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Characterization of polynomial decay rate for the

solution of linear evolution equation

Zhuangyi Liu * Bopeng Rao T

Abstract

In this paper, we study the decay rate of solutions to strongly stable, but not
exponentially stable linear evolution equations. It is known that the resolvent operator
of such an equation must be unbounded on the imaginary axis. Our main result is an
estimate of the decay rate when the unboundedness is of polynomial order. We then
apply our main theorem to three strongly stable but not exponentially stable systems

to obtain the decay rate, which is not available in the literature.

1 Introduction

We consider a linear evolution equation on Hilbert space H:

dx
Z A
dt ! (1.1)

z(0) = .

Assume that
(H1). A generates a bounded Cj semigroup S(t) = e on H.

(H2). iRNo(A) = 0.
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The solution to (1.1) is
z(t) = S(t)xo-

We say that (1.1) is strongly stable if

lim fla(t)ll = 0 (1.2)

t—o0

for all ¢y € H; is exponentially stable if there exist constants M, a > 0 such that
lz@)llx < Me *||zollae, ¢t >0. (1.3)

for all xp € H. There are many systems which are strongly stable, but not exponentially
stable. For example, when damping in an elastic system is located only on a subdomain or
on part of the boundary, its energy still dissipates, but may not at a uniform rate. In that
case, other kind of decay rates had been introduced. If there exists a positive function f(t)

with limy_,o f(t) = 0 such that

le@llw < f@)llzollpy, >0, (1.4)

we say the solution of (1.1) decays at a rate of f(t) for all zy € D(A). Note that the norm on
the right-hand side of (1.4) can not be the H-norm. Otherwise, by the semigroup properties,
(1.4) implies (1.3).

Several time domain methods for the polynomial decay rate estimate exist in the litera-
ture. Energy estimate method combined with multiplier technique can be found in [R],[RR],
[RW]. An energy inequality was established in [Ru] as sufficient condition for polynomial
decay rate 1/t. This inequality was generalized in [JTZ]. A Riesz basis method was used in
[LbLw]| which gives the polynomial decay rate based on the asymptotic relation of the real
and imaginary part of the eigenvalues. Another method by using Ingham’s inequality can
be found in [ALT]. It is not our intention to do a complete review on this subject here. We
refer the readers to the references in the mentioned above for more information.

The semigroup S(t) is strongly stable if condition (H2) holds (see [H1],[H3]); is exponen-
tially stable if and only if (H2) and

sup{[|(i8 — A) *llx | B € R} < o0 (1.5)



are satisfied (see [H2],[Pr]). Moreover, S(t) is analytic (see [LY], [LZ]) if
1

1(i8 — A) g = O(B)’ B — oo. (1.6)

These frequency domain results have been used to study the asymptotic behavior and
smoothness of the solution to a given linear evolution equation.

One can observe that the growth rate of the resolvent operator on the imaginary axis is
related to the decay rate of the solution to (1.1). If we know that (1.1) is strongly stable
but not exponentially stable, then condition (1.5) must fail, i.e., the resolvent operator is
unbounded on the imaginary axis. In his study on wave equation with internal or boundary
damping, Lebeau [L] had used this approach to get decay rate estimate. Our main goal is to
provide a characterization of the decay rate of solution to (1.1) by the order of unboundedness
of the resolvent operator on the imaginary axis, particularly for the case of ||(i8 —A) 7|3 =
o(B").

This paper is organized as following: section 2 is devoted to the statement and proof
of the main theorem. In section 3, we apply our theorem to three strongly stable but not
exponentially stable systems. The first one is an elastic string with Kelvin-Voigt damping on
a segment of the string and damping coefficient discontinuous at the interface. The second
one is a weakly coupled n-dimensional wave equation and heat equation. The last one is a
wave equation on a square domain with viscous damping on a subdomain which contains
a vertical strip. We are able to estimate the decay rates for these systems, which are not

available in the literature.

