
HAL Id: hal-00129278
https://hal.science/hal-00129278

Preprint submitted on 6 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the heights of algebraic points on curves over
number fields

C. Soule

To cite this version:

C. Soule. On the heights of algebraic points on curves over number fields. 2007. �hal-00129278�

https://hal.science/hal-00129278
https://hal.archives-ouvertes.fr


ha
l-

00
12

92
78

, v
er

si
on

 1
 -

 6
 F

eb
 2

00
7

On the heights of algebraic points on curves over

number fields

Christophe Soulé
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Let X be a semi-stable regular curve over the spectrum S of the integers in
a number field F , and L̄ = (L, h) an hermitian line bundle on X , i.e. L is an
algebraic line bundle on X and h is a smooth hermitian metric (invariant by
complex conjugation) on the restriction of L to the set X(C) of complex points
of X . In this paper we are interested in the height hL̄(D) of irreducible divisors
D on X which are flat over S, i.e. the arithmetic degree of the restriction of L̄
to D.

First we assume that the degree deg(L) of L on the generic fiber XF is
positive and we denote by L̄ · L̄ ∈ R the self-intersection of the first arithmetic
Chern class of L̄. Define

e(L̄, d) = inf
deg(D)=d

hL̄(D)

d
.

Our first result (Theorem 2) is that

lim
d

inf e(L̄, d) ≥
L̄ · L̄

2 deg(L)
.

This is a generalization of an inequality of S. Zhang ([13] , Th. 6.3).

Next, when XF has genus at least two and ω̄ denotes the relative dualizing
sheaf of X over S with its Arakelov metric [1], we obtain in Theorem 3 explicit
lower bounds for e(ω̄, d).

We prove also some upper bounds. Assume that deg(L) > 0 and that
deg(L|E) ≥ 0 for every vertical irreducible divisor E on X . For any integer
d0 > 0 we define

e′(L̄, d0) = sup
D0

inf
D⋔D0

hL̄(D)

deg(D)
,

where D0 runs over all irreducible horizontal divisors of degree d0, and D runs
over all such divisors which meet D0 properly. We prove in Theorem 4 that

lim
d0

sup e′(L̄, d0) ≤
L̄ · L̄

2 deg(L)
,
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and, when XF has genus at least two, we give in Theorem 5 explicit upper
bounds for e′(ω̄, d0).

The main tool in the proof of these inequalities is the lower bounds for succes-
sive minima of the lattice H1(X, M−1) with its L2-metric which we obtained in
previous papers [9] [10] [11]. From these lower bounds we deduce upper bounds
for the successive minima of H0(X, M ⊗ ω) by using a transference theorem
relating the successive minima of a lattice with those of its dual (Theorem 1).

1 Duality and successive minima :

1.1

Let F be a number field, OF its ring of integers and S = Spec(OF ). Consider an
hermitian vector bundle Ē = (E, h) on S, i.e. E is a finitely generated projective
OF -module and, for every complex embedding σ : F → C, the corresponding
extension Eσ = E ⊗

OF

C of E from OF to C is equipped with an hermitian scalar

product hσ. Furthermore, we assume that h = (hσ) is invariant under complex
conjugation.

We are interested in (the logarithm of) the successive minima of Ē. Namely,
for any positive integer k ≤ N , where N is the rank of E, we let µk(Ē) be the
infimum of the set of real numbers µ such that there exist k vectors e1, . . . , ek

in E which are linearly independent in E ⊗F and such that, for every complex
embedding σ : F → C and for all i = 1, . . . , k,

‖ei‖σ ≤ exp(µ) ,

where ‖ ·‖σ is the norm defined by hσ. We shall compare the successive minima
of Ē with those of its dual Ē∗.

Let r1 (resp. r2) be the number of real (resp. complex) places of F , r = [F :
Q] the degree of F over Q, and ∆F its absolute discriminant. We define

C(N, F ) =
1

r
log |∆F | +

3

2
log(N) +

5

2
log(r) −

r2

r
log(π) . (1)

Theorem 1. For every k ≤ N the following inequalities hold:

0 ≤ µk(Ē) + µN+1−k(Ē∗) ≤ C(N, F ) .

