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THE HOMOTOPY OF L,V(1) FOR THE PRIME 3

PAuL GOERSS, HANS—WERNER HENN AND MARK MAHOWALD

ABSTRACT. Let V(1) be the Toda-Smith complex for the prime 3. We give a complete calcu-
lation of the homotopy groups of the La-localization of V(1) by making use of the higher real
K-theory EO»> of Hopkins and Miller and related homotopy fixed point spectra. In particular
we resolve an ambiguity which was left in an earlier approach of Shimomura whose computation
was almost complete but left an unspecified parameter still to be determined.

0. Introduction

The chromatic approach offers at present the most attractive perspective on the stable ho-
motopy category of finite complexes. For any natural prime p there is a tower of localization
functors L,, with natural transformations L,, — L,,_1 where L,, is Bousfield localization
with respect to a certain multiplicative homology theory E(n).. For a finite complex X the
homotopy inverse limit of these localizations gives the p-localization of X. The study of the
localization functors L, is sometimes referred to as the study of the chromatic primes in
stable homotopy theory. For more details the reader may consult [Ra3].

The solution of the Adams conjecture lead to a good conceptual and calculational under-
standing of the localization functor L; if p is any prime. The case of Ly is reasonably well
understood for primes p > 3 at least from a computational point of view [SY]. The case
of Lo at the primes p = 3 and p = 2 is harder. The standard approach to understand the
Ls-localization LyS° (at any prime) is to study Ly X for a “suitable” finite complex X and
to work one’s way back to L2S° through appropriate Bockstein spectral sequences arising
from the skeletal filtration of X. At odd primes the Toda-Smith complexes V(1) (which are
defined as cofibre of a self map A of the mod-p Moore spectrum V(0) such that A induces
multiplication by v in Brown-Peterson theory BP,) are suitable in this sense. For primes
p > 3 the homotopy of LoV (1) is relatively easy to understand; the Adams-Novikov spec-
tral sequence (ANSS for short) converging to m.LaV (1) collapses at Fs and its Ea-term is
known [Ral]. Starting from this information Shimomura and Yabe were able to compute
the homotopy of L2S® for all primes p > 3.

At the prime 3 it is natural to try the same strategy and start with studying m.L2V(1). In
fact, the Es-term of the ANSS converging to m. L2V (1) has been computed in [H] (see also
[GSS] and [Sh1]) but this time the ANSS for V(1) does not collapse. Using various informa-
tion about homotopy groups of spheres and related complexes in low dimensions Shimomura
studied this spectral sequence and arrived at a calculation modulo some ambiguity; there
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was an unspecified parameter k € {0, 1,2} and several families of homotopy elements which
lived in degrees which were only determined up to adding 24k.

The E>-term of the ANSS for LV (1) can be identified by Morava’s change of ring isomor-
phism with the continuous cohomology of a certain p-adic Lie group Gs, (the “extended
Morava stabilizer group”) with coefficients in Fg[u*']. Devinatz and Hopkins [DH2] have
given a homotopy theoretic interpretation of Morava’s change of rings isomorphism: the
localization L K(2)50 of the sphere with respect to the second Morava K-theory K(2) has

the homotopy type of the homotopy fixed point spectrum EQGQ which is defined by making
use of the Hopkins-Miller rigidification of the action of G2 on the Lubin-Tate spectrum FE5
[Re].

In this paper we analyze the ANSS for LoV (1) by making serious use of group theoretic
and cohomological properties of Gz. In fact, LV (1) can be identified with Ly )V (1) ~
Lg@2)S°AV(1) ~ EQGQ AV (1) and we will study LV (1) by comparing it with EAY A V(1)
where E}VN is the homotopy fixed point spectrum with respect to the normalizer of an
element of order 3 in G,. The use of the spectrum E4 was suggested by the calculation of
the Es-term of the ANSS in [H] which made heavy use of centralizers of elements of order
3 in Gy. The other good property of E4N on which our method relies is that it can be
analyzed in terms of the Hopkins-Miller higher real K-theory spectrum EQOs at the prime
3. Both properties together allow us to give an independant calculation of 7. LyV (1) which
is complete and identifies Shimomura’s parameter as k = 1.

To state our main result we need some notation. First of all, from now on all spaces or
spectra will be localized at 3.

The homotopy of LyV (1) is annihilated by 3 and a module over the homotopy of L K(Q)SO.
Therefore it can be regarded as a module over the algebra F3[3] ® A(¢) where 3 is the image
of the generator 81 € m10S? and ( is in w,lLK(z)SO. The homotopy groups turn out to be
periodic of period 144 and on the Fs-level this periodicity corresponds to multiplication by
vg where vy is the polynomial generator in mgBP. We do not prove that this periodicity
arises geometrically but it is convenient to describe 7. LoV (1) nevertheless as a module over
P :=TF3[vy? 5] ® A(¢). We will use notation like P/(3%){v}}1=0.1.5 to denote the direct sum
of P-modules each of which is killed by $° (more precisely its annihilator ideal is the ideal
generated by 3°) and which have generators named 1 = v9, v2 and v3.

Finally we note that the Fs-term has a product structure and it contains elements which

deserve to be named vo (which is closely related to the generator vy € m16(BP)) , a (which

detects the image of the generator a; € w3(S?)), v%mﬂ, v;/za, Bass, cags, v;/zﬂagg, and

U;/Zﬁaa% and which live in total degree 16, 3, 18, 11, 45, 38, 53 and 56 respectively. The
reason for these names will become clear once we have discussed the spectrum E4Y and in
particular ESNV AV (1).

Theorem. As a module over P = F3[vy®, 3] @ A(C) there is an isomorphism

T LoV (1) = P/(5°){v3}i=0.1,5 ® P/(B°){vha}izo,1,2,56,7
& P/(B{5?Bhizoas © P/(B){vs " Padio 256
@ P/(B*){viBassti—o1s ® P/(B*){vhaass}tizo,1,2,56,7
@ P/(B°){v5""/*Bazs }io,a5 ® P/(B2){vh"/?Baass}imo1,2,4,5.6 -
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We note that this result has already been used to carry out the programm to calculate
7. (L2S%) that we mentioned above [Sh2], [SW].

The paper is organized as follows. In the first section we discuss the spectrum EO; and
EO; AV(1). In particular we give a detailed discussion of the ANSS converging towards
7.(EO,). In the second section we introduce the homotopy fixed point spectrum E4Y and
we relate E4N to EOs, and consequently EIN A V(1) to EOy A V(1). In the final section
we compare L2V (1) with EXY A V(1) and prove the main theorem.

1. The homotopy of FO; and EO; AV (1)

1.1. The spectrum FO,.

We begin by recalling the construction of the spectrum EOs due to Hopkins and Miller. We
refer to [Re] for more details.

The point of departure is the Lubin-Tate deformation theory of formal group laws (cf. [LT]),
in particular the universal deformation of the formal group law I' of height 2 over the field
Fg with [p]-series [p](z) = 2°. The universal deformation is a lift of I' to a formal group
law I over W, [[u1]] (where W, are the Witt vectors of IFg and u, is a formal power series
variable). Over the graded ring Wi, [[u1]][u®!] (where u is of degree —2 and uy of degree
0) this formal group law is isomorphic to the one induced from the universal p - typical
formal group law over BP, = Z,[v1,v2,...] via the map of algebras which sends v; to

wiul P, vy to ulP* and v, to 0 for i > 2. The Landweber exact functor theorem implies
that there is a homology theory Ej represented by a ring spectrum E> with coefficients
7. (E2) = W, [[u1]][u™!] such that the cohomology theory E»* is complex oriented with
orientation u and such that the associated formal group law is isomorphic to I. To simplify
notation we will abbreviate Wr, by W and E»> by E throughout.