2 Main Theorem

We further assume that

1
H3). sup —
(H3) sup 51”

By the resolvent identity

(iB8 — A) || < M for some [ > 0.

(ca+if— AT = (- A7 - al@f - A7
(i8-A7"

= (zB_A)_l I_a|B|l |B‘l )



. . . 1
we see that —a+48— A is invertible when |a3'| < 51- and |3] > 1. Moreover, sup E”(_OH_
18]>1

i — A) || < 2M. Since A7! exists, from the continuity of the resolvent operator, there is

an constant € > 0 and a curve
£ ] .
Iw={z=—;r+w|MHEHL%z=—f+anm<1} (2.2)

such that the region on the right-hand side of I'* (including the boundary) belongs to the

resolvent set of A.

Lemma 2.1 The following identity holds for all integer k > 1 and all x € H.:

w1 o (I-A) 1 CI-—A) 'z
AT = At = 2me /1‘ (1—¢)* et = 2me /1“6 (1=¢)* et (23)

where I = {¢ = +1in | n € R}.
Proof. Let B=A—I. Then by equation (1.13) in [Na],

BBk = —

1 -3+l (\— B) 'z
et 2.4
2wi/C%_iw oo N 24)

for every x € H and t > 0. Returning to the original operator A and letting { = A + 1, we
obtain the first equality. Using the following estimates:

I<T = A)a|| < Clla],

2.
1 2 (2:5)
[1=¢] = I¢
the second equality in (2.3) can be easily established by a contour integration. O

Theorem 2.1 Suppose that the hypotheses (H1)-(H3) hold. Then, for any positive integer

k there exists a constant Cy > 0 such that

13
tA <C 1n—tllt 2.6
e z|ln < Cy ; (Int)[|z||p(ary (2.6)

for all x € D(A*).

Remark: Estimate (2.6) is not optimal. In the papers [R]and [RW], they got the best decay

rate tl% for the solution of an hybrid system. But using (2.6), we can only get the decay

rate (11;32/2. Our effort to remove the Int¢ term in (2.6) has not been successful.




Proof of Theorem 2.1. Inserting a weight function to the identities in (2.3), we have

YN Fo0 (A+zo2 ((—-A) 'z ¢
TU-AT = 27rz// \/ﬂ aA (1) ettdC

- L+1,

where

I_// YAAC, I:// - )dAdC.
e JIA|<er( IL 1/l C 2 T |)\\>c1(i)1/l( ) C

Estimation of Iy

For ¢ € I'®, we have
(A+14)? =

1-¢| > {C(1+77) In| >1

c l
_ Zinllzll Inf =1

Szl Il <1

Break I; as follows

2.7)

I :/ / (--)dCdA + / (--)dCdA + / (--)dCdA
[Al<ey JIn<1 [A[<a1 Jaz>|n|>1 [Al<ay Jn|>a2

= Li+La+ 13,
where a; = (ciﬁ)% and ¢; > 0 to be chosen. Then

nal<cf [ e tandrel < 20ae el = O el

and

2

nlt
I, < C / ot M e
hal < A<ar Jaz>ni>1 1+ e Il

et

< Cogose 2 (o) ¥||z||
" 2+ll_k
= () el =0 )al,

provided that ¢, is small enough. Once ¢, is fixed, we choose ¢; € (0, ¢c2) such that

(A —n)? > 26(n* + A\?) > 267?

(2.8)

(2.9)

(2.10)



for some § > 0 when |A| < oy and |n| > as. Therefore,

! _L{(a_p)2y 2t _ €2
sl < /A<a /n|>a 1-|i-n||77| T e
1 2
L _
< Coy /|| e e " dnllell = 067 ] (2.11)
2

Combining (2.9)-(2.11), we have
L < O@™)llz]l. (2.12)

Estimation of I

We rewrite I, as

IQ = etAJ

N Az
27T’L//A|>a1 27'(6 DA=d o (1 =)k dc.