1.2

To prove the first inequality in Theorem 1 we use a result of Borek [3] which
compares the successive minima and the slopes of hermitian vector bundles over
S. Namely, according to [3], Th. 1, if σk(Ē) is the k-th slope of Ē, the following
inequality holds :

0 ≤ µk(Ē) + σk(Ē) .
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Similarly

0 ≤ µN+1−k(Ē∗) + σN+1−k(Ē∗) .

On the other hand, we know that

σk(Ē) + σN+1−k(Ē∗) = 0

(see [6], 5.15(2)). So, by adding up, we get

0 ≤ µk(Ē) + µN+1−k(Ē∗) .

1.3

The second inequality in Theorem 1 will be proved by reducing it to the case
F = Q. For every positive integer k ≤ Nr let λk be the infimum of the set of real
numbers λ such that there exist k vectors e1, . . . , ek ∈ E which are Q-linearly
independent in E ⊗

Z
Q and such that, for every σ ∈ Σ and every i = 1, . . . , k,

‖ei‖σ ≤ exp(λ) .

The following lemma is used in [12].

Lemma 1. For every positive integer k ≤ N , the following inequality holds :

µk+1(Ē) ≤ λkr+1 .

Proof. Let e1, . . . , ekr+1 ∈ E be vectors which are Q-linearly independent, and
V (resp. W ) the F -vector space (resp. the Q-vector space) spanned by these
vectors. Since W ⊂ V and dimQ(V ) = r dimF (V ) we get

r dimF (V ) ≥ kr + 1 ,

hence dimF (V ) ≥ k + 1. The lemma follows from this inequality and the defi-
nition of successive minima.

1.4

Let E∨ = HomZ(E, Z) and ω = HomZ(OF , Z) . The morphism

α : E∗ ⊗OF
ω → E∨

mapping u⊗T to u◦T is an isomorphism of OF -modules. If Tr ∈ ω is the trace
morphism, we endow ω with the hermitian metric such that |Tr|σ = 1 (resp.
|Tr|σ = 2) if σ = σ̄ (resp. σ 6= σ̄). For every σ ∈ Σ, the morphism

E∨
σ → E∗

σ
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induced by α is an isometry ([7], p. 354). For any positive integer k ≤ Nr, let
λ∨

k be the infimum of the set of real numbers λ such that there exist k vectors
e1, . . . , ek ∈ E∨ which are linearly independent over Q and such that, for every
i = 1, . . . , k, ∑

σ∈Σ

‖ei‖σ ≤ exp(λ) .

According to [2] Theorem 2.1 and section 3, we have, for k = 1, . . . , Nr,

λk + λ∨
Nr+1−k ≤

3

2
log(Nr) . (2)

1.5

Since ω is invertible we have

E∗ ≃ E∨ ⊗ ω−1

and, for any v ∈ ω−1, v 6= 0,

µk(Ē∗) ≤ µk(Ē∨) + sup
σ∈Σ

log ‖v‖σ . (3)

By Minkowski theorem we can choose v such that, for every σ ∈ Σ,

r log ‖v‖σ ≤ r log(2) + log covol(ω−1) − log vol(B) ,

where vol(B) is the volume of the unit ball in the real vector space ω−1
R and

covol(ω−1) is the covolume of the lattice ω−1. We have

vol(B) = 2r1 πr2

and, according to [7] p. 355,

log covol(ω−1) = log |∆F | − 2r2 log(2) .

So we can choose v ∈ ω−1, v 6= 0, such that

sup
σ∈Σ

log ‖v‖σ ≤
1

r
log |∆F | −

r2

r
log(π) . (4)

1.6

¿From Lemma 1 and the fact that

∑

σ∈Σ

‖x‖σ ≤ r sup
σ

‖x‖σ

we get, for every k ≤ N ,

µk+1(Ē
∨) ≤ λ∨

kr+1 + log(r) . (5)
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Therefore, using (3) and (4), we get

µk(Ē) + µN+1−k(Ē∗)

≤ λ(k−1)r+1 + µN+1−k(Ē∨) +
1

r
log |∆F | −

r2

r
log(π)

≤ λk+1−r + λ∨
(N−k)r+1 + log(r) +

1

r
log |∆F | −

r2

r
log(π) .

