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Adaptive Delta-modulation Coding for Networked Contrdll8ystems

Fabio Gomez-Estern, Carlos Canudas-de-Wit, FrancisdeuRio and José Fornés

Abstract— This paper investigates the closed-loop properties
of the differential coding scheme known as Delta—Modulatio
(A-M ) when used in feedback loops within the context of linear
systems controlled through some communication network. We
propose a new modified scheme of the original form of the
A-M algorithm which improves the closed-loop properties.
Semiglobal stability with convergence to a finite ball is preed
in this framework, where the domain of attraction may be
arbitrarily enlarged by tuning a quantization factor A, in
tradeoff with the precision at steady state. In a further step,
parameter A is made adaptive, by defining an adaptation
law exclusively in terms of information available at both the
transmitter and receiver. With this approach, global asymgotic
Stability of the Networked Controlled System is achieved foa
class of unstable plants.

Index Terms— Differential coding, delta modulation, stabi-
lization of linear systems in Networked controlled systems
I. INTRODUCTION

This paper proposes adaptiveextension a ofixed-gain
differential coding scheme previously introduced by thmsa

use of quantizers in the context of NCS, i.e. [5], [3], [8]],[6
[10], [7], among others. Compared to these approaches, the
modified formof the (A-M ) algorithm proposed in [2], has
the ability of providing a kind of separation principle, wke

the feedback gain if first designed assuming instantaneous
unconstrained communication, and then the coding scheme is
designed in order to preserve stability when embedded in the
feedback loop. It is worth to remark that thisodified form

of the A-M coding structure explicitly contains information
about the model plant and the controller feedback gain.

For a constani\ it was shown in [2] that only a limited
domain of attraction was obtained. In addition, the stats wa
only guaranteed to converge asymptotically to a finite ball,
begin its size related to the parameters of the open-loay,pla
and on the the userdefined parameier

By makingA an adaptive quantity, more effective schemes
of A-modulation have been already proposed in the com-
munication community [9]. The idea is to design an update
law for A, defined exclusively in terms of the information
available both at the receiver and transmitter, aiming at im

authors (see [2]) in the context of linear systems interconsqying the resolution of the differential coding by rechi
nected through some transmission network. The problem jgq gainA for slowly varying signals, while enlargingh

of interest in the area of Networked Controlled Systemg, case of rapid change of the input, and hence allowing for
(NCS), where we find several applications calling for datag,ster signal tracking and higher bandwidth of the tranteit

compression algorithms aiming at reducing the amount qf

ignals. So far in the communication area, adaptation laws f

information that may be transmitted throughout the cOmMU"haye heen proposed under somewhat heuristic criteria, as

nication channel.
Delta modulation A-M) is a well-known differential

little information is supposed to be available on the dyremi
of the source signal. However, when dealing with feedback

coding technique used for reducing the data rate requirgdstems, the dynamical properties of the plant become very
for voice communication, see [9]. The standard techniqugsefy| in designing the adaptive law. This problem, to which
is based on synchronizing a state predictor on emitter apgg paper is devoted, is framed as shown in Figure 1.

receiver and just sending a onebit error signal correspandi  The problem of quantization with time—varying resolution
to th.e innovation qf Fhe_sampled data with re_spect to .t_hﬁ, feedback loops has been addressed in [4] and [1]. The
predictor. The prediction is then updated by adding a p@siti firs; of these works presents, in the case of fixed resolution,
or negative quantity (determined by the bit that has beepscheme similar to [2], in the sense that the state estimatio
transmitted) of absolute valug, a known parameter shared ;s computed trough a filter built upon the closed—loop system
between emitter and receiver. matrix. However, the extension to variable—scale quatitiza