Define the set on complex A plane

where

Qt:{)\:al—%—i-,ue_io\uzo,ee[o,g]}.

For any A € ;, we construct a contour on ( plane

Df = {¢=i(1+n)~ImA|n>0},
Dy = {¢=i(l+n)+ 5 n<0},

o1 1
DY = {(=i+5+n)[0<n<—ImA-_}

Let
1 1 (C - A)il %(,\+zg)
H)(z,¢) = 9 i V2 (=) € , AE Q.

Then J = J* + J~ where

:I:oof—

:I:oof—
JE = / / Hy(z, C)dCdA = / Hy(z, C)dCdA = / (z, ¢)dCd.
> :l:af— iar— Dy uDOuD+
(2.13)
Note that the contour of integration for A and ¢ have been shifted. In what follows, we will

carry out the estimation of J*. J~ can be estimated similarly.



For A € Q; and ¢ € DY,
A+ = (g +pcosf® —1)+i(n— psinb), n < psinf.

Then
Re(A+14¢)? = (a1 + pcos @ — 1)? — (—n + psinB)? > 26(u® +n* + of).

For A € ; and ¢ € Dy,
A+ =(ag+pcosf® —n—1)+iusinb, n <0.
Then

Re(A+1i¢)®> = (ay +pcosf —n—1)2— p’sin’4

v

p? cos 26 +n? + (g — 1)

> 26(p® + 0’ +af). (2.14)

It follows that

Hy(o,)dc] < Cllafle et [T ) 40 < Cllafle-tote o 2.15
ol A 0010~
o (@) < Cllalle 8 [ Fgdn < Cllafle *efe . (2.15)
For A € Q; and ¢ € D, we have
A+14¢0)? = (g +pcoshd—n—1)>% (2.16)
C C C
—A7Y < = < 2.17
e =7 =< |Re¢| |ImA| — psinf+1’ (2.17)
C C
(=A)7ell £ < 2.18
= Al < o< 219
Then, it follows from (2.16) and (2.18) that
H p c 400 e*%[(a1+u0059*1)*n]2d
< T
< Ca (2.19)

(oq + pcosB)k+l

Therefore, by contour integration, we can rewrite

+
T = [ oo Er(@ QAN



Cllz +oo g~ 3l(@rtucos §—1)-—n?
[ oo < ol e
Cllz|] 1
\psin § + 1| (o + pcos §)F
Cllz]]

(n+1)(p+ar)k

Combining (2.15) and (2.20), we conclude that

|77

<

<

<

<

+00 1
C“:L‘”/ le—éafe—épz n
0

cmn@4@+m“j
0{k

(p+1)(p+ay)k

1

t t &
Cllal| (e )t (e =) f
k
1
ln_t) Int.
t

After a similar estimation of J~, we obtain

Therefore,

k
Int\?
|ﬂgqmmiﬂlm.

t

t

k
Int\*
|mgmmwn>1m.

Finally, we conclude (2.6) from (2.7), (2.12) and (2.23).

3 Applications

dn

where y = {A =y — % + ue‘ig | p > 0}. On the other hand, using (2.16)-(2.17), we have

(2.20)

(2.21)

(2.22)

(2.23)

In this section, we consider three strongly stable but not exponentially stable systems. By

Theorem 2.1, we are able to obtain the decay rates for the solutions to these systems.

Example 1. We consider a 1-d wave equation with local Kelvin-Voigt damping and discon-

tinuous coefficient functions:

p(x)ug(z,t) — [a(z)v'(z,t) + d(z)ul(z,t)) =0 in (0,L) x R,

u(0,t) = u(L,t) =0,
u(z,0) = up(x), u(z,0) =ui (),



where p(z),a(z) > ¢o > 0 and d(z) = 0 on (0,a), d(z) > ¢y on (a, L), p,a € H(0,a) U

H'(a,L) and d € C(a, L). The prime denotes the derivatives with respect to z.