Since, by (2),

λk+1−r + λ∨
(N−k)r+1 ≤ λkr + λ∨

Nr−kr+1 ≤
3

2
log(Nr) ,

Theorem 1 follows.

2 Lower bounds for the height of irreducible di-

visors

2.1

Let S = Spec(OF ) be as above. Consider a semi-stable curve X over
S such that X is regular and its generic fiber XF is geometrically irreducible of
genus g. Let hX be an hermitian metric, invariant under complex conjugation,
on the variety X(C) of complex points of X . Let ω0 be the associated Kähler
form, defined by the formula

ω0 =
i

2π
hX

(
∂

∂z
,

∂

∂z

)
dz dz̄

if z is any local holomorphic coordinate on X(C). Let L̄ = (L, h) be an hermitian
line bundle over X (with h invariant under complex conjugation). If LC is the
restriction of L to X(C), the vector space H0(X(C), LC) of holomorphic sections
of LC on X(C) is equipped with the sup norm

‖s‖sup = sup
x∈X(C)

‖s(x)‖ ,

where ‖ · ‖ is the norm defined by h, and with the L2-norm

‖s‖2
L2 = sup

σ

∫

Xσ

‖s(x)‖2 ω0 ,

where σ runs over all complex embeddings of F and Xσ = X ⊗
OF

C is the

corresponding complex variety. We let

A(L̄C) = sup
s

log(‖s‖sup/‖s‖L2) ,

where s runs over all sections of LC.
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Consider the relative dualizing sheaf ω̄X/S of X over S, equipped with the
metric dual to hX , and let M̄ = L̄ ⊗ ω̄∗

X/S . We endow the OF -module

H1 = H1(X, M−1)

with the L2-metric and we denote by µk(H1) its successive minima, k = 1, . . . , N =
dimF H1(XF , M−1).

Let now D be an irreducible divisor on X , flat over S, of degree d on XF .
We are interested in the Faltings height hL̄(D) of D with respect to L̄. Recall
[4] that hL̄(D) ∈ R is the arithmetic degree of the restriction of L̄ to D. Let
t = dimF H0(XF , L(−D)) and assume that N > t.

Proposition 1. The following inequality holds :

hL̄(D)

dr
≥ µN−t(H

1) − A(L̄C) − C(N, F ) .

Proof. To prove Proposition 1, let s ∈ H0(X, L) be a section of L which does
not belong to the vector space H0(XF , L(−D)). The restriction of s to D(C)
does not vanish hence, since D is irreducible, for any point P in D(C) we have
s(P ) 6= 0. The height of D can be computed using s ([4] (3.2.2))

hL̄(D) = hL̄(div(s|D)) −
∑

α

log ‖s(Pα)‖ ≥ −
∑

α

log ‖s(Pα)‖ ,

where D(C) =
∑
α

Pα. Next we have

∑

α

log ‖s(Pα)‖ ≤ dr log ‖s‖sup ≤ dr(log ‖s‖L2 + A(L̄C)) .

Let Ē = (H0(X, L), hL2). If t is the rank of H0(X, L(−D)) we can choose s
such that

log ‖s‖L2 ≤ µt+1(Ē) . (6)

By Theorem 1
µt+1(Ē) ≤ −µN−t(Ē

∗) + C(N, F ) , (7)

and, by Serre duality, Ē∗ = H1(X, M−1) with the L2-metric. Therefore Propo-
sition 1 follows from (6) and (7).

2.2

We keep the hypotheses of Proposition 1 and we denote by M̄ ·M̄ ∈ R the self-

intersection of the first arithmetic Chern class ĉ1(M̄) ∈ ĈH
1
(X). Let δ = deg(L)

be the degree of L on XF and m = deg(M) = δ − 2g + 2.
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Proposition 2. Assume that δ is even and that

2g + 1 ≤ d ≤ δ ≤ 2d − 2 .

