ofa > 1.313 (a = 1.4 in Fig. 4) (right), nothing
can be said about the existence of admissible parameters, but
it can be observed that the whole surfaceψ is above zero
and no solution has been found numerically. Moreover, as
the right hand side of (20) decreases witha, there will be
no more solutions for greatera.

V. RELATION WITH THE N & S CONDITION FOR

STABILIZATION UNDER CHANNEL LIMITATIONS .

A further issue that must be addressed with respect to the
adaptive∆-M scheme is the question wether the limitation
on the open–loop poles (parametera) to be below1.6180
is a structural property or a limitation due to the sufficient
nature of the result.

In any case, our limitation should be consistent with the
necessary and sufficient condition for stabilization presented
in [11]. This condition indicates that the minimal data rate
required for stabilizing a discrete-time system via a com-
munication channel of maximum rate capacityR [b.p.u.]2

is related to the unstable open–loop poles (λun
i ) as: R >

∑

log2(λ
un
i ), which in our case simplifies to:

R > log2 a (27)

The implicit assumption made within the framework of our
discrete-time formulation is that the channel can reliably
transmit one bit-per-unit of time, that is thatR = 1. This
means that with regard to the condition (27), the maximum

2R is given in dimensionless units, i.e. bits per unit of time [b.p.u.]
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Fig. 5. Simulation results for non–adaptive∆-M scheme, with∆ fixed
along specific intervals.

admissible value fora is a < 2, which is consistent with
our sufficient conditiona < 1.313, probably due to the
technicalities used for the stability analysis, or either due
to the particular structure of the proposed adaptation law.
This also indicates that there is some conservatism in the
computation of the admissible set of the parameterλ+ and
λ−. Some alternative adaptation strategies could be devised
in order to improve this bounds. For example, a mores
sophisticated adaptive algorithm based on more past samples
of δk could be possible designed.

VI. SIMULATIONS

System (10)-(17) has been simulated for the set of values
a = 1.1, b = 1, K = 0.2, xk(0) = −0.5, x̂k(0) = 0, with
∆0 = 5, λ− = 0.4, λ+ = 1.21, according to conditions (19)
and (20).

For the sake of comparison with the non–adaptive scheme
presented in [2], a first simulation has been made with a
constante value of∆. Fig. 5 shows the behavior of the
closed–loop system when the∆ is given fixed values, (it
is only changed at the times the set–point changes). As
can be seen, the granularity of the closed–loop error signal
is directly related to the choice of the constant∆. During
the simulation, after the first step change of the reference,
∆ has been made larger and the granularity significantly
increases. The main issue of [2] was that∆ cannot be fixed
at a very low value (thus reducing the granularity) without
compromising the domain of attraction.

Fortunately, this has been successfully tackled with the
new adaptive approach, as is illustrated in Fig. 6. In the upper
plots of this figure, the statexk, x̂ and the set–pointrk are
depicted, while the adaptive quantization parameter∆k is
plotted on the lower graph. As expected, convergence to zero
is obtained in all cases. The granularity in the steady stateis
due to the fact that∆k has not been allowed to take values
below∆min = 0.05. Without this saturation,∆k would keep
tending to zero in steady state, and whenever a disturbance
drives the state away from the origin, a large number of
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Fig. 4. (Left) Expressionλ−

− (λ+)−
β
2 for a = 1.2; (Right) The same expression fora = 1.4.
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Fig. 6. Simulation results for adaptive∆-M scheme.

samples would be required for (8) to make∆k large enough
to capture again such state (i.e. the transient time would
undesirably depend on the time the system spends on the
steady state).

VII. C ONCLUSIONS

In this paper we have investigated the stability properties
of the Delta-modulation coding rule, when used as a trans-
mission mean in networked controlled linear systems. It was
first shown that the standard form of the∆-M algorithm
can be modified, including information about the system
and the controller. These results were extended to the case
of adaptive∆k. An explicit adaptation rule was proposed
and range of parameters were derived to ensure asymptotic
stability. These results displayed a limit on the maximum
unstable eigenvalues of the system that are compatible with
the ones given in [11].
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