The energy of this system is defined by

B) = 5 [ To@ul? +ala)lu'P)da

Let
Hb,o) = PG,e),  |olfipe = [ ple)lo(e)da,
Vibe) = Hib,e), ol = | o@)l(@)da,
and
H=V(O,L)x HO,L), )l = luliyom + ol

We then define in H that
D(A) = {(u,v) lveV, au' +dv' € Hl(O,L)},
and
1
A(u,v) = (v, ;(au' + dv')").

Thus (3.1) can be rewritten as an abstract evolution equation on H:

d
7 (v) = Aw,v), (u(0),v(0)) = (uo, wr).

(3.2)

(3.5)

It is known that (see [LL]) A satisfies the hypotheses (H1) and (H2). Moreover, et is not

exponentially stable.

In what follows, we show that the hypothesis (H3) holds here for [ = % If it is false, then

there exist 8, € R, (un,v,) € D(A), n=1,2,---, with
[ (un, o)l =1, B — o0,
and
67% (zﬂn - -A)(una 'Un) = (fnagn) —0 in 7{’
ie.,
1
Ba (iBpun —vn) = fon— 0 in V(0,L),
1 1
B2 (iBtn — ~T') = gn—0 in H(0,L).
0

(3.6)



where T,, = au!, + dv),. Our goal is to find a contradiction to (3.6).

We first consider (3.8)—(3.9) on the interval (o, L). From (3.7), we obtain

1 pL 1

B / d(z)|v. Pdz = Re(B2 (iBn — A)(Un, Vn), (tn,vn))n — 0, (3.10)

which implies that

1 5

1Bivalla@r =0, [|Baunllm(,z) — 0 (3.11)

Thus, we also have

1

183 Tnll E(a,z) — O- (3.12)

we take inner product of (3.9) with v, in H(a, L) to obtain
s 1 1 1
il|Br vallzia,z) + B Tu(a ") Tn(e") + (BiTn, Brivy) 12(a,0) — 0. (3.13)

The third term converges to zero due to (3.11) and (3.12). For the second term, we have the

following estimate:

Bl Ta(a)llvn(a ™) < CBRllvnll o,y 1vnll o, 1Tl Er oy 1 Tal B a )
1o 1o 3
= C|1Bivpllfra,p) 187 Tullr(a,z) | B va | e,y + 0(1)

3
= o(1)(1 + [|Ba vnllH(a,r));

where we have used ||Bnvn | g(a,L) ~ || Tnl #(a,z) from (3.9). Now (3.13) leads to

3

|| B vn || (a,L) = O. (3.14)
1
Next, we divide (3.9) by (7, then take inner product with (L — z)7,, in H(a, L) to get
: : 1 e Ly
Re(fivn, (L = 2)BiTn)ra,r) — 5(L = a)[Tu(a®) [ + 5| Tallz2(a,) — O-

Since the first the third terms converge to zero, we see that

T (a™)| — 0. (3.15)

On the other hand, by the Trace theorem and (3.11),

|Batin(at)| — 0. (3.16)



Using the continuity conditions at © = «, we arrive at

{ Butin(a™)] = 0

3.17
la(a™)uy(@7)[ = 0 .

Now, we consider (3.8)—(3.9) on the interval (0, ). Eliminating v, in (3.9) by (3.8) gives

_Brznun - uilz = nggn + zﬁgfn (318)

Take the inner product of (3.18) with ¢(z)u/, in H(0, a) where ¢(0) = 0 and ¢ € H*(0, a).
A straight forward calculation shows that the real part of this inner product leads to the

following

/0 [(d'p+4p) 1 Brun|*+(d'a—qa) uy *|dz = g(a) p(a) | Baun(a7)*+a(a)a(a”) Jun (o) +0(1).
(3.19)
The boundary terms on the right-hand side of (3.19) converge to zero which we have obtained

in (3.17). Moreover, we can let

and verify
dp+a >p, da-gqd>a

It follows from (3.19) and (3.8) that
||Un||H(0,a) — Oa ||un||V(O,a) — 0. (320)

Finally, we combine (3.20), (3.11) and (3.14) to obtain the promised contradiction. Thus,
we have verified the hypothesis (H3).