Then
hL̄(D)

dr
≥

M̄ · M̄

2mr
− A(L̄C) − C(N, F ) − log(δ(δ − g + 1)) .

Proof. According to [11] Th. 2 and [11] 2.3.1, the inequality

µk(Ē∗) ≥
M̄ · M̄

2mr
− log(δ(δ − g + 1)) (8)

holds

k ≥
m

2
+ g =

δ

2
+ 1 .

Consider the exact sequence of cohomology groups

0 → H0(XF , L(−D)) → H0(XF , L) → H0(DF , L|D)

→ H1(XF , L(−D)) → H1(XF , L) . (9)

We first assume that δ > d + 2g − 2 i.e.

deg(L(−D)) > 2g − 2 .

This implies H1(XF , L(−D)) = 0 and

N − t = dimF H0(DF , L|D) = d .

Since d ≥ δ
2 + 1, the proposition follows from Proposition 1 and (8).

Next, we assume that

d ≤ δ ≤ d + 2g − 2 ,

and we apply Clifford’s theorem to the Serre dual of L(−D) on XF . It is special
unless H0(XF , L(−D)) = 0, in which case t = 0 hence

N − t = δ − g + 1 ≥
δ

2
+ 1

since δ ≥ 2g, and we can conclude as above.

When H0(XF , L(−D)) does not vanish, Clifford’s theorem says that

dimF H1(XF , L(−D)) − 1 ≤
1

2
deg(ωX/S ⊗ L−1(D)) = g − 1 −

δ

2
+

d

2
.

¿From (9) it follows that

N − t ≥ d − dim H1(XF , L(−D))
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and therefore

N − t ≥
d

2
+

δ

2
− g .

Since d ≥ 2g + 1 this implies

N − t ≥
δ

2
+

1

2

and, since δ is even, we get

N − t ≥
δ

2
+ 1

and the proposition follows from Proposition 1 and (8).

2.3

For any hermitian line bundle L̄ on X , and any integer d, we define

e(L̄, d) = inf
deg(D)=d

hL̄(D)

d

and
e(L̄,∞) = lim

d
inf e(L̄, d) .

Theorem 2. If deg(L) is positive we have :

e(L̄,∞) ≥
L̄ · L̄

2 deg(L)
.

Proof. By definition

e(L̄,∞) = lim
n→∞

inf
deg(D)=d≥n

hL̄(D)

d
.

Assume that n ≥ 2g + 1 and n ≥ deg(L) + 3 . Then, for any d ≥ n, there exists
an even integer k such that, if δ = k deg(L), the inequalities

2g + 1 ≤ d ≤ δ ≤ 2d − 2

hold. Fix a Kähler metric hX on X(C) (invariant by complex conjugation) and
let

M̄ = L̄⊗k ⊗ ω̄∗ .

From Proposition 2 applied to L̄⊗k we get, for any irreducible horizontal divisor
D of degree d,

k
hL̄(D)

d r
≥

M̄ · M̄

2 deg(M) r
− A(L̄⊗k

C ) − C(N, F ) − log(δ(δ − g + 1)) . (10)
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When n tends to infinity, the same is true for d and k. Therefore

lim
n→∞

log(δ(δ − g + 1))

k
= 0 . (11)

The rank N of H0(XF , L⊗k) is δ − g + 1 so, by (1), we have

lim
n→∞

C(N, F )

k
= 0 . (12)

According to a result of Gromov ([8] Lemma 30) the quantity exp A(L̄⊗k
C ) is

bounded from above by a polynomial in k. Therefore

lim
n→∞

A(L̄⊗k
C )

k
= 0 . (13)

Finally
deg(M) = k deg(L) − 2g + 2

and
M̄ · M̄ = (k L̄ − ω̄)2 ,

therefore

lim
n→∞

M̄ · M̄

k deg(M)
=

L̄ · L̄

deg(L)
. (14)

The theorem follows from (10)–(14).

2.4

In [13] S. Zhang defines

eL̄ = inf
D

hL̄(D)

r deg(D)

and

e′L̄ = lim
D

inf
hL̄(D)

r deg(D)
,

where D runs over all irreducible horizontal divisors on X .