In [2] we have analyzed stability issues that appear wheg only defined in thezooming—indirection, and hence
the (fixed-gain)A-modulation scheme was embedded in gne injtial states are upper bounded by the initial choice
control system between the device measuring the state agdine zoom factor. As a consequence, only semi—global
the actuator. Delta modulatiod\¢ A/ ) algorithm can also be gtapilization is achieved. Here we proposéaupdate law
understood as the coarsest two-level (1-bit) quantizausTh that works well for bottin—and-eutzooming directions, thus
this technique is a simple alternative to works concerniireg t providing a means to capture unbounded initial states in
the zooming—outstage and guaranteeing global asymptotic
stability. Moreover, by defining an explich—update law
in both directions, if the state is driven temporarily out
of the domain of attraction at any time due to unattended
disturbances, the system will recover the stability, unlike
case of [4].
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Tk differential ok = &1 of output feedback. These results concerns the cadigeaf

e = Az, + Bu . . . ) .
o o —  encoder modulation gain, under the feedback configuration shown in
Adaptive Figure 1.
mechanism
Uk Communication A. ASSUmptiOﬂS
Adaptive Channel . . . . .
The hypothesis used in the results presented in this section
. _ but also all along the paper, are the following:
K# Lk —™ differential 0 = £1 . . . . .
Tk decoder o The transmitted information is binagy, € {—1,1}
o Only encoder-to-decoder information transmission is
) ] o allowed (feedback between decoder to encoder is for-
Fig. 1. Block diagram of the problem set up studied in thisgoap bidden)

o Reliable noiseless channel transmission is considered

On the other hand, the work of [1] also guarantees global (no datg Iqst, or information distortion is considered),
asymptotic stability with time—varying full-state quazsttion « Transmission delays are neglected,
in two subsequent stages. Although our approach can bes Channel rate capacity iB[b.p.s., _
roughly understood as a particular case of the Theorems® Data is sent at a bounded rate (we select the sampling
provided there, an important new feature introduced here is  "€duency in order to transmit only org at a time).
a state predictor that redu_ces the amount of data_l tr.anslnittg_ One-dimension system example
per sample by only sending the qgantlzed pre_dlctlon CITOr ~onsider the following one-dimensional discrete time-
This reduces the data—rate to a minimum of 1 bit per sample, . . :

. . : System, together with the control law, and the differential
while the data—rate in Theorem 3 of [1]lisz,(2M]), a value : e )

o - ) coding modified law:

that cannot be taken arbitrarily lo#/ is actually defined as o | q der:
a function of the matrices!,3,K of the control system, and ° pen-loop system, and encoder:

it must be large enough to make the (thereby defined) scale The1 = axp + buy (1)
factor small. In Theorem 4 of [1] a 1-bit per sample data—rate Feir = [a—bK]Es+ A -5 @)
transmission scheme is also discussed, but here the deparat N

principle is not present, as the feedback= H(q(z)) is no O = sQn(ix) ®)

longer a linear feedback of the state estimated on the receiv , Transmitted informationd, € {—1,1},

side. But probably the most significant difference between , Control law and decoder:

that approach and the one presented here is the zooming . .

factor. In [1], it is calculated in terms of the convergenée o Tk = la—bKJEy + A by (4)
the state to an attractive ellipsoid, whose geometry depend ur, = —Kgy (5)
in a complex way on the system matrices. In our approach _ . B )

the zoom factor is updated at all times with a simple law that V\ﬂtr;klf Iek R,a > 1, ac = (a—bK); |ac| < 1, and

only depends on the last two state estimations, irresgectiv The modified differential coder (2)-(4) differs from its

of the system matrices (and hence not subject to the SI%?andardform in that the term within the square brackets

effIili(l:rtsst O\]/cvgardeéiflngg(rﬁ‘:oc;}).the results in [2] showing th depends on the system model parametgrandb, and on

main n;odification imparted to the standakdM algorithn?s ‘the C(_)ntrol gaink. In thestandgrdform this term is. equal to

and its resulting stability properties undéred-gainA The’ one, i.e. the encoder is described by a delayed integral term
' The advantages of this modification is that the coding error

main paper contribution is the introduction of an adaptatio . :
k . N . . “equations become decoupled from the system state equations
mechanisms consists of making time variant the quantizatiq

. ) ) allowing for a simple analysis, and more important, for a
interval A. This type of adaptation law, although well known g P Y P

in the communication field, is used and analyzed for thge5|gn of the feedback gaift independent to the coding

first time in the feedback configuration shown in Figure 1?;2)”0?;;8”53“ ((:);r?ebr;a;a;(i)nnrgénglplti)é Zgleere;%e\’/vﬂeufﬁgwn
It is also shown that this adaptive coding structure, modiifie P © g y

as proposed in [2], is proven to yield closed-loop globa?tabmz‘fjItlon conditions for finear systems,

; o . This algorithm gives the following error equations, with
legtrgﬁ]t;)tlc stability for a class of open-loop unstabledine cascade structure.

