A theory of concordance for non-spherical 3-knots

Abstract : Consider a closed connected oriented 3-manifold embedded in the $5$-sphere, which is called a $3$-{it knot/} in this paper. For two such knots, we say that their Seifert forms are {it spin concordant}, if they are algebraically concordant with respect to a diffeomorphism between the 3-manifolds which preserves their spin structures. Then we show that two simple fibered 3-knots are geometrically concordant if and only if they have spin concordant Seifert forms, provided that they have torsion free first homology groups. Some related results are also obtained.
Type de document :
Pré-publication, Document de travail
2001
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00129670
Contributeur : Véronique Bertrand <>
Soumis le : jeudi 8 février 2007 - 14:28:13
Dernière modification le : jeudi 8 février 2007 - 17:07:27
Document(s) archivé(s) le : mercredi 7 avril 2010 - 02:40:28

Fichier

01014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00129670, version 1

Collections

Citation

Vincent Blanloeil, Osamu Saeki. A theory of concordance for non-spherical 3-knots. 2001. <hal-00129670>

Partager

Métriques

Consultations de
la notice

175

Téléchargements du document

84