Lemma 2. When deg(L) is positive we have

e(L̄,∞) = r e′L̄ .

Proof. By definition

e(L̄,∞) = lim
n

inf
deg(D)≥n

hL̄(D)

deg(D)
. (15)

For any positive integer n let X(n) be the set of horizontal irreducible divisors
D such that

deg(D) < n and hL̄(D) ≤ (e(L̄,∞) + 1)n .

9



¿From [4], Cor. 3.2.5, we know that X(n) is finite and we get

r e′(L̄) = lim
n

inf
D/∈X(n)

hL̄(D)

deg(D)
. (16)

The complement of X(n) consists of those D such that either deg(D) ≥ n or
deg(D) ≤ n and hL̄(D) > (e(L̄,∞) + 1)n. In the second case we have

hL̄(D)

deg(D)
> e(L̄,∞) + 1 .

Therefore (16) and (17) imply

r e′(L̄) = Inf(e(L̄,∞), e(L̄,∞) + 1) = e(L̄,∞) .

q.e.d.

When the first Chern form of L̄C is semi-positive and deg(L|E) ≥ 0 for any
vertical irreducible divisor E on X , Theorem 6.3 in [13] states that

r e′L̄ ≥
L̄ · L̄

2 deg(L)
.

Therefore Theorem 2 is not new in that case.

2.5

We come back to the situation of § 2.1 and 2.2, and we fix an integer k ≥ 1.
Furthermore we assume that the first Chern form of M̄C is positive and that
deg(M|E) ≥ 0 for any vertical irreducible divisor E on X . If k > 1 define

D(m, k) = (m + g)

Inf(k−1,g)∑

α=0

(
m + g − k − α

k − 1 − α

) (
g
α

)
,

and let D(m, 1) = 1.

Proposition 3. Assume that δ ≥ d ≥ k and that either m > 2k > 2 or

m > k = 1. Then the following inequality holds :

hL̄(D)

dr
≥

k

m2 r
M̄2 −

2k

m
eM̄ + eM̄ − A(L̄C) − C(N, F ) −

log D(m, k)

m2
− 1 .

Proof. According to [10] Th. 4 i) (resp. [9] Th. 2) we have

1 + µk(H1) ≥
k

m2 r
M̄ · M̄ −

2k

m
eM̄ + eM̄ −

log D(m, k)

m2
(17)
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as soon as m > 2k > 2 1(resp. k = 1 and m > 1). If we assume that δ > d+2g−2
we have H1(XF , L(−D)) = 0 hence N − t = d ≥ k. Therefore

µN−t(H
1) ≥ µk(H1)

and the proposition follows from (18) and Proposition 1. When d ≤ δ ≤ d+2g−2
we consider the Serre dual of L(−D) over XF . It is special unless t = 0, in which
case

N − t = δ − g + 1 = m + g − 1 ≥ k .

When t 6= 0, Clifford’s theorem says that

dimH1(XF , L(−D)) − 1 ≤
1

2
deg(ω ⊗ L−1(D)) = g − 1 −

δ

2
+

d

2
,

and

N − t ≥
δ

2
+

d

2
− g .

But
δ

2
− g =

m

2
− 1 ≥ k − 1 ,

hence

N − t ≥ k +
d

2
− 1

and N − t ≥ k since d ≥ 1.

Again, the proposition follows from (18) and Proposition 1.

2.6

We now assume that g ≥ 2 and we let ω̄ be the relative dualizing sheaf ωX/S of
X over S, equipped with its Arakelov metric [1]. As in 2.3 above we consider

e(ω̄, d) = inf
deg(D)=d

hω̄(D)

d
. (18)

Theorem 3. There is a constant C = C(g, r) such that the following inequalities

hold:

e(ω̄, d) ≥
ω̄ · ω̄

4g(g − 1)

dg + g − 1

d + 2g − 2
−

g − 1

d + 2g − 2
log |∆F | − C

log(d)

d
, (19)

and, if d ≥ 2g + 1,

e(ω̄, d) ≥
ω̄ · ω̄

4(g − 1)

d − 2g + 1

d − g
−

g − 1

d − g
log |∆F | − C

log(d)

d
. (20)

