The Collatz Problem and Its Generalizations: Experimental Data. Table 2. Factorization of Collatz Numbers $2^l-3^k$.

Abstract : The purpose of the present paper is to provide the reader with the table of the factorization in primes of all Collatz numbers $2^\ell-3^k>0$,in the interval $1 <\ell<115$. The interest of such experimental data is double. First, Collatz numbers represent a natural and, in a sense, minimal generalization of two classes of integers, Cunningham integers and Schinzel integers, with the experimental factorization of Cunningham integers representing an ongoing, well-known and well-organized project, initiated by John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and Sam S. Wagstaff. Second, Collatz numbers play the crucial role in the Diophantine interpretation of the Collatz problem : one of the most interesting rephrasing of this problem claims that no narrow Collatz number could be a divisor of numbers from a certain finite set of natural numbers called the Collatz corona.
Type de document :
Pré-publication, Document de travail
2006
Liste complète des métadonnées

Littérature citée [61 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00129730
Contributeur : Véronique Bertrand <>
Soumis le : jeudi 8 février 2007 - 15:09:27
Dernière modification le : jeudi 11 janvier 2018 - 06:12:22
Document(s) archivé(s) le : mardi 6 avril 2010 - 23:43:47

Fichier

06018.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00129730, version 1

Collections

Citation

Edward G. Belaga, Maurice Mignotte. The Collatz Problem and Its Generalizations: Experimental Data. Table 2. Factorization of Collatz Numbers $2^l-3^k$.. 2006. 〈hal-00129730〉

Partager

Métriques

Consultations de la notice

384

Téléchargements de fichiers

172