N
N

N

HAL

open science

Reliability modelling with dynamic bayesian networks
Philippe Weber, Lionel Jouffe

» To cite this version:

Philippe Weber, Lionel Jouffe. Reliability modelling with dynamic bayesian networks. Jun 2003,

pp.57-62. hal-00128475

HAL Id: hal-00128475
https://hal.science/hal-00128475
Submitted on 1 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00128475
https://hal.archives-ouvertes.fr

WEBER P., JOUFFE L. Reliability modelling with dyma bayesian networks. 5th IFAC Symposium on Fault
Detection, Supervision and Safety of Technical €sses (SAFEPROCESS'03), Washington, D.C., USAQJune
11, 2003.

RELIABILITY MODELLING WITH DYNAMIC BAYESIAN NETWORKS

Weber P.*, JouffeL.”

* Centre de Recherche en Automatique de Nancy (CFONNBS UMR 7039
Université Henri Poincaré, Nancy 1; 2, rue Jean loam
54519 VANDOEUVRE-LES-NANCY Cedex — FRANCE
Email: [Philippe.Weber@esstin.uhp-nancy.fr]

* Centre de Recherche du Groupe ESIEA
38, rue des Docteurs Calmette et Guérin
53000 LAVAL - FRANCE

Email: [jouffe@esiea-ouest.fr]

Abstract: Nowadays, the complex manufacturing processes kavee dynamically
modelled and controlled to optimise the diagnosid the maintenance strategies. The
work reported here presents a methodology for dgvwed) Dynamic Bayesian Networks
(DBN) to formalise such complex dynamic models.ma#l valve system then is used
to compare the reliability estimations obtainedths proposed DBN model and by the
classical Markov Chain.
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1. INTRODUCTION

One of the main challenges of the Extended Entgpsi to dynamically maintain and optimise the iqyalf the
services delivered by industrial objects alongrtlig cycle. The goal is thus to design decisioaking aid
systems for maintaining the system in operationvexbeless, most of current automated systems do no
provide the means for intelligent interpretation ioformation copying with large process disturbance
Moreover, the state of the system may not be knewactly before making the decision. This imperfect
perception argues in favour of using a probabilisstimation of the system state. As describe®aufillier, et

al., 1999), tools issued from Artificial Intelligenc@an be used to bring decision-making aid for mactuifring
systems.

Works on system safety and Bayesian Networks (Bidsg recently been developed (Kang and Golay, 1999)
Bobbio, et al, (2001), explain how the Fault Tree can be agdeysing BNs. Moreover, Webet, al, (2001),
propose a model based decision allowing the faaljribsis using the system functioning and dysfomatig
analyses. The solutions proposed in these lastrpape based on a static probabilistic model ofsgysem. To
improve the decision making during the diagnosis; goal is to define a dynamic model of the process
behaviour. This model should allow computing stptebability distributions by taking into accounteth
component age and the last executed maintenancations.

The purpose of this paper is to introduce Dynamagydsian Networks (DBNs) as an equivalent modehéo t
Markov Chains (MCs) (Gertsbakh, 2000; Padhraic,7)98he problems considered are those involvingesys
whose dynamics can be modelled as stochastic pesesd where the decision maker’s actions inflei¢he
system behaviour. The current system state andgpbed action jointly determine the probabilityulibution
over the next states. The proposed paper is asfusly dedicated to the comparison of MCs and DRiXshe



estimation of system reliability. Section 2 presetite MC model and the fast growing of its statalicality

with respect to the complexity of the modelled syst The methodology proposed in this paper is &jinal

formalisation of a system reliability model (sectid) by means of DBNs (section 3). A simulatioraaflassical
system is developed in section 5 to compare MCRBN models. Finally, section 6 presents the corichs
and perspectives.

2. PROBLEMSTATEMENT

In order to take the uncertainty into accountsipossible to consider the process state as amandoable that
takes its values from a finite state space cormeding to the possible process states. A MC allowdetiing the
dynamics of sequences taken by these states (Baygk al, 1999).