The group Sy of automorphisms of I' (also known as the Morava stabilizer group) acts on the
ring spectrum £, up to homotopy, and this action extends in a canonical way to an action
of the extended stabilizer group, given as the semidirect product G3 := S; x C3 where the
cyclic group Cs of order 2 acts on Sy via Galois automorphisms of T'. (Note that ' is defined
ove F3 and thus we get an action of the Galois group of the extension F3 C Fg on S,.)

Hopkins and Miller have shown how to rigidify this action to a genuine action via As, - maps
[Re] and subsequently Devinatz and Hopkins [DH2] have shown how to construct homotopy
fixed point spectra EM with respect to closed subgroups H of G,. Their construction has
the following properties: it agrees in the case of finite subgroups with the naive construction
of the homotopy fixed point spectrum, if H = G, then EM ~ LK(Q)SO, and for any closed
subgroup H and any finite spectrum X there is a spectral sequence

B34(X) = B

cts

(H,Ey (X)) = m_(E" A X)

*
where H,,

The group S2 can also be identified with the group of units of the maximal order Oy of the
division algebra Dy over the 3-adic rationals Q3. The maximal order is a free W-module of
rank 2 with basis 1 and S; as a ring it is determined by the relations S? = 3 and Sa = ¢(a)S
if ¢ notes the lift of Frobenius from Fg to W [Ra2, Appendix 2]. From this point of view

denotes continous cohomology of the p-adic group H.
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the extended group G is the split extension So X Cy where the action of Cy is given by
conjugation with S in Ds.

Let w be a fixed 8th root of unity in W. The element s := —%(1 + wS) is easily checked to
be of order 3. Furthermore w?sw~2 = s2 so that s and ¢ := w? generate a subgroup G5 of
So which is isomorphic to C'3 x Cy with C4 acting non-trivially on C'5. The spectrum EQO> is
defined as the homotopy fixed point spectrum E*@12. We add that G1s is a maximal finite
subgroup of So and every other maximal finite subgroup is conjugate to G1s.

1.2. The E>-term of the ANSS converging to m.(EO>).

We do not claim any originality for the results in this and the following subsection. The
ANSS for FO> was first investigated by Hopkins and Miller but unfortunately their work
remains unpublished. There is a rather brief discussion of this spectral sequence in the still
unpublished paper [N]. A discussion of its Fa-term from a different point of view can be
found in [GS]. Neither of these sources suits well our needs and therefore we have decided
to give a self-contained treatment here.

In order to describe the FEs-term Eg’t >~ H*(Gh2, E;) we start by analyzing E. as a Gqa-
algebra. The first step is to locate an appropriate subrepresentation in £_5.

Let x be the representation of G152 on W which is trivial on s and on which ¢t acts by
multiplication by w?. Define a G2 - module p by the short exact sequence

0— x — W[G12] ®wicyx —p— 0

in which in the middle term y is considered as a representation of the subgroup Cy4 generated
by t and where the first map takes a generator e of x to

(I+s+ 82)6 =(1+s+ 82) ® e € W[G12] QW[Cy] X -

Lemma 1. There is a morphism of Gi2-modules
p— E_2
so that the induced map
p @w Fo — E_ ®g, Eo/(3,u})
18 an isomorphism.

Proof. We need to know something about the action of Gy on E.. Let m = (3,u;) C Ey
be the maximal ideal. Then Proposition 3.3 and Lemma 4.9 of [DH1] together imply that,
modulo m2E_,
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In particular, we see that E_5 ®g, Ey/(3,u?) is isomorphic to p @y Fy as a G5 - module
and that the residue class of u is a G12-module generator. Thus we would like to find a class
x € E_5 with the same reduction as u so that t.(z) = w?z and z+ s.(x) +s2(z) = 0. In fact,
because the action of ¢t on E_sy ® g, Fo/(3,u?}) is diagonalizable with distinct eigenvectors it
suffices to find 2 such that = v mod (3, 1), up to a scalar in [Fy .

Such an z can be obtained as follows: we start with the element u‘ful which is the image
of v; € BP, with respect to the map BP, — FE, which classifies I" (we will denoted this
element simply by v; in the sequel); v is invariant modulo 3 with respect to the action of
all of Sp. More precisely, the structure formulae in BP.BP [Ra2, Appendix 2] yield

g«(v1) = v1 + (3 = 3%t1(g) = v1 + 3t1(g) mod (3%)

for every g € Sy. Here we use the identification of E.FE with the continous functions from
the profinite group Sy with values in E. equipped with the profinite topology (see [St, Thm.
12] for a convenient reference) and ¢; € E4E is the image of the element with the same name
in BP,BP.

By definition of ¢; we have t1(—3(14+wS)) = wu~? mod (3,u1). Hence, if z = 1(v; —s.(v1))
then
z=wu ? mod (3,u1) ,
in particular z is non-zero. Clearly we have z + s.(z) + s2(z) = 0 but z does not yet have
the right degree.
Therefore we consider the class
y = us.(u)s?(u)z .
Then
y =wu mod (3,u1)
and we still have
Y+ s:(y) +s2(y) = 0.
However, y might not yet have the correct invariance property with respect to the element
t of order 4. Therefore we average and set

1
v= Wt th(y) o ) e )
Then we get * = wu mod(3,u?) and we are done. [

The morphism of Gi2-modules constructed in the lemma defines a morphism of W[G12]-
algebras

S(p) — E.
where S(p) denotes the symmetric algebra on p. We note that as an algebra S(p) is poly-
nomial over W on two generators e and s,.(e), and we can choose e such that its image is
the element z of the proof of the lemma above and is therefore invertible in E,. Let

N = H g«e € S(p) ;
9€G12
then we have a morphism of W[G13]-algebras
SN ) — B.

Note that inverting N inverts e as well, but in an invariant manner. Let I C S(p)[N~!]
be the preimage of the maximal ideal m = (3,u;) C F. (now considered as a homogeneous
graded ideal).
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Proposition 2. The induced map of complete algebras
S(p)IN"'} — E.

is an isomorphism.

Proof. 1t is enough to show that the induced maps

Ik mF
TR mktl

are isomorphisms for each k.

If we identify S(p) with Wle, s.(e)] then we get N = —(es.(e)(e + s. (e))4. Furthermore
it is straightforward to check that the homogeneous graded ideal I is generated by 3 and
e — s«(e) and that the maps in question are isomorphisms. O

Our next step is to study H*(G12, 5(p)). We will see in Theorem 6 below how the calculation
of the Es-term can be reduced to that of H*(G12,5(p)).

If e € p is the generator, let d be the multiplicative norm of e with respect to the subgroup
generated by s, i.e. d = es.(e)s®.(e). We note that d is of degree —6, it is invariant with
respect to s and furthermore d* = —N.

For a finite group G and any G module M, let
trg =tr: M — M% = H°(G, M)

be the transfer: tr(z) = > . gz. The following calculates H*(G12,S(p)) completely if

* > 0 and gives partial information if * = 0; an element listed as being in bidegree (s,t) is
in H*(G, S¢(p))-

Lemma 3. Let C3 C G5 be the normal subgroup generated by s. Then there is an exact
sequence

S(p) 5 H*(C3,S(p)) — Folb,d] ® Ala) — 0

where a has bidegree (1,—2), b has bidegree (2,0) and d has bidegree (0, —6). Furthermore
the action of t is described by

te(a) = —w’a t.(b) = —b to(d) = Wb .