1Theorem 4, i) in [10] assumes that g ≥ 2 and the metric on LC is admissible in the sense
of Arakelov [1], but these extra hypotheses are not used in the proof of that statement.
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Proof. To prove (19) we apply Proposition 3 to a power L̄ = ω̄⊗n of ω̄. We take
k = d. When d = 1, (19) follows from the inequalities

e(ω̄, 1) ≥ r eω̄

and

r eω̄ ≥
ω̄ · ω̄

4g(g − 1)
(21)

(cf. [5]). When d > 1, the condition m > 2k in Proposition 3 becomes

(n − 1)(g − 1) > d ,

i.e.

n >
d

g − 1
+ 1 .

We take

n =

[
d

g − 1

]
+ 2 .

According to Proposition 3, for any irreducible horizontal divisor D of degree
d,

hL̄(D)

d
≥ k

ω̄ · ω̄

4(g − 1)2
+ r eω̄

(
n − 1 −

k

g − 1

)

− r

(
A(L̄C) + C(N, F ) +

log D(m, k)

m2
+ 1

)
.

Using the lower bound (21) for eω̄ and the fact that

hL̄(D) = n hω̄(D)

we get

e(ω̄, d) ≥
ω̄ · ω̄

4g(g − 1)

k + n − 1

n

−
r

n

(
A(L̄C) + C(N, F ) +

log D(m, k)

m2
+ 1

)
. (22)

Since

n ≤ 2 +
d

g − 1

we get
k + n − 1

n
≥

dg + g − 1

d + 2g − 2
. (23)

Gromov’s estimate for A(ω̄⊗n) implies

A(ω⊗n)

n
= O

(
log(n)

n

)
= O

(
log(d)

d

)
. (24)
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From (1) we deduce that

r

n
C(N, F ) =

1

n
log |∆F | + O

(
log(n)

n

)
. (25)

Finally, according to [10] § 3.8,

log D(m, k) = O(m log(m)) = O(d log(d)) . (26)

The inequality (19) follows from (22)–(26).

To prove (20) we apply Proposition 2 to a power L̄ = ω̄⊗n of ω̄. We get

e(ω̄, d) ≥
n − 1

n

ω̄ · ω̄

4(g − 1)
−

r

n
(A(L̄C) + C(N, F ) + log(δ(δ − g + 1))) (27)

as soon as
2g + 1 ≤ d ≤ (2g − 2)n ≤ 2d − 2 .

We choose

n =

[
d − 1

g − 1

]
≥

d − g

g − 1

in which case
n − 1

n
≥

d − 2g + 1

d − g
.

The second summand of the right-hand side of (27) is estimated as above. This
proves (20).

3 Upper bounds for the height of irreducible di-

visors

3.1

Let X and hX be as in § 2.1. Let L̄ and M̄ be two hermitian line bundles on
X . We assume that deg(L) > 0 and deg(L|E) ≥ 0 for every vertical irreducible
divisor E on X . Let D0 be an irreducible horizontal divisor,

N = dimF H0(XF , M)

and
t = dimF H0(XF , M(−D0)) .

We assume that N > t. Denote by µk(H1), k = 1, . . . , N , the successive minima
of H1 = H1(X, ωX/S ⊗M−1) equipped with its L2-metric. We write L̄ · M̄ ∈ R

for the arithmetic intersection of ĉ1(L̄) with ĉ1(M̄), and we write D ⋔ D0 to
mean that D is an irreducible horizontal divisor meeting D0 properly.
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Proposition 4. The following inequality holds :

inf
D⋔D0

hL̄(D)

r deg(D)
≤

L̄ · M̄

r deg(M)
− µN−t(H

1)
deg(L)

deg(M)

+
deg(L)

deg(M)
(A(M̄C) + C(N, F )) .

Proof. Let Ē = (H0(X, M), hL2) and choose a section s ∈ H0(X, M) such that
s /∈ H0(XF , M(−D0)) and

log ‖s‖L2 ≤ µt+1(Ē) .