2.1. The Markov Chain notations

The notations concerning MC modelling are definmethis section. LetX a discrete random variable modelling
a process with a finite number of mutually exclethateﬁ,..sM}. The vectorx then denotes a probability

distribution over these states:
x=[p o Pm e Pl

M
Pmn=0 and > p, =1

m=1

1)

Assuming that the system evolves in states, wheEr@tcurrence of an event marks the transitionstéte K) to
the next statek¢1), then the process produces the sequérges,,... X1, X,) that can be modelled as a MC if:

p(X = Xk|XO’X1""Xk—1) =p(X = Xk|Xk—1) (2

The Markov property makes it possible to specifg statistical relationship among states as a tiansi
probability matrix Pyc. If the transition probabilitiep; are time independent then the MC is said to be
homogeneous.

Xk
Pi1 P2 Pim
PMC = Xk_l p21 b (3)
Pv1 Pua Pmm

2.2. Application to reliability

The reliability of a system with a low complexitgvel can be modelled as MC. This method leadsgmphic
representation (Gertsbakh, 2000, pp. 116). Foait®, considering the reliability of a componemiti(g), it is
modelled by a discrete random varialb¥e with state;{so,sf}, s, (operational state) and; (failure state)

indicating if the component is up or down. To motth reliability, the transition probability matrbetween the
statess, ands; is defined as follows:

1-A A
PMC:|: 0 J (4)

where A represents the failure rate (considered as cofstan



2.3. Problem to model complex process

The MC method is well suited to calculate the t#lity of low complexity entity/system. However, thin the
framework of complex systems, the combinatoriallesipn of states makes MC unmanageable. To decrease
the complexity of the Markov model, the hypothgsiy that there is no simultaneous occurrence ddiriiis
assumed. This hypothesis simplifies consideraldyMiarkov graph but leads to an approximation ofsystem
reliability. Even more hypotheses are assumed actipe to reduce the complexity, as for example, th
hypothesis (b) that assumes events statisticallggendent. In that case, methods based on Faeks(FT) are
used. Unfortunately, this hypothesis is not regtathen commune causes are taking into accounthen
there are several failure causes for the same coempoIn the following, a method coupling in a ureq
representation these two approaches (MC, FT) wittimihypotheses (a, b) is presented. This methbased

on Dynamic Bayesian Networks.

3. BAYESIAN NETWORK THEORY

BNs are probabilistimetworks based on graph theory. Each node repseaevdriable and arcs indicate direct
probabilistic relations between the connected nodasiables are defined over several states. ThalP&llow
taking time into account by defining different nede model variables with respect to different tisliees.

3.1. The Bayesian Network notations

BNs are directed acyclic graphs used to represacgrtain knowledge in Artificial Intelligence (Jems 1996).

A BN is defined as a pairgg=((N, A),?), where [,A) represents the graph\™is a set of nodes;A” is a set of
arcs;? represents the set of conditional probabilityrisitions that quantify the probabilistic dependersc

A discrete random variablX is represented by a nodd1N with a finite number of mutually exclusive states.

States are defined on a state spaﬁ;e{sfs{}]} The vector X" =[p, .. py| denotes a probability

distribution over these states as eq. (1), wheres thea priori probability of n being in statsy,. In the graph
depicted in figure 1, the nodes andn; are linked by an arc. If the pa(m;,n;) 0 A and(n;,n;) 0 A
then n; is considered as a parentmf. The parent set of a nodg is defined aspa(n;) =n;.

Fig. 1. A basic BN.

In this work, the set? is represented with Conditional Probability Tab{€PT). Then, each node has an
associated CPT. For instance, in figure 1, the sogleand n; are defined over the state, :{s_[1i s&} and

é’nj :{si1j sEJ} Then, the CPT oh; is defined by the conditional probabilitiqa(nj|ni) over eachn; state

knowing its parents states;(). This CPT is defined as a matrix:

Pl [patn))=
by =iy =s) oy =h=9]]
p(nj =5f.j‘ni =5p/'|) p(nj =5|.nJ n, =SF)|)

Concerning the root nodese. without parent, the CPT just contains a row désogi thea priori probability of
each state.