(By abuse of notation we have denoted the image of the invariant class d in the quotient
HO(C3,S8 6(p))/Im trstill by d. )

Proof. Let F be the Gia-module W[G15] QW] X- We can choose a W-basis z1, x2, 3 of
F such that a9 := s.(z1) and x3 := s.(22), and then we get an identification

S(F) = Wz, 22, 73]

with all z; in degree —2. The kernel of the canonical Cs-linear algebra map which sends
F to p is the principal ideal generated by o1 = x1 + x2 + x3, i.e. we have a short exact
sequence of graded Cs-modules

(%) 0= S(F)®x—S(F)—S(p)—0.
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(In the tensor product y has to be treated as a representation in degree —2 in order to make
the maps degree preserving.)

As a C3-module S(F) splits into a direct sum of free modules and trivial modules where the
trivial modules are generated by the powers of the monomial o3 := x12223. Therefore we
obtain a short exact sequence

S(F) 5 H*(Cs, S(F)) — Folb,os] — 0

where b has bidegree (0,2) and o3 has bidegree (0, —6). Here b is a generator of H?(C3, W) =
W/3 and W C S(F) is the submodule generated by the unit of the algebra S(F). The action
of t is given by the following formula

tu(o3) = WOos3 = —w?os and t.(b) = —b.

The short exact sequence (*) and the fact that H'(C3, S(F)) = 0 now imply that there is
an exact sequence

S(p) == H*(Cs,S(p)) — Fola, b, d}/(a®) — 0.

where d is the image of o3 and a is the preimage of b € H?(C3, W) = H?(C3, So(F) ® x)
with respect to the isomorphism

H'(Cs,p) = H'(Cs,51(p)) — H*(C3, So(F) @ X)

given by the obvious connecting homomorphism. Thus a has bidegree (1, —2) and the action
of t is twisted by x:
te(a) = —w?a =wba . O

The next step is to compute the invariants S(p)“® together with the action of ¢. For this
we start with the invariants of S(F') and then we use the exact sequence (*). The action of
the cyclic group C3 on S(F) = W(xy, za, 23] extends in an obvious way to an action of the
symmetric group Y3 on three letters; thus we have an inclusion of algebras

b C,
W[O’l, g2, 0'3] = W[l‘l,l'g, xg] 3 g S(F) 3,
It is clear that the following element
€= 1:%1:2 + x%xav + a:%:m — zgxl — I%ZEg — 1:%:1:2

(the “anti-symmetrization” of x2x5) is also invariant under the action of C3. We use the
same notation for the images of these elements in S(p) and we note that o1 becomes 0 in

S(p).

Lemma 4.

a) There is an isomorphism of W-algebras
W(o1,09,03,€]/(e2 — f) = S(F)°
where [ is the following polynomial in o1, 02, 03

f= —270% — 403 — 4030? + 18010903 + U%U% .
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Furthermore, the action of t € G135 is given by

te(or) = w?oy tu(o2) = —02 te(o3) = wlo? to(e) = w?e .

b) There is an isomorphism of W-algebras
W(oz, o3,€]/ (2 — g) = S(p)>
where g is the following polynomial in o3, o3
g = —2703 — 403
Furthermore, the action of t € G1a is given by

ti(o2) = —02 te(o3) = w03 to(e) = wle .

Proof. a) It is clear that €2 is X3 invariant and therefore it can be expressed as a polynomial
in 01, 02 and o3. To find the precise relation is an elementary exercise. We also leave it
to the reader to verify that the action of ¢ is as claimed. Thus it remains to determine the
algebra structure of S(F)%s.

As a graded Cs-module S(F') decomposes into a direct sum of free modules of rank 3 and
of trivial modules of rank 1, and each of these summands contributes a summand W to
S(F)%. From this it is easy to calculate the Poincare series of the invariants and we find

1+18
XS(F)Cs (t) = (1—2)(1 —t4)(1 — 19) :

(In this calculation we regrade S(F) such that F' is homogeneous of degree +2.)

On the other hand there is still an action of Cy on S(F)?, and S(F) splits as direct sum
of eigenspaces
S(F)=S(F)" & S(F)~ .

Furthermore S(F)* = S(F)® and S(F)~ is a module over S(F)~. By the Poincaré se-
ries calculation it is therefore enough to verify that S(F)~ is free as S(F)T-module with
generator e.

In fact, it is clear that e is in S(F)~ and because W[z1, x2, z3] is without zero divisors it
is also clear that e generates a free S(F)T module with the correct Poincaré series. Now
suppose p € S(F)~. We can choose a constant ¢ € W of mininimal valuation, say r, such
that cp = eq for a unique polynomial ¢ € W[oq, 02, 03]. Then

e(ep) = g = fq ..

If ¢ is divisible by 3 then the formula for f shows that ¢ must be divisible by 3 and then r
was not minimal. Hence r = 0, ¢ € W* and p is in the submodule generated by e.

b) This is an immediate consequence of (a) and the vanishing of H'(C3, S(F)). O

The next step is to invert the element N. This element is the image of o3; thus, we are
effectively inverting the element 03 € S(p)“?. We begin with the observation that if we
divide

€ = —2703 — 4o}
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by 40§ we obtain

(g + (3 =
Thus if we set
(o) € 1
G eTnp Ao
then we get the following relation
ca—ci =27A

which corresponds to the famous relation from the theory of modular forms [D] (except that
in our case 2 is invertible and hence the usual factor 1728 can be simplified to 27). The
reader is referred to [GS] for an explanation of this coincidence.

Furthermore, ¢4, cg, and A are all invariant under the action of the entire group Gi3. The
elements
a=ad"' € H'(Cs,(S(p)IN"])4)

and
B:=bd? e H*(Cs,(S(p)[IN )12)

are clearly fixed by the action of ¢ and by degree reasons they are acted on trivially by cq4
and cg. The following result is now straightforward to verify.

Proposition 5.

a) The inclusion

Wlea, co, A/ (c5 — ¢ = 27A) — S(p)[N 1]

s an isomorphism.

b) There is an exact sequence
S(p)[IN7Y] =5 H(Gha, S(p)[N]) = Folar, 5, A*1]/(@®) = 0

and cq4 and cg act trivially on o and 6. 0O

The final step is now to investigate what happens under completion. We continue to use c4,
¢ ete. for the images of these elements in H*(G12, F.) with respect to the map S(p)[N '] —
FE, studied in Proposition 2.

Theorem 6.

a) There is an isomorphism
(B) = W(lefA[es, e, AT/ (e — ] = 2TA)
b) There is an exact sequence
B, % H*(G12, B.) — Fola, B, A% — 0

and cq4 and cg act trivially on o and 3.

Proof. a) We use Proposition 2 and we use that completion commutes with taking invariants.
We abbreviate S(p)[N 1] by A and we recall that the ideal I C A is generated by 3 and
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e — s«(e). With this it is straightforward to check that both ¢4 and cg belong to I. The
relation c2 — ¢} = 27A implies then that I N AS? is generated by 3 and ¢A~!. This implies
(a)-

b) It is also straightforward to verify that o = —(e — s.(€))? mod (3) and this implies that
the ideals I and (3,c§A™') define the same completion. Abbreviate ¢ciA™! by 2. We have
an isomorphism

B, =lim, A/ (%) .
Now we consider the short exact sequence
k
0—-AZ=A—A/ZF)—0.

Because z acts trivially on H%(G12, A) for ¢ > 0 (by Proposition 5b) we obtain for each
g > 0 a tower (indexed by k) of short exact sequences

0— Hq(G127A) b Hq(Glg,A/(Zk)) b Hq+1(G12,A) — 0.

The maps on the right hand side of this tower are also induced by multiplication with z,
hence they are trivial and therefore we obtain an isomorphism

H9(G1a, A) = 1limp H9(G1a, A/ (2F)) .