Example 2. Consider a weakly coupled wave equation and heat equation on a bounded

domain Q@ C R"
( ug(x,t) = Au(z,t) — v8(x, t)
) Oi(z,t) = yu(z, t) + kAO(z, 1)

U o= 0 |aa=0

u(z,0) = ug(x), us(z,0) = uy(z), 6(z,0) = Oy(x)




where p, k are positive constants.

Let
V=H®), b= [ Vulde

H=LQ), % =/ |v[*dz
Q
and

H=VxHxH, |(uvb)]= /Quwﬁ + [vf? + |6 da.
We then define
D(A) = {(u,v,0) |veV, Au—~8 € Hyv+kAf € H}
and
A(u,v,0) = (v, Au — v8,v + kAB).

This coupled system can be rewritten as an abstract evolution equation on H:

%(u, v,0) = A(u, v, 6)

(u(0),v(0),6(0) = (uo, u1, bo)

It is known that (see [KBT]) e* strongly stable and is not exponentially stable.
A satisfies the hypotheses (H1) and (H2). Let us verify (H3) for [ = 2. Suppose it is

false, then there exists a sequence 3, € R", 3, — oo and (un,vn,0,) € D(4),n =1,2,---

with
”(unavna 0n)||7-[ =1, Vn (3.21)

and
6,2,(2'6,, — A)(Un, Un,0n) = (fry gny, hn) = 0 inH (3.22)

ie.,
Bﬁ(iﬂnun —v) = fn =0 inV, (3.23)
52(@'5,10“ —Aup+796,) = g =0 inH, (3.24)
B2(iB,0n — YU, — kAO,) = h, — 0 in H. (3.25)

Our goal is to obtain ||(un, Vs, Os)|l2x — 0 as n — oo, thus a contradiction.



Since, by (3.21),

—k||BnV0n||fq = Re(B2(iBn — A)(Un, Vn, 0n), (tn, Uy 0n))2y — 0, (3.26)

We obtain

Taking the inner product of (3.25) with v, in H yields

. 09, 1
BBy Vet — |lonll% — /BQ tn g 02 + {5 Vb, 2V =0 (3.28)

It follows from (3.23) that ﬂiann is bounded in H. Thus the third term in (3.28) converges
to zero. The boundary term in (3.28) vanishes due to the boundary conditions. The first
term in (3.28) also converges to zero due to (3.26) and the boundedness of v,. We have
obtained

l[0allr — 0. (3.29)

On the other hand, using the sum of the inner product of (3.23) with v, in H and the inner
product of (3.24) with u, in H,

lunlly — lloallzr — 0. (3.30)

Combining (3.27), (3.29) and (3.30), we have the promised contradiction.

Example 3. Consider a Wave equation on a square Q = (0,7) x (0,7) with local viscous
damping

ug(z,t) = Au(z,t) — d(x)uy(z, t)

u [oa=0

u(z,0) = uo(x), wu(z,0) =ui(x)
where d(z) has support Qy C  and is continuous and strictly positive on g, and the

damping region {2y contains a vertical strip of the square domain, i.e.,
QoDQs:{($1,$2)‘a<.’E1<b, 0<$2<7T}.

Let
V=H®), Iol}= [ [VoPds

H=L9), ol = [ [ofde



and

H=V x H.

Define
D(A;) ={(u,v) e H|v eV, Aue€ H},

Ag(u,v) = (v, Au— d(z)v).

Then the system can be rewritten as an abstract evolution equation on H
® (u,v) = Ad(u,0)
—(u,v) = U, v
' a
(’LL(ZB, 0)) ’U(.’L‘, 0)) = (Uo, ul)

We also use Ag to denote Ay when d = 0.