T = a.x1 +bKZT 6
Il. FIXED-GAIN A-M CODING IN FEEDBACK k+1 etk k ©)

In this section we recall some of the results in [2] which Teyr = aZx — ASQN(Tk) (7)
are pertinent for introducing the need for an adaptation laas|a.| < 1, stability of the whole system can thus be tacked
for A. To make the presentation as simplest as possible, g only studying the stability of the coding error equation
just present the one-dimension noiseless case. In referer{€), as is presented in Proposition 3 of [2]).

[2] readers can find the extension of this results to the n- Below we provide a modified version of that Proposition
dimensional case, the consideration of noise, and the casbere an additional restriction on parametas considered.



Theorem 1:A-M ALGORITHM  WITH  FIXED-GAIN
(MODIFICATION OF [2]). Consider system (1)-(5), with
constantA anda < 2. Then if the initial conditions of the
coding error are such that

|,f0| < T9

then the following hold:
. |.’Z'k|<’f'2, Vk}(),
o dko: |i‘k| <r Vk = ko, and
. limk*)oo d(xk,B.y) =0.
wherer; andry are:
a+1
a? -1
andd(z, B.) is the minimum distance from, to any point
within the interval

a—1
a?—1

A

A,

= Ty =

Kb

1-—a.

B, :={zeR:|z| <7}, v= 1
Proof:
the following analysis justifies the upper bound enlLet

Vi = &%, andVVj, = Vi1 — V. Then,

~2 ~2
VVi Th+1 — Tk

(a® = 1)i7 — 2aA\|Tg| + A?

This expression is negative on the region< |Z;| < ro.
However, whenz| < r1, VV} takes positive values, up to
a maximum ofA? at ., = 0. In that caseVV;, = A?
and at the following sampling timéz;o41| = A. In order
to ensure that the state remains within the redion < ro

it is required that

a+1

a? -1

and this is satisfied if and only itk < 2, so this is the
condition required for asymptotic stability. u

A < A

To =

For some constamh, this results means that if the initial

IIl. ADAPTIVE A-M CODING SCHEME

In this section we propose A—adaptation law resulting
in a global asymptotic convergence of the estimation error
and system states to zero. This is a significant achievement
with respect to the fixed-gain scheme presented before which
was limited to finite domains of attraction (though arbisar
large) and convergence to finite balls.

A. Adaptation law design

Adaptive A—modulation aims at improving the resolution
of the differential coding scheme according to the size of
the signals to be transmitted (in our case the states), hence
reasonable approach is to enlarlyg for large values of the
estimated states, and decrease it for smaller values. $his i
the main guideline for designing an adaptation law with the
premise that the variations assignedp should be defined
exclusively in terms of the information available both a& th
receiver and transmitter; that is op.

In order to design am\—adaptive mechanism to achieve

The main argument can be read in [2], andylobal asymptotic stability two opposite behaviors must be

observed. These stem from the Theorem 1:

« For large values of the state when the condition for
state decrease is not fulfill, i.€c;| < r2, Ax must grow
monotonicallyat a higher rate than the plant escape
velocity This suggest an exponential growth law for
Ay when the state is detected to be escaping from the
origin.

o When the state is trapped into a domain of attraction
|Zk| < ro, Ar must decrease (for improving resolution)
at a slower ratethan the state convergence in order to
preventing it from getting to small relative to the state
and hence breaking again conditip,| < r, needed
for convergence.

These behaviors indicate a trade—off design of the expo-
nential reduction rate of\; as compared to the potential
growing (decreasing) rate of the open-loop plant. A key
guestion underlying these issues is the way receiver s@ppos
to distinguish between the cases where the error escaping or

condition [Zo| are taken smaller than,, the error coding converging towards the origin. A% is not available at the

value of r1, which depends linearly on the coding gak
This gains also delimits the stability bordes, as shown
the above expressions. Therefore, larger values/owill

of the transmitted data, .8, = sgnZ;) and, possible, on
its past values
Based on the previous considerations, we propose an adap-

make the system more stable but less precise, and inversg)s scheme with minimal storage and computation power

reduction of the gaim\ will lead to small estimation error,

but will at the same time reduce the domain where the system

is keep stable.

