I. Antes, S. W. Siu, and T. Lengauer, DynaPred: A structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations, Bioinformatics, vol.22, issue.14, pp.22-38, 2006.
DOI : 10.1093/bioinformatics/btl216

N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society, vol.68, issue.3, pp.337-404, 1950.
DOI : 10.1090/S0002-9947-1950-0051437-7

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA296533

M. Bhasin and G. P. Raghava, Prediction of CTL epitopes using QM, SVM and ANN techniques, Vaccine, vol.22, issue.23-24, pp.23-24, 2004.
DOI : 10.1016/j.vaccine.2004.02.005

URL : http://repository.ias.ac.in/37239/1/37239.pdf

M. Bhasin, H. Singh, R. , and G. P. , MHCBN: a comprehensive database of MHC binding and non-binding peptides, Bioinformatics, vol.19, issue.5, pp.665-666, 2003.
DOI : 10.1093/bioinformatics/btg055

V. Brusic, N. Petrovsky, G. Zhang, and V. B. Bajic, Prediction of promiscuous peptides that bind HLA class I molecules, Immunology and Cell Biology, vol.107, issue.3, pp.280-285, 2002.
DOI : 10.1002/1521-4141(200107)31:7<1989::AID-IMMU1989>3.0.CO;2-M

H. Bui, J. Sidney, B. Peters, M. Sathiamurthy, A. Sinichi et al., Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications, Immunogenetics, vol.51, issue.5, pp.304-314, 2005.
DOI : 10.1007/s00251-005-0798-y

H. Bui, A. J. Schiewe, H. Von-grafenstein, and I. S. Haworth, Structural prediction of peptides binding to MHC class I molecules, Proteins: Structure, Function, and Bioinformatics, vol.13, issue.51, pp.43-52, 2006.
DOI : 10.1002/prot.20870

S. Buus, S. L. Ller, P. Worning, C. Kesmir, T. Frimurer et al., Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach, Tissue Antigens, vol.62, issue.5, pp.62-378, 2003.
DOI : 10.1034/j.1399-0039.2003.00112.x

P. Dönnes and A. Elofsson, Prediction of MHC class I binding peptides, using SVMHC, BMC Bioinformatics, vol.3, issue.1, p.25, 2002.
DOI : 10.1186/1471-2105-3-25

I. A. Doytchinova, P. Guan, F. , and D. R. , Identifiying Human MHC Supertypes Using Bioinformatic Methods, The Journal of Immunology, vol.172, issue.7, pp.4314-4323, 2004.
DOI : 10.4049/jimmunol.172.7.4314

T. Evgeniou, C. Micchelli, and M. Pontil, Learning multiple tasks with kernel methods, J. Mach. Learn. Res, vol.6, pp.615-637, 2005.

D. Heckerman, C. Kadie, and J. And-listgarten, Leveraging information across HLA alleles/supertypes improves HLA-specific epitope prediction, 2006.
DOI : 10.1089/cmb.2007.r013

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.164.715

T. Hertz and C. Yanover, PepDist: A New Framework for Protein-Peptide Binding Prediction based on Learning Peptide Distance Functions, BMC Bioinformatics, vol.7, issue.Suppl 1, 2006.
DOI : 10.1186/1471-2105-7-S1-S3

T. Hertz and C. Yanover, Identifying HLA supertypes by learning distance functions, Bioinformatics, vol.23, issue.2, pp.148-155, 2007.
DOI : 10.1093/Bioinformatics/btl324

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.578.4719

M. C. Honeyman, V. Brusic, N. L. Stone, H. , and L. C. , Neural networkbased prediction of candidate T-cell epitopes, Nat. Biotechnol, issue.10, pp.16-966, 1998.

N. Jojic, M. Reyes-gomez, D. Heckerman, C. Kadie, and O. Schueler-furman, Learning MHC I--peptide binding, Bioinformatics, vol.22, issue.14, pp.22-227, 2006.
DOI : 10.1093/bioinformatics/btl255

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.332.9952

H. Mamitsuka, Predicting peptides that bind to MHC molecules using supervised learning of hidden markov models, Proteins: Structure, Function, and Genetics, vol.213, issue.4, pp.460-474, 1998.
DOI : 10.1002/(SICI)1097-0134(19981201)33:4<460::AID-PROT2>3.0.CO;2-M

A. Mcmichael and T. Hanke, OPINION ??? VACCINES: The quest for an AIDS vaccine: is the CD8+ T-cell approach feasible?, Nature Reviews Immunology, vol.71, issue.4, pp.283-291, 2002.
DOI : 10.1038/nm1201-1320

M. Milik, D. Sauer, A. P. Brunmark, L. Yuan, A. Vitiello et al., Application of an artificial neural network to predict specific class I MHC binding peptide sequences, Nature Biotechnology, vol.20, issue.8, pp.16-753, 1998.
DOI : 10.1016/0042-6822(88)90065-7

M. Nielsen, C. Lundegaard, P. Worning, S. L. Lauemøller, K. Lamberth et al., Reliable prediction of T-cell epitopes using neural networks with novel sequence representations, Protein Science, vol.13, issue.5, pp.1007-1017, 2003.
DOI : 10.1110/ps.0239403

K. C. Parker, M. A. Bednarek, and J. E. And-coligan, Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide sidechains, J. Immunol, vol.152, issue.1, pp.163-175, 1994.