If div(s) is the divisor of s we get ([4] (3.2.2))

L̄ · M̄ = hL̄(div(s)) −

∫

X(C)

log ‖s‖ c1(L̄C)

≥ hL̄(div(s)) − r deg(L)(µt+1(Ē) + A(M̄C)) . (28)

We can write
div(s) =

∑

α

Dα + V

where each Dα is irreducible and flat over S, and V is effective and vertical on
X . Therefore, by our assumption on L, we have

hL̄(div(s)) ≥
∑

α

hL̄(Dα)

and
deg(div(s)) =

∑

α

deg(Dα) .

Therefore, since each Dα is transverse to D0,

hL̄(div(s))

deg(M)
≥ inf

α

hL̄(Dα)

deg(Dα)
≥ inf

D⋔D0

hL̄(D)

deg(D)
. (29)

From Theorem 1 we get

µt+1(Ē) ≤ −µN−t(H
1) + C(N, F ) (30)

and the proposition follows from (28), (29) and (30).

3.2

We keep the notation of the previous section and we let

K̄ = M̄ ⊗ ω̄∗
X/S , m = deg(M) and d0 = deg(D0) .
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Proposition 5. Assume that m is even and

2g + 1 ≤ d0 ≤ m ≤ 2d0 − 2 .

The following inequality holds :

inf
D⋔D0

hL̄(D)

r deg(D)
≤

L̄ · M̄

rm
−

K̄ · K̄

2r deg(K)

deg(L)

m

+
deg(L)

m
(A(M̄C) + C(N, F ) + log(m(m − g + 1))) .

Proof. The number µN−t(H
1) can be estimated from below using [11] exactly

as in the proof of Proposition 2. Therefore the proposition follows from Propo-
sition 4.

3.3

Let L̄ be an hermitian line bundle on X such that deg(L) > 0 and deg(L|E) ≥ 0
for any irreducible vertical divisor E on X . For any integer d0 ≥ 1 consider

e′(L̄, d0) = sup
D0

inf
D⋔D0

hL̄(D)

deg(D)
,

where D0 runs over all irreducible horizontal divisors of degree d0. Let

e′(L̄,∞) = lim
d0

sup e′(L̄, d0) .

Theorem 4. The following inequality holds :

e′(L̄,∞) ≤
L̄ · L̄

2 deg(L)
.

Proof. As in the proof of Theorem 2, when the integer n is big enough, for any
d0 ≥ n we can choose an even power M̄ of L̄ such that, if m = deg(M), the
following inequalities hold :

2g + 1 ≤ d0 ≤ m ≤ 2d0 − 2 .

Then we apply Proposition 5 to L̄ and M̄ . If K̄ = M̄ ⊗ ω̄∗
X/S we get

lim
n→∞

K̄ · K̄

deg(K)

deg(L)

m
=

L̄ · L̄

deg(L)
(31)

and

lim
n→∞

L̄ · M̄

m
=

L̄ · L̄

deg(L)
. (32)

15



By the same estimates as in the proof of Theorem 2 we get

lim
n→∞

(A(M̄C) + C(N, F ) + log(m(m − g + 1)))/m = 0 . (33)

The theorem follows from (31), (32), (33) and Proposition 5.

Remark. For any d0 we have

r eL̄ ≤ e′(L̄, d0) .

Therefore Theorem 3 implies

r eL̄ ≤
L̄ · L̄

2 deg(L)
.

But it does not follow from [13], Th. 6.3.

3.4

We come back to the notation of 3.2 and we let

k = deg(K) = m − 2g + 2 .

We fix an integer h ≥ 1. We assume that the first Chern form of K̄C is positive
and that deg(K|E) ≥ 0 for every irreducible vertical divisor E on X .

Proposition 6. Assume that m ≥ d0 ≥ h and that either k > 2h > 2 or

k > h = 1. Then the following inequality :

inf
D⋔D0

hL̄(D)

r deg(D)
≤

L̄ · M̄

rm
−

deg(L)

m

(
h

k2r
K̄2 −

2h

k
eK̄ + eK̄

)
(34)

+
deg(L)

m

(
A(M̄C) + C(N, F ) +

log D(k, h)

h2
+ 1

)
.