On the other hand the graded quotients A/(z*) are of finite type for each k and this implies
that the usual short exact sequences

0 — lim} H¥71 (G2, A/ (2F)) — HI(G12,lim A/(2F)) — lim HY(G12, A/IFA) — 0
degenerate into isomorphisms
HY(G,limp A/ (2%)) 2 limp HY(G1q, A/ TF A)
and the proof is complete. [

Remark With the same reasoning we can also compute the Es-terms for the homotopy fixed
point spectra EQC?’ and E;’CG where Cj3 is as before the subgroup generated by s and Cg
that generated by s and 2. In fact, the Gio-invariant A = —1/40% has a Cz-invariant 4-th
root AY* in S(p)[N~1] and we get

(B = WA ]ea, co, A4/ (cf — ¢} = 27A) .
Furthermore there is an exact sequence
E. i) H*(CS; E*) - Fg[a, ﬁa Ai1/4] —0

and ¢4 and cg act trivially on a and .

Similarly,
()7 = WA e, e, A2/ (c3 — ¢} = 274)

there is an exact sequence
E. L H*(CS; E*) - FQ[aaﬂa Ail/?] —0

and c4 and cg act trivially on a and .
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1.3. The homotopy of EO-.

Before we turn to the discussion of the differentials of the spectral sequence we relate the
elements A, ¢4, cg, @ and 3 to well known quantities in homotopy theory.

We start by recalling that the elements v¥ € Ext%}l;* pp(BP., BP,/(3)) define permanent
cycles in the classical ANSS of the mod-3 Moore space V(0). Similarly, the element vy €
E:z;t?g’})i pp(BPy, BP,/(3,v1)) defines a permanent cycle in the classical ANSS for the cofibre
V(1) of the Adams self map %4V (0) — V(0). Furthermore v; and vy give rise via the Greek
letter construction to generators a; € m3(SY) = Z/3 resp. 31 € m0(S°) = Z/3 which are
detected in the classical ANSS by elements with the same name in Ezt}g’;ﬂ* pp(BP.,BP,)
resp. Emt%ﬁBp(BP*, BP,).

Finally we note that the localization map from a finite spectrum X to Lg(2)X together
with the Morava change of rings isomorphism and the obvious restriction homomorphism in
group cohomology induce a natural homomorphism

Ax : Eaty pp(BP., BP.X) — H*(Gy; E;X) — H*(Gha; B X) .

We will denote the images of the elements v1, va with respect to Ay (g) resp. Ay (1) still by
V1 Tesp. va.

Proposition 7.

a) Reduction modulo (3,u1) sends A? to the image of vy in H°(G12, F32/(3,u1)).

b) The mod-3 reduction map

H (G2, By) — H®(Gha, Ei/(3))

sends cq resp. cg to the image of v? resp. v3, up to multiplication by a unit in H°(G12, Eo/(3))
=~ Fy[[c3A1Y]]. Furthermore there is an element & € H*(G12, E12/(3)) and an isomorphism
(of modules over Fo[[vSA™][vy, AT, 3] ® Ala))

H*(Gh2, E./3) = Fo[[vS A~ [v1, AF, ] @ A(e){1,d}/(via,v1 @, @@ + v13)

¢) The map Ago sends a1 to o and 31 to B up to a nontrivial constant in W/3.

Proof. a) The definition of A implies immediately that its reduction modulo (3,u;) is equal
to that of =12, On the other hand the reduction of u~24 is equal to v3.

b) It is clear from our calculation of H*(G12, E.) and the short exact sequence of Gya-
modules

() 0—E.—E, — E./(3)—0

that v? and v are in the image of mod-3 reduction. Furthermore they generate the invariants
in degree 8 resp. 12 as module over H%(G12, Eo/(3)). On the other hand the G1z-invariants
in degree 8 resp. 12 of E. are freely generated (as modules over H%(G12, Eg)) by c4 resp.
ce. This proves the statement on ¢4 and cg and also gives the result for H%(G12, E./(3)).
We define & such that §°(&) = 3 where 6° denotes the boundary homomorphism associated
to the exact sequence (*). Then everything else except perhaps the relation v = aa is
straightforward to check. This relation is obtained by calculating

(1 B+ aa) =06v)B—ad’(@) =aB—aB =0
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and by noting that §° is a monomorphism in the relevant bidegree.

¢) This is a consequence of the compatibility (with respect to the maps Ax) of the Greek
letter construction for Extpp, pp(BPx, —) and an analogous Greek letter construction for
H* (Glg, —).

In fact, the image of v; € Extyp pp (BP., BP,/(3)) (which is the class uju~?) defines an
element in H°(G12, F./(3)). The short exact sequence

0—FE.—E.—FE./(3)—0

shows that this class has a nontrivial image 6°(vy) € H'(G12, Ey) = W/3 and this latter
group is generated by a.

Similarly, for ;1 we just need to check that the result of the Greek letter construction on
u;s € H°(G12, E16/(3,u1)) yields a nontrivial element in H?(G12, E12). First we note that
the boundary map 6! associated to the exact sequence

0— X*E./(3) 2% E./(3) — E./(3,u1) — 0

maps u~° nontrivially and hence to &, up to a nonconstant multiple. In the proof of (b) we

have seen that §°(a) = 3 and hence we are done. [J

In the sequel we redefine « resp. [ such that @ = Ago(e1) and 8 = Ago(51). We are now
ready to describe the differentials in our SS.

Theorem 8. In the spectral sequence
H? (G2, Ey) = ms(FO3)
we have an inclusion of subrings
E%* = W[[c3AT][cy, c6, ca AT, AT 3AT AT /(3 — 2 = 27A) .

In positive filtration ES! is additively generated by the elements «, of3, Aa, AafB, 37,
j=1,2,3,4 and their multiples by powers of A3, All these elements are of order 3 and cy
and cg act trivially on elements in positive filtration.

Proof. First we observe that every element in the image of the transfer is a permanent cycle.
The last proposition implies furthermore that the elements o and (3 are permanent cycles
detecting homotopy classes with the same name. Next we use Toda’s relation ;3] = 0 in
7.(S%). This implies that a3% = 0 in 7. (FEO,) and this can only happen if ds(A) = a; /3>
for some a; € Fy.

Then we use the Toda bracket relation 3; € £ < aj,a1,a; > in 7.(S%). Consequently
we have 3 € £ < a,a,a > in 7.(FQO,). This and 3% = 0 imply that 3% is in the
indeterminacy of the bracket < af?,a,a >. This is only possible if aA is a permanent
cycle and a(aA) = 33, up to a nontrivial constant.

The next possible differential is dg. Up to nontrivial constants we have 3° = 3233 =
B2a(aA) =0 in 7. (EOz) and this forces do(A%a) = a23° for some as € Fy . Then there is
no more room for further differentials and E., = F1g is a stated in the theorem. [

Remark With the same reasoning we can also compute the homotopy of E4“* and EX“. In
the case of C'3 we obtain an inclusion of subrings

E%* = W3 A Y] [ea, co, ca AT cg ATV A ZAE/A AL/ /(3 — 2 = 27A)
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and in positive filtration ES! is additively generated by the elements «, a3, Aa, Aaf, (37,
j =1,2,3,4 and their multiples by powers of A™3/4, These elements are of order 3 and ¢4
and cg act trivially on elements in positive filtration.

In the case of Cs we obtain an inclusion of subrings
E% = W([c2A™Y][ea, co, caAFY 2, cg ATY2 ZAFL/2 AE3/2] /(3 — 2 = 27A)

and in positive filtration E%! is additively generated by the elements o, a3, Aa, AafB, (7,
j =1,2,3,4 and their multiples by powers of A*3/2. Again these elements are of order 3
and ¢4 and cg act trivially on elements in positive filtration.