B. Peters and A. Sette, Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method, BMC Bioinformatics, vol.6, issue.1, p.132, 2005.
DOI : 10.1186/1471-2105-6-132

B. Peters, H. Bui, S. Frankild, M. Nielson, C. Lundegaard et al., A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules, PLoS Computational Biology, vol.240, issue.6, p.65, 2006.
DOI : 10.1371/journal.pcbi.0020065.st001

H. Rammensee, J. Bachmann, N. P. Emmerich, O. A. Bachor, and S. Stevanovi´cstevanovi´c, SYFPEITHI: database for MHC ligands and peptide motifs, Immunogenetics, vol.50, issue.3-4, pp.3-4, 1999.
DOI : 10.1007/s002510050595

H. G. Rammensee, T. Friede, S. Ic, and S. , MHC ligands and peptide motifs: first listing, Immunogenetics, vol.89, issue.4, pp.178-228, 1995.
DOI : 10.1007/BF00172063

P. A. Reche, J. Glutting, R. , and E. L. , Prediction of MHC class I binding peptides using profile motifs, Human Immunology, vol.63, issue.9, pp.701-709, 2002.
DOI : 10.1016/S0198-8859(02)00432-9

R. Rosenfeld, Q. Zheng, S. Vajda, and C. Delisi, Flexible docking of peptides to class I major-histocompatibility-complex receptors, Genetic Analysis: Biomolecular Engineering, vol.12, issue.1, pp.1-21, 1995.
DOI : 10.1016/1050-3862(95)00107-7

O. Rötzschke, K. Falk, S. Stevanovi´cstevanovi´c, G. Jung, R. et al., Peptide motifs of closely related HLA class I molecules encompass substantial differences, European Journal of Immunology, vol.219, issue.9, pp.2453-2456, 1992.
DOI : 10.1002/eji.1830220940

J. Salomon and D. R. Flower, Predicting Class II MHC-Peptide binding: a kernel based approach using similarity scores, BMC Bioinformatics, vol.7, issue.1, p.501, 2006.
DOI : 10.1186/1471-2105-7-501

B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines , Regularization, Optimization, and Beyond, 2002.

B. Schölkopf, K. Tsuda, and J. Vert, Kernel Methods in Computational Biology, 2004.

O. Schueler-furman, Y. Altuvia, A. Sette, M. , and H. , Structure-based prediction of binding peptides to MHC class I molecules: Application to a broad range of MHC alleles, Protein Science, vol.189, issue.9, pp.1838-1846, 2000.
DOI : 10.1110/ps.9.9.1838

A. Sette and J. Sidney, HLA supertypes and supermotifs: a functional perspective on HLA polymorphism, Current Opinion in Immunology, vol.10, issue.4, pp.478-482, 1998.
DOI : 10.1016/S0952-7915(98)80124-6

A. Sette and J. Sidney, Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism, Immunogenetics, vol.50, issue.3-4, pp.50-53, 1999.
DOI : 10.1007/s002510050594

A. Sette, R. Chesnut, and J. Fikes, HLA expression in cancer: implications for T cell-based immunotherapy, Immunogenetics, vol.53, issue.4, pp.255-263, 2001.
DOI : 10.1007/s002510100334

J. Sidney, H. M. Grey, S. Southwood, E. Celis, P. A. Wentworth et al., Definition of an HLA-A3-like supermotif demonstrates the overlapping peptide-binding repertoires of common HLA molecules, Human Immunology, vol.45, issue.2, pp.45-79, 1996.
DOI : 10.1016/0198-8859(95)00173-5

J. C. Tong, G. L. Zhang, T. W. Tan, J. T. August, V. Brusic et al., Prediction of HLA-DQ3.2beta ligands: evidence of multiple registers in class II binding peptides, Bioinformatics, issue.10, pp.22-1232, 2006.

V. N. Vapnik, Statistical Learning Theory, 1998.

R. F. Wang, Human tumor antigens: implications for cancer vaccine development, Journal of Molecular Medicine, vol.77, issue.9, pp.640-655, 1999.
DOI : 10.1007/s001099900042

J. W. Yewdell and J. R. Bennink, IMMUNODOMINANCE IN MAJOR HISTOCOMPATIBILITY COMPLEX CLASS I???RESTRICTED T LYMPHOCYTE RESPONSES, Annual Review of Immunology, vol.17, issue.1, pp.51-88, 1999.
DOI : 10.1146/annurev.immunol.17.1.51

G. L. Zhang, A. M. Khan, K. N. Srinivasan, J. T. August, and V. Brusic, MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides, Nucleic Acids Research, vol.33, issue.Web Server, pp.33-172, 2005.
DOI : 10.1093/nar/gki452

Y. Zhao, C. Pinilla, D. Valmori, R. Martin, and R. Simon, Application of support vector machines for T-cell epitopes prediction, Bioinformatics, vol.19, issue.15, pp.19-1978, 2003.
DOI : 10.1093/bioinformatics/btg255

S. Zhu, K. Udaka, J. Sidney, A. Sette, K. F. Aoki-kinoshita et al., Improving MHC binding peptide prediction by incorporating binding data of auxiliary MHC molecules, Bioinformatics, vol.22, issue.13, pp.22-1648, 2006.
DOI : 10.1093/bioinformatics/btl141