Various inference algorithms can be used to commaeginal probabilities, the most classical onging on
the use of a junction tree (more explications carnfdund in (Jensen, 1996, pp. 76). Inference in &lNws
taking into account any state variable observatimm event) for the updating of the probabilities ezfch
variable. In other words, inference computes naadability distributions knowing the state of oneseveral



variables. Without any event observation, the cadn is based oa priori probabilities. As observations are
made, the knowledge is incorporated in the netvamitk the probabilities over the process statesedatad.

Knowledge is formalised as evidence. ard evidencginstantiation) of the random variabk¢ is an evidence
that the state of the nodeIN is one of the states, {sfs&} For instanceX is in states: p(n=g/") =1

and p(n=s,;) =0. Nevertheless knowledge can be uncertain. Boénevidencés introduced (Valtoraet al,
2002). A soft evidence for a node is defined as any evidence that enables to upith@tgrior probability
values for the states of . For instanceX is in states and s{; with the same probability and not in the other

states:p(n =97') = 05, p(n=sy) =05 and p(n = sp.m)) =0.

3.2. Dynamic Bayesian Network

A DBN is a BN including a temporal dimension. Tiew dimension is managed by time-indexed random

variables. X; is represented at time sty a noden; ) IN with a finite number of states;, :{sfi s,'\‘,'l}

x¢ denotes the probability distribution over thesstest at time stek. Several time stages are represented by
several sets of nodeN,,... N, . N, includes all the random variables relative to tihee slicek (Hung, et al,
1999; Boutillier,et al, 1999, pp. 38-45).

An arc linking two variables belonging to differetiine slices represents a temporal probabilisticetieence
between these variables. Then DBN allow to modadloan variables and their impacts on the futureitistion

of other variables. Defining these impactstransition-probabilitiesbetween the states of the variable at time
step k and time stepk+l, thesetransition-probabilitieslead to define CPTs relative to inter-time slices,
equivalent to CPT defined in the previous sectieq. (5)). With this model, the futuré&+l) is conditionally
independent of the past given the presdgt Wwhich means that the CP]P(niyk+l| pa(n 1)) respects the

Markov properties (Kjaerulff, 1995). Moreover, ti@$T is equivalent to the Markovian model of theiafale
X; described in the sectidhl if pa(n; ,.,)=n;, andS,, =S8

M k Mik+1
P(ni,k+1|ni K) = Puc (6)

Starting from an observed situation at time e, the probability distributionq’ over n; states is computed

by the DBN inference. To compute, , several solutions are proposed in the literatOme of them consists
in developingT time slices, obtaining then a network size growsngportionally toT (Kjaerulff, 1995). Another
solution, which keeps a compact network form, isdohon iterative inferences. This solution is usethe
following. The notion of time is introduced througiference. Indeed, it is possible to compute trabability
distribution of any variableX; at time stegk+1 based on the probabilities corresponding to titepk. The
probability distributions at time stég2... are computed using successive inferences. Timetveork with only
two time slices is defined. The first slice contaihe nodes corresponding to the current time (&ephe second
one those of the following time stepk+(). Observations, introduced as hard evidence robgbility
distributions, are only realised in the currentdirslice. The time increment is carried out by sgttthe
computed marginal probabilities of the node at tstepk+1 as observations for its corresponding node én th
previous time slice.

time feedback

inference @

Fig. 2. ADBN for the random variabl.



4. DBN TOMODEL RELIABILITY

4.1. Dynamic Bayesian Networks to model entities

The reliability of low complexity component can bedelled as a DBN made of two nodes as presented in
figure 2. An MC model of the reliability of a compent X; is easily translated into a DBN model. Thus

independent components (entities) of the processradelled using DBN equivalent to independent M.
instance, as it is defined in secti@®, a component is modelled by a discrete randomakibei X with
states{%,sf}. Then two nodes are defined to model the randomabie at time slicek) and k+1): n; ,, and

Nik+1) - These nodes, linked by an arc that representdependency of the component states at timekstégo
the component states at the time $te@re both described by the sta{qg sf}.