In particular we see that EOs is 72 periodic with periodicity genertor A3, E;’ % is18 periodic
with periodicity generator A%/* and Eé‘cﬁ is 36 periodic with periodicity generator A%/2.

1.4. The ANSS converging to 7.(EO3 AV (1)).

In this section we calculate 7. (EO3 AV (1)). We can do this by using Theorem 8 and the long
exact sequences associated to the defining cofibre sequences of V(0) and V(1). However,
later on we will make use of the structure of the ANSS for L,V (1) and so we choose to give
a presentation in terms of the ANSS

Ey"(V(1)) = H*(G12, BV (1)) = m—s(BEO2 AV (1)) -

First we note that E.(V (1)) is given as Fg[u™!]. The element s € Gp2 acts necessarily
trivially on this ring while t acts via t.(u) = w?u (cf. the proof of Lemma 1). This gives us
the following Fs-term

By = (Fo[u™t, y] @ Ax)) "

in which the (s,t)-bidegree of u is (0,—2), that of y is (2,0) and that of z is (1,0). The
invariants can then be identified with Fo[u™*, 3] ® A(a) where 8 := u~%y is a permanent
cycle detecting 8 € m19(V (1)) and o := u™2x is a permanent cycle detecting o € m3(V (1))
and where 3 and « are the images of the classical elements 41 and «y in 7. (S°). (This can
easily be checked via the long exact sequences of homotopy groups mentioned above). The
element 48 is the image of vy in the Ey-term of the ANSS for 7.V (1) with respect to the
localization map (cp. the proof of Proposition 7 above).

k/2

If k is an integer than we will write from now on vy’ ~ instead of u=#*. If z is an element of

E, we will denote v *fz by vlg/ 2. We note that the periodicity generator A3 of 772 EOs

projects to vg/2.

Theorem 9. There are elements UI;/Q € mp(FO3y AV (1)), k = 0,1,2, and v§/2a €
msi+3(EO2 A V(1)), k = 0,1,2,3,4,5, such that as a module over Fg[vgtg/r‘),ﬂ] there is

an isomorphism
T (BO2 NV (1)) = Folv;**] @ (Fo[B]/(87){1,v5% v} @ Fo[]/ (%), 05/ %a}) .

Remark We remark that additively 7, (FO3z) is nontrivial and of dimension 1 over Fg if
k= 10m + 8k mod (72) with 0 < m <4,0< k<2 0orifk=10m+8k+3if0<m <1
and 0 < k < 5. For all other k£ the homotopy group is trivial.
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Proof. Because a and (3 are permanent cycles, the first possible non-trivial differential is d5
and it is determined by its value on the powers of v;/ 2, By using the long exact homotopy
sequences associated to the defining cofibre sequences of V0) and V(1) together with Theo-

rem 8 and Proposition 7b it is easy to verify that the elements 1, v;/ % and v, are permanent
cycles.
Now E?*(V(1)) is a differential graded module over E*(S?). This implies

0 ifk=0,1,2 mod 9
ds(o}7%) ={

cvi 202 ifk=3,4,5,6,7,8 mod 9
for suitable nontrivial constants ¢, and therefore
Eg = Fg[vfg/z,ﬁ]{l,vl/%vg} @ ]Fg[vfg/z,ﬂ] Ug/2a, v;/za,vg/za}
® Fg[vzig/Q, B]/(6*){a, v%/za, Va0, vg’/Qa, via, v§/2a} .
The next possible differential is dg and by using the module structure again we obtain
0 ifk=0,1,2,3,4,5 mod 9
{ cuk?73B5 if k=6,7,8 mod 9

for nontrivial constants c).. The resulting Ejo-term is isomorphic to the stated result, and
in fact, there is no room for further differentials. O

dg(U§/2Oé) =

2. The homotopy fixed point spectrum E"Y

2.1. The subgroups N and N!.

Next we introduce certain infinite closed subgroups of Sy which are closely related to the
subgroup G12 which is used to define EOy. We refer to [H, section 3] for more details on the
following discussion. The centralizer C := Cs,(C3) of the subgroup C3 C G12 generated by
s can be identified with the maximal order of the units in the cyclotomic extension Q3((3) of
Q3 generated by a third of unity (3, and is hence isomorphic to C3 x Cy x Z32. Furthermore
C is of index 2 in its normalizer N := Ng,(C3). The action of the element n of order 2
in N/C on C is via the Galois automorphism of the cyclotomic extension. The action can
be diagonalized, i.e. the splitting of C5 x Cs x Zg. can be chosen to be invariant with
respect to the action of n, and n acts trivially on C5 and on one copy of Z3 while it acts by
multiplication by —1 on the other copy and on Cs.

Furthermore, there is a homomorphism from Sy — ZJ — (Z5)/{£1} given as the compo-
sition of the reduced norm and the canonical projection. Its kernel is denoted by Si, and
Sy decomposes as Si x Zz where the complimentary factor Zs comes from the center of
the division algebra. There is a corresponding splitting N =2 N! x Zs and this splitting is
preserved by the action of n (where n acts trivially on the complementary factor Zs). We
observe that the subgroup G2 is contained in N' and that N is a (nonsplit) extension of
Cy by C! := C3 x Cy x 73z where n preserves the splitting of C! and acts non-trivially on
the factors C3 and Zs.

In the sequel we will make use of the homotopy fixed point spectra EY and EMN " These
spectra are closer to LK(2)5’0 but we will see that they are also closely related to EOs.
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2.2. BN, EMN' and EO,.
The splitting N =2 N' x Zs implies the following result.

Theorem 10. There is a cofibration sequence
EhN N Eth N Eth

where the map EWN' _ phN' g given by id — k if k denotes a topological generator of the
central Zs.

Proof. There is a canonical map f : EMY — EM " induced by the inclusion N!' C N.
Furthermore k induces a self map of EMV " and (id — k) o f is null. This gives us a map g
from E™V to the fibre F' of id — k. The one shows that g, or equivalently Ly 2)(g9 Nidg)
is an equivalence. In fact, a slight modification of the argument in [DH2, Prop. 7.1] allows
to identify 7. Ly (2)(E"Y A E) with map,,,(G2/N, E.), the continuous maps from the coset

space Gz /N to E, and likewise 7. L (2) (E"N' A E) with map,,,(G2/N1, E, ). Then one sees
that the map id — & induces a surjection on m. (L g 2)(— A E)) and g induces an isomorphism
between map,,.(G2/N, E,) and the kernel. 0

The spectrum E"MV " itself can be obtained from FEOs in a slightly more sophisticated fashion.
For this we consider the ring spectrum ECs = EhC3xC2)  The group Cg is normal in G1a
and we obtain an induced action of the quotient G12/Cs = C5 on the ring spectrum £,
The spectrum E"%s splits with respect to this action as £7V £~ where E+ and E~ are the
“eigenspectra” of E"Cs with respect to the two non-trivial characters of Cy. Furthermore
ET ~ (E")"C2 can be identified with EO, and thus E"“s and E~ become EO,-module
spectra. The following elementary observation introduces a suspension which may seem
surprising at first but which becomes very important for the sequel.

Proposition 11. There is an equivalence of EOs-module spectra

E- ~33F0, .