Proof. This inequality follows from Proposition 4 by bounding µN−t(H
1) from

below in the same way as in the proof of Proposition 3.

3.5

Assume now that g ≥ 2 and let ω̄ be ωX/S with its Arakelov metric. Recall that

e′(ω̄, d0) = sup
deg(D0)=d0

inf
D⋔D0

hL̄(D)

deg(D)
.

Theorem 5. There exists a constant C = C(g, r) such that the following

inequalities hold :

e′(ω̄, d0) ≤
ω̄ · ω̄

4(g − 1)
+

2g − 1

4g(d0 + 2g − 2)
ω̄ · ω̄ +

g − 1

d0 + g − 1
log |∆F | + C

log(d0)

d0
, (35)
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and, when d0 ≥ 2g + 1,

e′(ω̄, d0) ≤
ω̄ · ω̄

4(g − 1)
+

ω̄ · ω̄

4(d0 − g)
+

g − 1

d0 − g
log |∆F | + C

log(d0)

d0
. (36)

Proof. To prove (35) we apply Proposition 6 with L̄ = ω̄, M̄ = ω̄⊗n and h = d0.
When d0 = 1 < k we have n(g − 1) ≥ g. When d0 > 1 and

k = n(2g − 2) − 2g + 2 > 2 d0

we get n(g − 1) > d0 + g − 1.

In both cases we choose

n = 2 +

[
d0

g − 1

]
.

The right hand side of (34) (Proposition 6) becomes X1 + X2, with

X1 =
n ω̄ · ω̄

rn(2g − 2)
−

1

n

(
d0

ω̄ · ω̄

(2g − 2)2r
+

(
1 −

2 d0

(n − 1)(2g − 2)

)
(n − 1) eω̄

)

and

X2 =
deg(L)

m

(
A(M̄C) + C(N, F ) +

log D(k, h)

h2
+ 1

)
.

As in the proof of Theorem 3 we get

X2 ≤ C
log(d0)

d0
+

1

nr
log |∆F |

and
1

n
≤

g − 1

d0 + g − 1
.

On the other hand, since

reω̄ ≥
ω̄ · ω̄

4g(g − 1)
,

we get

r X1 ≤ ω̄ · ω̄

(
1

2g − 2
−

d0

n(2g − 2)2
−

n − 1

4g(g − 1)n
+

d0

4ng(g − 1)2

)

=
ω̄ · ω̄

4g(g − 1)

(
2g − 1 −

d0 − 1

n

)
.

Since n ≤ 2 + d0

g−1 we get

r X1 ≤
ω̄ · ω̄

4g(g − 1)

(
2g − 1 −

(d0 − 1)(g − 1)

2g − 2 + d0

)

=
ω̄ · ω̄

4(g − 1)
+

2g − 1

4g(d0 + 2g − 2)
ω̄ · ω̄ .
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This proves (35).

To prove (36) we apply Proposition 5 when L̄ = ω̄ and M̄ = ω̄⊗n. If
d0 ≤ m ≤ 2d0 − 2 we get

e(L̄, d0) ≤ rY1 + rY2

where

Y2 =
deg(L)

m
(A(M̄C) + C(N, F ) + log(m(m − g + 1)))

≤ C
log(d0)

d0
+

1

nr
log |∆F |

as in the proof of Theorem 3, and

r Y1 =
L̄ · M̄

m
−

K̄ · K̄

2 deg(K)

deg(L)

m

=
ω̄ · ω̄

2g − 2
−

n − 1

4n(g − 1)
ω̄ · ω̄

=
ω̄ · ω̄

4(g − 1)
+

ω̄ · ω̄

4n(g − 1)
.

Since n(g − 1) ≤ d0 − 1 we can assume that

n =

[
d0 − 1

g − 1

]
,

hence n ≥ d0−1
g−1 − 1. This implies

1

n
log |∆F | ≤

g − 1

d0 − g
log |∆F |

and

r Y1 ≤
ω̄ · ω̄

4(g − 1)
+

ω̄ · ω̄

4(d0 − g)
,

from which (36) follows.
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