It is well known that this system is strongly stable but not exponentially stable since

the “geometric optics” condition is violated [BLR]. Clearly, (H1) and (H2) are satisfied. We

verify (H3) for I = 2. Suppose it is false, then there exists 8, € R", 3, — o0 as n — oo

and z, = (Un,v,) € D(A4) with
unlly + llvallz =1

such that
B2(iB — Ag)(tn,vn) — 0 in H.

Since

Re (B2 Aq(tn, V), (tn, v))30 = /Q d(2)|Bava|?dz,

0

we obtain from (3.32) that
[ d@)|Baval*dz — 0,
Qo
which further leads to
dim [lon][z2(0,) =0
and
tllglo ||/8n(zﬁn - AO)Zn” = 0.

It is easy to see that the normalized eigenvectors of A

2
sin max; sinlzy, 4— sin mazy sin lzs)
T

B V2
tmi(@) = (o

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)



for m,l = 1,2,---, form an orthonormal basis for /. The corresponding eigenvalue for
Om,a(x) is
1An = tVm2 + 2. (3.36)

we rearrange the eigenvalues {\;} in the order
A1) < o] <-o- < | Mg < -

with algebraic multiplicity ¢, 1 < 4, < dimV}, where Vj is the eigenspace of \;. We then

expand z, as

2= X om, 6)08, (3.37)
ki
and substitute it into (3.34). This leads to
. . s i\ L0k
Tim 3 Bl — iXe)(an, 605 =0, (3.35)

k,lk

i.e., for any € > 0, there exists N, > 0 such that

ST 1Bu(Br — M) P(2n, 87%))* < e forallm > N.. (3.39)
klk

Lemma 3.1 For each n, there exists some indez k(n) and a constant v > 0 so that
|Bn (B — )‘k(n))|2 <¢, (3.40)
1Bn(Br — Me))? >y for allk # k(n) (3.41)

Proof. If (3.40) does not hold, we have |3,(3, — Ax)|> > ¢ for all k. This contradicts (3.39)

since
kZ [(zns $1) 7 = 1. (3.42)
It follows from (3.40) that N
1B (B — M) > [Bn(Br = Ak(n)) + Br(Miny = M)l > [Bn(Pimy — M) — Ve (3.43)

Since 3, goes to infinity, (3.41) holds when [Ag) — Ax| > 1 for all & # k(n). On the other

hand, we always have |)\k(n — ;| > 1 and gy > 1. Hence, when [ Ay — Ai| < 1, we obtain

1Bn( Ay — AR
| Ak(n) + Ak
> |Bn|
| Ak(n) + Ak
2
> 5l > 26n ,
3y — 3(B2 + Ve)

by (3.40).



(3.41) is proved.
Lemma 3.1 and (3.39) implies that

v Z Z Zna |2 + |Bn(ﬁn )\k(n |2 Z | Zn, Zk(n) |2 <e foralln > N
ix k#k(n) ik (n)

Define
Un =3 (%n; B ) Drioy-

ik(n)

Then,

g
|20 — ¢n||7-t = Z Z (Zn, 2< =

i k#k(n) o

and

" €
Z|2n, Zk()|2>1_¥

ik (n)

From the second component of z, — 1,

V2 ; . . €
[|vn — 17 Z(zna ¢2(n)> 51N M X1 SN lixZHLZ(Qs) < ?,

where

m; 7A my, lz 7& lj for 1 7§ j

On the other hand,

2
(zn, ¢}c(n)>sin m;xy sinl;zy| dxadzy

1 b . ‘
- ;/ > 1z, ¢;c(n)>|251n2mixldx1

> 6 (20, Shn)|”
9
> 5(1—?)

for some constant 6 > 0. This contradicts (3.33) and (3.48).
By Theorem 2.1,

Int
e )l < G (5 ) (1), 0) -

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)
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