Proof. We have seen in section 1.3 above that E"®¢ is a periodic ring spectrum with pe-
riodicity generator A%/? of degree 36. Furthermore, the periodicity generator is in the —1
eigenspace of the action of Cy on m.(E"“%) and represents an element in m36(E~). Using
the structure of E~ as a module spectrum it defines an equivalence between Y36 EQO, and
E-. O

We have other elements of order 2 acting on E"“6, e.g. all elements of order 2 in the
group N1/Cs = Z3 x Cy. In particular, if k1 is a topological generator of Zz and if we
choose the image of ¢t € G5 as generator of Cy, then kit is such an element. We refer to
the corresponding eigenspectra of any element 7 of order 2 as Ef In particular we have
Ef = EOy, E; = %%EO,.

Theorem 12.
a) There is a cofibration sequence
hN' —
FE — Ej — Eklt

and the map between the eigenspectra is induced by id — k1 (on the level of E"C6 ).
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b) There is an equivalence

B, ~YYEO, .
Proof. a) This follows the same strategy as the proof of Theorem 10. The map (id — k1)
induces a self map of E"“ which we can easily check to induce a map B — E,_,. Let F

be the fibre of this map. As before the canonical map f : EMV' — E; becomes null after
composing it with ¢d — k; so that we obtain a map g : E"N' — F. This time we get an
identification

TeLi(2)(E"® A E) & map,,,(G2/C, E.) 2 Homes(Zs[[G2/Cel), E.)

where for a profinite Gg-set X = lim, X, with finite Go-sets X, we write Zs[[X]] for
lim, » Z3/(3")[Xa] and where Hom.;s denotes continuous homomomorphisms. The elements
t and kit act on the coset space and after linearization we can pass to the corresponding +

. . t,x
eigenspaces which we denote Hom.;; etc.

Now id — k1 induces as before a surjective map

Homl,! (Z3[[G2/Cs)], Ex) — H0m§§;’7(23[[G2/06]]’ E.)

cts

whose kernel gets identified via g with Homs(Z3[[G2/N']], E.). This finishes the proof of
(a).

b) This is an immediate consequence of Proposition 11 and the fact that the elements ¢
and kit are conjugate in N' because 2 is a unit in Zs. Hence they have equivalent eigen-
spectra. [

Remark Theorem 10 and Theorem 12 have the following discrete analogues which may, in
particular in the case of Theorem 12, help to explain the situation.

It is well known that in the case of an action a discrete infinite cyclic group C, on a spectrum
(or suspension) X one can obtain X"“~, up to homotopy as the fibre of the map X — X,
given by id — k and this fibration may be thought of as being induced from the equivariant
skeletal filtration of the real line R thought of as universal Co-space EC, with C, acting
via translations. If we consider C'y, x C5 as acting on R via translation and reflections and
if we ignore 2-primary phenomena then R is still a “reasonable model” for the universal
Co ¥ Cy space E(Cy x Cs). This time the 0 - simplices are the integral points on the
real line with isotropy isomorphic to Co and the isotropy group of a 1 - simplex is C with
C5 acting nontrivially on the 1 - simplex. By using the skeletal filtration once again the
homotopy fixed points X/(€>~*C2) can, under suitable assumptions, be obtained as the fibre
of a map as in Theorem 12.

Corollary 13. There is a cofibration sequence

EMN' L EOy — 33%E0, . O

2.3. The homotopy groups of E"¥ A V(1) and of EMN' A V().

It is not hard to see that the spectrum E™V "is no longer periodic. Nevertheless the following
1
lemma shows that the homotopy groups 7z (E"Y" A V(1)) remain 72-periodic.
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Lemma 14. The map
T (EOy AV (1)) — m (23 EOy AV (1))

which is induced by id — ky is trivial.

Proof. Theorem 9 implies that if m,(EO2 AV(1)) and 7, (E3EO5 AV (1)) are both nonzero
then
n e {0, 10,20, 36,46,56) mod 72 .

Because id — k1 commutes with the action of 3 we see that the map is trivial if n = 36, 46, 56
and that it suffices to concentrate on the case n = 0. Now the periodicity generator vg/ 2 ¢
772(EO2 A V(1)) comes from A® € mra(EO3) and therefore it suffices to show that the
composition

7T72(E02) b 7T72(236E02) g 7T72(236E02 A\ V(l)))

annihilates A3. In fact, we see from Proposition 7b and Theorem 8 that the image of
772(E3EOs) in 77 (X3¢ EOy A V(0)) is divisible by v; and becomes therefore trivial in
7T72(236E02 A V(l))) Il

The lemma allows us to analyze the ANSS
B3t~ HS(N', E,V(1)) = m_o(E"N' A V(1)) .
Its Es-term is easily calculated to be
H (N EV(1) = (Folu*! 9] ® Aa.a') ™ = Folv, %, 5] © Ao, u™ ')

where as before &« = w2z, 8 = u Sy, v;/z = u~* and the exterior generator a’ is the
contribution of the factor Zs in the centralizer C! = C3 x Oy X Zs3. Its bidegree is (1,0)
and the generator t of Cy acts on it by multiplication by —1. Therefore aszs := v~ '%a’ is a
new invariant class. We note that the elements x and y are a priori not canonically defined,
not even up to a nontrivial constant because the corresponding groups are of rank 2 over
Fy. We can and will choose them such that a and (8 detect the images of a; and (3; in

T (EMNY A V(1) for example by defining them via Greek letter constructions in H* (N, —).

Proposition 15.
a) The ANSS

Ey'= HY(N',E.V(1)) = Folvy'?, B] © Ala){1,as5} = mo (B A V(1))

splits as the direct sum of the ANSS for EO3 AV (1) and that of X3°EOs AV (1) (where the
summand indexzed by 1 corresponds to EOy AV (1) and that by azs to X3°EOy AV (1)).

b) As modules over Fg [0219/2’ O] there is an isomorphism

T (BT AV (1)) 2w (EOy AV(1){1,a35} .

Remark We emphasize that the module structure over in /2 g (at least at this point) a
purely algebraic accident induced by an algebraic module structure on the level of E>-terms.
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Proof. The fibration sequence
EMN AV (1) = EOy AV(1) — S3E0, A V(1)
induces an exact sequence
0— EE"™' AV(1)) = E.(EO, AV(1)) = E.(S*EO, AV(1)) = 0

where F, X has to be interpreted as m.(Lg(2)(F A X)). In fact, as in the proof of Theorem

12 this sequence can be identified with the sequence
0 — Homes(Zs[[Go /N, E.V (1)) — Hom’, ! (Z3[[G2/Cs]], E.V (1))

cts

— Hom™ ™ (Zs[[G2/Cg]], EL V(1)) — 0 .

cts

In cohomology (i.e. on FEs-terms of the relevant ANSS) this sequence induces short exact
sequences for all s > 0

0 — H Y (G12, E:(X*¢V (1)) — H*(N', B,V (1)) — H*(G12, E¢(V (1)) — 0
where the monomorphism converges towards the map
T o(SBEOs AV(1)) = mp o (BN AV(1))
by the geometric boundary theorem and the epimorphism converges towards the map
T (B AV(1)) = m_o(EOy AV (1)) .
by naturality. The proposition follows. [

Now we turn towards E"¥ A V(1) and consider the ANSS spectral sequence
ES' = H¥(N,E, V(1) = m_o(E"N AV(1)) .
The FE> -term of the SS is easily calculated to be
H' (N, EV(1) = (Rl ) ® Ae.'.) ™ = Folo3"/2, 6] © Ao ass,

where the new exterior generator ( is the contribution of the central factor Zs in the cen-
tralizer C. Its bidegree is (1,0) and it is fixed by the action of ¢.

