Brace algebras and the cohomology comparison theorem

Abstract : The Gerstenhaber and Schack cohomology comparison theorem asserts that there is a cochain equivalence between the Hochschild complex of a certain algebra and the usual singular cochain complex of a space. We show that this comparison theorem preserves the brace algebra structures. This result gives a structural reason for the recent results establishing fine topological structures on the Hochschild cohomology, and a simple way to derive them from the corresponding properties of cochain complexes.
Type de document :
Pré-publication, Document de travail
Revised version of "The bar construction as a Hopf algebra", Dec. 2001. 2003


https://hal.archives-ouvertes.fr/hal-00128594
Contributeur : Import Arxiv <>
Soumis le : jeudi 1 février 2007 - 21:14:33
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48

Identifiants

Collections

Citation

F. Patras. Brace algebras and the cohomology comparison theorem. Revised version of "The bar construction as a Hopf algebra", Dec. 2001. 2003. <hal-00128594>

Partager

Métriques

Consultations de la notice

30