This result displays an inherent trade—off between stgbili

and precision when the gaiA is fixed. This suggests the

search for other coding strategies with variant gains. No

also that, as the sampling tifis chosen small approaches
1 and the precision is increased. Inde&dy, .1 r1(a) = 0,
thus by makingT infinitely small, the limit case of the
continuous-time infinite precision is approached.

1The pole of the discrete-time system is related to the polg, of the
open-loop continuous, one as= e¥otTs

requirements for updatind;, based on the following criteria:

1) If 6 = dx_1 then the state is assumed to be escaping,
thus A, must be increased.

2) If 0 # 0r_1 then the state is assumed to converge
(oscillating close to zero) and; must be decreased.

t?he following update law is proposed:

Apr1 = Grp1dp (8)
1
Ok+1 AT+ 5()\Jr — A7) |0k41 + Okl (9)

where() < A\~ < 1 is exponential decay rate ak;, and
AT > 1 is exponential growth rate. This adaptation law can



be seen as a generalization of the (1970) adaptation Jayant’ Proof: The claim will be proved in two steps. First,
rule which can be consulted in [9]. The Jayant’s rule i® new variable is defined in order to capture the proportion
described byA;, ;1 = /\gk“‘s’“Ak, with \g > 1. Hence this betweenz; and Ax, namely

is a special case of our proposed rule with = ), and

AT
A~ = 1/Xo. As it will be seen later, allowing™ and A~ to Yk = A—k
be freely choosing, the stability conditions turnout to essl ] k )
conservative. and boundedness of that variable will be proved. Secondly,
it will be shown thatA; asymptotically converges to zero.
B. Error equations Consequently, convergence 0f to the origin is directly
mplied.
The complete feedback systems with the adaptive deltaAlong the trajectories (18), variablg, evolves along the
A—modulation coding scheme is then: dynamics
o Open-loop system (10), and encoder (11)-(13): 1
penrloop system (10) (-(9) e = o (o = sqrtan). (21)
Tr1 = axg + buy (10) . . e
. . Fact 1. Trajectories ofy;, cross the zero axis in finite time.
Trpr = o= DRJE A By 0 S that starting f initial conditiai, and
is means that starting from any initial conditian, an
AV S TEVAV: (12) 9 y an,

1 Ag, and thusyy, there must be a future time, < oo such

A4+ (AT = A7) |6per + 0| (13)  thatyg,—1 - yk, < 0. This is easily shown by imagining a
2 trajectory with no zero crossings an (hence onz;, asAy

» Decoder (14)-(16) and control law (17): is always positive). Assuming initially positiva i.e. starting

from yo > 0, we have,

Drt1

Tht1 = [a — bK]i‘k + Ay - O, (24) 1
App1 = Gry1lp (15) Yktl = 17 (ayx — 1), (22)
1
b1 = A+ 5(/\+ — A7) |0ks1 + 0] (16) hence
up = —Kii a7) 1 1

1 a
Yk+1—Yk = )\+ (ayk 1)_yk = (A_Jr — 1) yk—)\—+ < —)\—+

With the above definitions, the closed—loop errordynamicfsor the given choice of\. Then. starting fro S0 we
become 9 : : g fromyg ,

have
k
A_+’
1 and hence there is some constdgt < ygAT such that
dkr1 = A+ 5(/\+ — A7) [0k41 + Ok Yko—1 > 0 andyy, < 0. Due to the symmetry of the system
equations, a similar argument applies if the trajectorytsta
The causality of the system is guaranteed by the fact that atbm , < 0.

times the computation of;; is only based on th&; and _ _ -
older values. The following Proposition states the stgbili Fact 2. Trajectories ofy,, are bounded after finite time.