Proposition 16.
a) The ANSS
E3' = H*(N, E;V(1)) = Folv; %, 8] @ A, {1, 055} = m o (B"™ A V(1))
splits as the direct sum of the ANSS of EMN' A V(1) and of SYE"N" A V(1) (where the
summand indexed by 1 corresponds to EMN' AV (1) and that by ¢ to S EMT AV(1).)

b) As modules over Fyg [ing/Z, O] there is an isomorphism

1
T (B3N AV(1) 2w (BOy AV(1){1, azs, (. Cazs} . O
Remark We emphasize that as before the module structure over vgi o/2
point) a purely algebraic accident on the level of E - terms.

is (at least at this

Proof. As before the proof will be an easy consequence of the following result (which is
analogous to Lemma 14) whose proof will, however, make use of the structure of the SS
considered in Proposition 16. [
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Lemma 17. The map

(id — k), : o (E"Y AV(1)) = (B AV(1))
is trivial.
Proof. The action of k on H*(N', E,V (1)) is trivial except perhaps on u. The generator k
of the central Zs C D is necessarily congruent 1 mod 3 (for example, one can take k = 4).
Then v € 7_sF gets multiplied with £k = 1 mod 3. Therefore the action of id — k is trivial

on the E, - term of the ANSS. This shows that the action on mx(E"™N" A V(1)) is trivial
except possibly in degrees

n=0,3,8,11,16,19, 35,38, 43, 45, 46, 48, 53, 56 mod 72

where the total degree n of the F - term of the SS is made of two copies of Fg. Degrees
35 and 43 resp. 45 and 53 can be excluded from the list because both copies have the same
filtration (= 1 resp. 3). Next the action of o and 8 and the compatibility of &£ with the
fibration sequence of Theorem 12 resp. Corollary 13 imply that degrees 38, 46, 48 and 56
can also be excluded. Similarly the action of @ and 3 show that it is enough to consider the
cases n = 0,8,16 mod 72. If id — k acts nontrivially in one of these dimensions then there
exists some integer p and there exists ¢ € {0, 1,2} such that

(’Ld _ k)*(ng+Q/2) = cvég(P*1)+Q+3)/2ﬁaa35

for some nontrivial constant c. This implies then that in the ANSS for EMY A V(1) the
element vgg(p ~Dta+3)/ 26a§a35 (which is a permanent cycle by Proposition 14 and the fact
that ¢ detects a homotopy class which comes from LK(Q)SO) does not survive and hence
that it is in the image of a differential. At this point we turn attention towards the analysis

of the SS to show that htis cannot happen.

In the ANSS converging to m.(E"¥ A V(1)) the elements «, 3 and ¢ come from the sphere
(or at least from the K (2)-local sphere). Furthermore we know from [Ra2, Table A3.4] that
the Greek letter element [g/3 € E:vt%’?ﬁi pp(BPx, BP,) is a permanent cycle in the ANSS
for SY. By [Shl, Lemma 2.4] and Corollary 19 below this element is detected in Eg B
our SS and therefore agrees with vg/ 2[3, up to a nontrivial constant. Because FE» is free over
Fo[8] we deduce that the first differential is linear with respect to vg/ ?,
So for the first differential we need to study the elements

v;/Q, a35v;/2 ifr=0,1,...,8mod 9.

Degree reasons (i.e. calculating modulo total degree 8) shows that the first possibility for a
differential is ds. The possible targets are as follows:

o ds(v3/?) is a linear combination of vS" /232, v{" /282445 and v§" Y *aBCass.

° d5(a,35v;/2) is a multiple of vérig)/Qaﬂza,gg,.
Now we use that 1, v and v3 are permanent cycles coming from V(1) (see [Sh1l, Thm 2.6]).

This implies that for » =0, 1,2 mod 9 we have

ds(vy*) =0,
in particular vég(p71)+l+3)/25a<a35 is not in the image of d5, hence it survives and the proof
of the lemma is complete. [
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3. The homotopy of L,V (1)

In this section we will calculate the homotopy of L,V (1) ~ E"G> A V(1) by comparing it to
that of EIY AV(1). The Es-term of the ANSS converging to m.LaV (1) is isomorphic to

H*(Ga, Fo[u™"]) = (H*(Sg, Fo[u™"])“>

where C5 acts via conjugation on Sy and via Frobenius on Fg (hence the action is free and the
spectral sequence of the extension So — G — C degenerates into the stated isomorphism).
Furthermore there is a canonical isomorphism

H*(S2, Fo[u™]) = (H" (S2,Fy) &, Folu*')"
where S is the 3-Sylow subgroup of Se and acts trivially, and the invariants are taken with
respect to the action of the quotient So/S2 which can be naturally identified with Fg gen-
erated by w. The generator w of Fy acts diagonally on this tensor product, via conjugation
on Sy and via multiplication with w on u, so that taking invariants amounts to taking the
eigenspace decomposition of H*(S2,Fg) with respect to the action of w (determined im-
plicitly by Theorem 18 below) and tensoring the eigenspace E,: (with eigenvalue w’) with
powers u*T8% to get invariants.
In [H, Prop. 3.4 and Thm. 4.2] H*(S3,F3) was studied via the restriction map to the
centralizers Cs,(E;) = C3 x Z3, i = 1,2, where the F; are representatives of the two
different conjugacy classes of C3’s in So. We can choose E; to be the subgroup generated
by s € G12 and then Fs can be choosen to be w™!Fjw so that the restriction map

2 2
H*(S5,F3) = [[ H*(Cs (Ei), Fa) = [ Falws] ® s, iy ai”)

i=1 i=1

becomes Fg -equivariant where the Fg -action on the right is induced from the conjugation
action of Ng,(E;)/Cs,(E;) = Cy C Fy. We note that t € G12 C Ng,(E1) projects to a
generator in Cy. We can choose the cohomology classes such that y; and z; correspond to
the generators of the cohomology of the cyclic subgroup, (; to the cohomology of the central
factor Zs3, and a;’ to that of the noncentral factor Zz on which ¢ acts by multiplication by
—1. This notation differs somewhat from that in [H] but is consistent with our notation in
section 2.

Theorem 18 [H].

a) The restriction map

2 2
H*(S5,F3) — [[ H*(Cs, (Ei), Fs) = [ [ Falws] ® Al Gy ai”)

i=1 =1

is an Fg -invariant monomorphism whose image is the F3-subalgebra generated by zi, x2,
Y1, Y2, 1+ G2, wray’ — 2202, yrar’ and yaay'.

b) In particular H*(S2,F3) is a free module over F3lys + y2] ® A((1 + C2) generated by 1, x1,
Ta, Y1, T101’ — w202’, y1a1’, Y202’ and y1x100’. O

We note that a priori the elements z;, y; and a;" are not canonical (because they depend on
the chosen decomposition of Cg,(FE1)). The theorem implies, however, that x; and y; (as
the Bockstein of x;) are distinguished (at least up to nontrivial constants).
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Next we describe the invariants of H*(Ss, Fo[u™1]) with respect to the action of Fy (which
is determined by w.(u) = wu). By using the Fg -linear monomorphism these invariants can
be identified with a subring of

(H H*(Cs, (Ey), Fo[u™'))Fo == (H*(Cs, (Ev), Fo[u™'])% = H*(Ng, (Ex), Fo[u™])

where Cy is as before generated by ¢ € G2. Its action on H*(Cs, (E1),F3) is given by

(where we have omitted the indices for simplicity). The following corollary is now straight-

forward to verify. As in section 1.4. and chapter 2 we write v];/ % for u—4k.

Corollary 19.

a) The restriction map
H* (82, Folu*]) — H* (N, Folu™"]) = (Folu™,y] © A(a, ¢, a)) "
is a monomorphism. Its target is isomorphic to
Fg[vflﬂ, Bl ® Aa, ¢, azs)

(with B = u= %y, a = u=2x, ¢ and azs = v '%a’) and its image is the Fy-subalgebra of

Fg[vfl/g,ﬁ]®A(a,C,a35) generated by v2il, Q, v%ma, 3, v%mﬁ, ¢, aass, Bass and v;/25a35.

b) In particular H*(Sy; Fo[u®]) is the free Folvyt, 3] @ A(C)-submodule of Fg[v§1/2,ﬂ] ®

Aa, ¢, ags) generated by 1, «, v;/Qa, 05/25, aass Bass, U;/2ﬂa35, and U;/2Baa35. O

The restriction map above is the comparison map at the FEs-level between the two ANSS
converging to m_4(E"S2 A V(1)) resp. m_o(E"N AV(1)). We still have to deal with the
Galois action of Cy if we want to get at LoV (1).

Now the Galois generator ¢ € Cy acts on So C DS by conjugation by S, hence it is clear
that w¢ centralizes s = ,%(1 + wS) and thus everything in the commutative subfield of
Dy generated by s. In particular w¢p commutes with the units in the maximal order of this
subfield, i.e. with Cg,(F;). Therefore the group Cg,(F1) (which is generated by Cg, (F1)
and wg) is an abelian group and w¢ acts trivially on H*(Cs,(F1),F3). The action on the
coefficient ring Fg[u®1] is given by (we).(cu®) = ¢(c)wFu” if ¢ € Fy.

The monomorphism of Theorem 18 (with coefficients extended to Fo[u™!]) is actually linear
even with respect to g x Cy where the Galois generator ¢ acts on the target on the level
of groups by conjugation by S while it acts on Fg[u®!] by Frobenius again. The Fg x C-
invariants in the target of this monomorphism can therefore be identified with

2
* FSxC ~ *
([T H" (Csa (), Folu™)™ % = (H* (Cis,y (B2), Fo ™)) %) =7 .
i=1
The preceding two paragraphs show that we can modify (if necessary) the elements vé/ 2,
B, a, ¢ and ags of Corollary 19 by scalars in Fg so that they become invariant with respect
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to the action of w¢. After having done this H*(Ga,Fg[u™!]) can be identified with the

[F3-subalgebra of Fg [v;/ 2, Bl ® Ala, (, ass) generated by elements with the same name as in

Corollary 19a and H*(Ga, Fo[u®1]) is a free module over Fs[v3?, 3] ® A(¢) on elements with
the same name as in Corollary 19b.

Now we are ready to compare the differentials in the two ANSS converging to LoV (1) =~
E;LGz AV (1) resp. EBN AV(1). We refer to them as the source SS resp. the target SS.

For the target SS we deduce from section 2.3 that vgt o/ 2, B, a, ¢ and agzs are permanent

cycles and that the differentials are linear with respect to the algebra
R = ]Fg[Uzig/Z, ﬁ] ® A(O[, C, (L35) .

To better compare with the spectral sequence of the source we should consider this SS as
one of modules over S := g [vfg, ] ® A(a, ¢, as5). In fact, the Ea-term of the target SS is

a free module over S on generators v§/2, k=0,...,17.

We consider the Es-term of the ANSS of the source as a free module over
P = Fg[’l);g, ] ® A(C)

(note that here we have taken the prime field) on the following generators (where [ =

0,1,...,8):
1 14172 1 +1/2
® Uy, Uy ﬂa ’Uzﬂa?ﬁa Uy ﬂ0,35
1 +1/2 l +1/2
® V30, Vs o, Vyuazs, Vg Baass

We have seen in section 1 and 2 that the first differential for the target SS is ds. It is
determined by
0 if k=0,1,2mod 9

g (o2 :{
5(v2") ckv£k73)/2a62 ifk=3,...,8mod9.

This implies that the first differential of the source SS is also ds. Furthermore by the
discussion above the nontrivial constants ¢, have to be in F3 and ds in the source SS is
given by

d5(v12) _ { 0 - %fl =0,1,5mod 9
+u, af? if1=2,3,4,6,7,8 mod 9
ds(vl;lﬂm - { ?I:vélaﬂ?’ ii ; ? ;1: 2,1(?,07(?89m0d 9
s ok fass) = { 0 - ?fl =0,1,5mod 9
+v, aBazs ifl=2,3,4,6,7,8 mod 9
0 ifl=0,4,5mod 9

de (12 _
s(vy " fazs) tolafBazs  if1=1,2,3,6,7,8 mod 9
ds(vha) = d5(vé+1/2a) =0 ifl{=0,...,8mod9

ds(vhaass) (vé+1/2ﬁaa35) =0 ifl=0,...,8mod9.
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This yields the following Fg-term (which is already presented in a form which is adapted to
the discussion of the next differential):

Eg = P{vi}i—0,1,5 ® P{vha}ti—s s @ P/(B*){vhati=o,1,2,5,6,7

@ P{os™ 2812045 © P{os™ P} isrs ® P/(82) (vt Paticon 2,456

@© P{vBass}i—o1,5 ® P{vhaass}i—348 ® P/(6%){vhaass}i=o,1,2,56,7

& P{Ué+1/2ﬁa35}l:0,4,5 D P{véﬂmﬁaa%}l::&,?,s D P/(ﬂ2){’Ulgﬂ/zﬂfm%}5:0,1,2,4,5,6
We know that the next differential in the target SS is dg and is determined by

ok 0 ifk=0,1,2,34,5mod 9
o(vy oz):{ ) k/2-3 55 e
€Uy B> ifk=6,7,8 mod 9

for suitable nontrivial constants ¢j.. Again by comparing with the spectral sequence of the

target we deduce that the next differential in the source SS is also dy, the constants have to
be in F3 and dg in the source SS is given by

dg(véa):{o B iH1=0,1,2,5,6,7mod 9
+v, °3°  if1=3,4,8 mod 9
1 0 if1=0,1,2,4,5,6 mod 9
do(0" %) = { +ob 3265 if 1 =3,7,8 mod 9
dg(vlzaa35) _ { 0 Ly ?fl50,1,2,5,6,7mod9
+uy?Fags  if 1 =3,4,8 mod 9
0 if1=0,1,2,4,5,6 mod 9

do(v57Y2 304 :{
o(vy " Baazs) ivé73+1/256a35 ifl=3,7,8mod 9

and we obtain the following Fig-term
B = P/(8°){vihi=0,1,5 ® P/(8*){vha}izo,1,255.6.7
& P/(BY{05 " Blicoas @ P/(B) {05 abicor0a56
@ P/(BY{vhBass}ti—0,15 @ P/(B%){vhaass}i=01,2,5.6,7
® P/(55){Ué+1/25035}1:0,4,5 S P/(ﬁQ){UéH/zﬂaa%}1:0,1,2,4,5,6 .

At this point there is no more room for further nontrivial differentials and we arrive at the
desired result below in which the names of the generators are chosen so as to describe their
image in the Ep-term of the ANSS for m.(E3N A V(1)).

Theorem 20. As a module over P = Fa[vy®, 5] @ A(C) there is an isomorphism

mLaV (1) = P/(8%){vhhimo,1,5 ® P/(B°){vhati—0,1,2,56,7
D P/(ﬁ4){vlz+1/25}l:0,4,5 D P/(ﬁz){Ul2+1/20é}l:0,1,2,4,5,6
@ P/(B)vhBass}i—ons @ P/(B*){vhaass}i—o1,2,56,7
@ P/(8%){vs™?Bazs}ico.as © P/(B2){vs " Baass}izo 10456 - O

We finish by observing that this matches with Shimomura’s result (if his parameter is taken
to be k = 1!).
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