Tk41 = aZp — Ag -0 Yk < Yo —
A1 = dpr1lr, Ao >0 (18)

of the closed—loop system Immediately after a zero crossing of the system (assuming
+ to - without loss of generality) yx, is bounded as follows
C. Main result (stability analysis) 1 1
Theorem 2:The error trajectorieg;, of system (18), re- Yko = 3T (ayro—1—1) > 3 (23)

sulting from the adaptivé\-modulation coding scheme (10)-
(17), globally asymptotically converge to zero fas- oo if
there exist parameters™ > 1, A= € (0,1) satisfying the
following inequalities:

hence|yx,| < s, aSyr,—1 > 0 andyx, < 0. Now if we
search for bounds on subsequent samples we must update
the growth factor ofA to A~ and compute

1
AT > a (19) Yko+1 = )\_, (ayko + 1) ) (24)
_ B
ATo< ()TE, (20) and it is easy to see that the the right hand side of the last
expression is positive, as from the bouhd yy, > —1/A"
where we have )
- A7) (p—-1 — (=
Bla, A7, A1) = 1 +log, (1 + a(a (/\))gp ) Ykot+1 > e ( e + 1) > 0.
A AT Moreover, |yk,+1| < 1/A~. These observations are summa-
po= rized in Fig. 2, where the necessity of double zero crossing
Moreover, A, also converges to zero regardless it initialafter a set of positive values is illustrated, as well as the
value Ay. upper bounds inferred by the switching dynamics.
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Fig. 2. Behavior ofy, at zero crossings. Fig. 3. Definition of fly—time.

In order to conclude the analysis on the bounds, one steyfter the time the right hand side of this equation vanishes.
further must be taken on the switching dynamics. Using  Therefore, the fly—timé* is bounded as

Yko+1 < 1/A7, we have
E* < 1+1log,(1 +yoalp—1))

1
= — — 1 — A —
Yko+2 A (aykoJrl ) ) < 1+ 1og 14+ a (CL Ai) (p 1) = ﬁ(a, )\_, A+)
P ()\ )2

and hence

1 1 /a for which we have used the finite—time bound gpn (and

e < Ykot2 < ~ ()\—, - 1) ) henceyq) computed in (25).

As illustrated in Fig. 2, two situations (a) and (b) are then On the other har\d, the fly—time can be regardqd as the
identified, exact number of times thé factor is increased via the

R o ) . exponential lawA,;; = ATAy, then the net value ofA
@ —y=< Yrot2 < 0. This situation (m_cludlng the norm 4¢er the flying period, starting from is
bound) is exactly the one found at instagt+ 1, then

it has been already considered Ay = (/\““)’“Am

(b) yx,+2 > 0. In this case we have two subsequent positive N )
samples, i.e. the situation gf,_; is recovered. In that Hence a condition for asymptotic convergence\gfto zero

case, the dynamic equation turns into (23) and along ¢ that, on zero crossings, the net decreasé rompensates
the mapy, — yi1 is contracting, hence the norm will the net amount increase over the flying period. This is

be decrease until a future sign change. guaranteed by choosing~ such that, considering, as the
The previous analysis yields that after the first sign chang]grSt hegative sample (again as in Fig. 2)
the statey, remains bounded as Akosz = (A7) A < (A)2(NH)PA,
1 a . . .
Ukl < 3= (= — where the power iftA~)* has been introduced using the fact
Iyl < 5 (A 1) (25)  where th tA~)% has b duced he f

, . that after a flying period, two consecutive zero crossingstmu
With the above facts, the proof of the proposition reducegqcr (see argument of Fact 2). This gives a less restrictive

to show asymptotic convergence to zero/sf, and hence ¢qngition on\~. Hence, the condition of net decrease/of
concluding convergence o the stateWith this objective we 4¢or 4 flying period is

will use the following definition,
Definition 3.1: Given a sequence of positive (negative) Aroya < Ag = (A7)2(\H)P <1,

samples ofy;, thefly—timeis the number of sampling instants )

elapsed between the two zero—crossings that enclose fHe €duivalently,

signal. For its computation, the first and the last positive AT < (/\Jr)*g,

(negative) samples are considered. o N -

This magnitude is viewed in Fig. 3. We will compute awhich is the condition (20) stated at the Proposition.
non—conservative upper bound on it. Indeed, consideging ~ ¢From the net convergence 4f; to zero and the bound-
as the first positive sample (i.e. resetting the time cours), €dness ofy., we conclude that
have along the dynamics (23), lim % = 0

1/pF—1 o
yr = pF (yo - ( 1 )) (26)  This completes the proof.

a

then, the zero crossing occurs at the next sampling instant



IV. PARAMETER VALIDITY REGION

The choice of parameteis™ and X~ fulfilling the stability
conditions (19)-(20) is nontrivial. Indeed, (20) is an inafil
equation where.~ appears both at the left and the right hand
sides, and the solvability depends on the particular vafue o
a

Defining ¥/ (AT, A\, a) 2 - (A+)~% from (20), it is
clear that there is a set of valid parameters if and only if 0s
(-) becomes negative somewhere in 8 region

0.4

[/\7 € (07 1)] X [/\Jr € (aa OO)], < 03
however, some calculations that will be presented elsesvher 02
show that any solution of (20) must lie within the <ejf : o1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
[/\7 c (0’ 1)] X [/\Jr c (a, A’;"‘;lam(a’))]' where 0 20 40 60 80 Tir’r11?30(s) 120 140 160 180 200
1+,/1+ ﬁ Fig. 5. Simulation results for non—adaptive-M scheme, withA fixed
)\;fmz(a) = Gf’ along specific intervals.

For a given value of the open—loop pale if there is no
pair (AT, A7) € Q, making(-) negative, then there is no admissible value fow is a < 2, which is consistent with
valid solution for (19)-(20). Thereforé), is the region that our sufficient conditiona < 1.313, probably due to the
should be numerically scanned for solutions. technicalities used for the stability analysis, or eitheled
Unfortunately, for some valuesthere is no such solution, to the particular structure of the proposed adaptation law.
while, as can be easily calculated, the conditiorr 1.313  This also indicates that there is some conservatism in the
guarantees the existence of solutions. computation of the admissible set of the parameterand
Fig. 4 (left) clearly shows that for = 1.2 there is a set A~. Some alternative adaptation strategies could be devised
of values ofA™ and A\~ for which the plotted expression is in order to improve this bounds. For example, a mores
negative, i.e. the conditions are fulfilled. On the otherdhan sophisticated adaptive algorithm based on more past sample
for values ofa > 1.313 (a = 1.4 in Fig. 4) (right), nothing of 6, could be possible designed.
can be said about the existence of admissible parametérs, bu
it can be observed that the whole surfagas above zero
and no solution has been found numerically. Moreover, as System (10)-(17) has been simulated for the set of values
the right hand side of (20) decreases withthere will be o =1.1,b =1, K = 0.2, 24(0) = —0.5, 24(0) = 0, with

VI. SIMULATIONS

no more solutions for greater. Ap =5, A\~ = 0.4, AT = 1.21, according to conditions (19)
and (20).
V. RELATION WITH THE N & S CONDITION FOR For the sake of comparison with the non—adaptive scheme
STABILIZATION UNDER CHANNEL LIMITATIONS . presented in [2], a first simulation has been made with a

A further issue that must be addressed with respect to titenstante value ofA. Fig. 5 shows the behavior of the
adaptiveA-M scheme is the question wether the limitatiorclosed—loop system when th& is given fixed values, (it
on the open-loop poles (parametgrto be below1.6180 is only changed at the times the set—point changes). As
is a structural property or a limitation due to the sufficientan be seen, the granularity of the closed—loop error signal
nature of the result. is directly related to the choice of the constakt During

In any case, our limitation should be consistent with théhe simulation, after the first step change of the reference,
necessary and sufficient condition for stabilization pnés¢¢ A has been made larger and the granularity significantly
in [11]. This condition indicates that the minimal data raténcreases. The main issue of [2] was tlaicannot be fixed
required for stabilizing a discrete-time system via a comat a very low value (thus reducing the granularity) without
munication channel of maximum rate capaciy[b.p.u.f compromising the domain of attraction.
is related to the unstable open—loop pole§™) as: R > Fortunately, this has been successfully tackled with the
>~ log,(A¥™), which in our case simplifies to: new adaptive approach, as is illustrated in Fig. 6. In thesupp

plots of this figure, the state;, & and the set—point; are
R>logya (27) " depicted, while the adaptive quantization paramelgr is
The implicit assumption made within the framework of ourPlotted on the lower graph. As expected, convergence to zero
discrete-time formulation is that the channel can reliabljs OPtained in all cases. The granularity in the steady ssate
transmit one bit-per-unit of time, that is tha = 1. This due to the fact thaf\, has not been allowed to take values
means that with regard to the condition (27), the maximurR€!OW Ay, = 0.05. Without this saturation;A, would keep
tending to zero in steady state, and whenever a disturbance
2R is given in dimensionless units, i.e. bits per unit of timep[b.] drives the state away from the origin, a large number of
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Fig. 6. Simulation results for adaptivA-M scheme.

samples would be required for (8) to makeg large enough |5
to capture again such state (i.e. the transient time would
undesirably depend on the time the system spends on tHg
steady state).
[71
VII. CONCLUSIONS

In this paper we have investigated the stability propertiegs)
of the Delta-modulation coding rule, when used as a trans-
mission mean in networked controlled linear systems. It wa
first shown that the standard form of th®-M algorithm
can be modified, including information about the systenfitO]
and the controller. These results were extended to the case
of adaptive A,. An explicit adaptation rule was proposed
and range of parameters were derived to ensure asymptdfiél
stability. These results displayed a limit on the maximum
unstable eigenvalues of the system that are compatible with
the ones given in [11].

VIII. ACKNOWLEDGEMENTS

Special thanks are due to Prof. Chaouki Abdallah and Ivan
Lopez for indicating the additional condition on parameter
a in Theorem 1. Thanks are also due to Prof. Sanjoy Mitter

20?2 for a=1.4

for a = 1.2; (Right) The same expression far= 1.4.

" for his comments and discussion on the issue of this paper.
- The authors would like to acknowledge MCYT-FEDER for
funding this work under grants DP12004-06419, HF2003-
0237 and SAB2003-0085. Thanks for funding are also due
to the programm PICASSO No. 07261YJ(EGIDE), of the
French Minister of foreign affaires.

REFERENCES

Brockett R.-W. and Liberzon D. Quantized feedback dizdition of
linear systemslEEE Transactions on Automatic Contre@l5(7):1279—
1289, July 2000.

C. Canudas-de-Wit, F. R. Rubio, J. Fornes, and F. Gonsterkt
Differential coding in networked controlled linear systemTo ap-
pear in the American Control Conference. Silver AnniveysACC.
Minneapolis, Minnesota USA006.

Elia N. and S.-K. Mitter. Stabilization of linear systemvith limited
information. IEEE Transaction on Automatic Contro#t6(9):1384—
1400, September 2001.

Hespanha J.-P., Ortega A., and Vasudevan L. Towardsdheat of
linear systems with minimum bit-rate. kbth Int. Symp. Mathemati-
cal Theory of Networks and Systems (MTN®)tre Dame, IL, USA,
2002.

Ishii H. and T. Basar. Remote control of Iti systems owetworks
with state quatizationSystem and Control Letteré54):15-31, 2005.
Lemmon M. and Q. Ling. Control system performance undevasnic
quatization: the scalar case. 48rd IEEE Conference on Decision and
Control, pages 1884-1888, Atlantis, Paradice Island, Bahamag.. 200
Li K. and J. Baillieul. Robust quatization for diginal fta commu-
nication bandwidth (dfcb) controllEEE Transaction on Automatic
Control, 49(9):1573-1584, September 2004.

Liberzon D. On stabilization of linear systems with lted infor-
mation. |IEEE Transaction on Automatic Contyo#8(2):304—-307,
February 2003.

Proakis J.-G.Digital Communications McGraw-Hill, Inc. Series in
electrical and computer enginering.

Tan S., Xi Wei, and J.-S. Baras. Numerical study of jajngtization
and control under block-coding. #8rd IEEE Conference on Decision
and Contro] pages 4515-4520, Atlantis, Paradice Island, Bahamas,
2004.

S. Tatikonda and S.K. Mitter. Control under commurimatcon-
straints. IEEE Transaction on Automatic Contro#t9(7):1056—1068,
July 2004.