Equations (4) and (6) define the CRPn; , .4

k) linking the two time slices. The parameters aos¢hdefined

to build the MC model of the component. To caloal@(n ., =sf”‘+1) the probability that the variabl¥; is

in the states]' at k+1), the following equation is used:

p(ni,k+1 = Slni'kﬂ)z (-A) Ep(ni,k = Slni'k) (7)

Equation (7) corresponds to the classical forméihe discrete model of the MC.

4.2. BN to model dependant failure modes

A Fault Tree (FT) allows describing the logic o&tpropagation of the failure throw the system. Trhithod
allows to model the reliability of the system assugthe hypothesis of independence of the evenifu(és)
affecting the entitiesThe paper (Bobbicgt al, 2001) showed the equivalence between FTs and BiNsCPT
is then defined automatically by OR/AND gate. Th€$&Ts are givea priori, and the parameters are for most
of them equal to O or 1. However, it is possibléntooduce uncertainty by setting parameters diffieto O or 1.

Moreover, thanks to the CPTs, BNs can model th@ggation on a system that has several failure mdtdis
then possible to synthetically represent, with etddased representation, a system composed byiesntitith
several failure modes. The hypothesis of indepecelef events (failures) made for FT is not necgssadeed,
BNs allow calculating exact repercussion of depahgariables to the system reliability.

5. APPLICATION

The method is applied to a classical example ¢&lbdity analysis. This example easily allows comipg the
proposed method based on DBNSs to the one using MCs.

A
" {Ach V2 { 2RC

V3 {
Asro

Fig. 3. Valve system.



Figure 3 describes the system. Three valves aré taséistribute or not a fluid. Every valve has t¥alure
modes: remains closed (RC) or remains opened (RD¢ Wt is controlled. The failure rates are thédwing:

Apre = 11072 Aore

21072 Ngge = 31072
31073 Agpp = 41073

V1RC.

N V2 RO
1RC\V3 OK -
V1RC
V2 RO
V3RO

)\BRO )‘IRC

Aore Asro Aore

V1RO. V1RO. V10K V1RC.
V2 RC V2RC V2 RC V2RC
V3OK / Az \VBRO./ Awro \V3RO. Mre \V3RO.

~Canditional Probabilitiy Tabie:

W1 (R ok | RO RE
Ok 59700 0.200 0160
RO 0.000]  100.090 0.000 - d
RE 0.000 0000]  100.000 k .
\
e a0 |1| k
Netwark Edt DefaBase oo Inference Temporslty Mew Optkns Helo A ‘\\

neEslimm - - naaRHR e\ x|
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[ Blvakes..

Fig. 5. (a) DBN model — (b) CPT for V1(k+1) — (c) Deterngitic CPT for Fluid Distribution — (d) System reliktyi



Figure 4 depicts graphically the MC model of thystem. As it is shown by the figure, 25 statgs.. s,5 are
necessary to model this system: stagggo s;; are states for which the system is available iitespf the
degradation due to some failures; stasgs to s,5 correspond to states where the system is unaiaitale to

the combination of failures. The transition matRyc defined the probability related to the differemates
S, ... S,5. An equivalent model of this MC is realised by meaf the DBN depicted in Figure 5.a. The state

probabilities of the component$ (k) (current time step) can be extracted without difffculty by a simple
shaping of values. These variables have threesstAimilable (OK), Remains Open (RO) or Remainss€tb
(RC). The system can then evolve according to tiebability of every state and to the componentufailrate
values. The result of this degradation is modelsdthe variableV; (k+1) representing the state of the
components at time stdgr1l. A CPT used to estimate the dynamic behaviouhefcomponent reliability is
illustrated in Figure 5.b.

The propagation through the Bayesian model allaiéng into account the dependency between theréailu
modes for the computation of the system reliabilibferences are realised thanks to Bayesial ab software
that uses an iterative procedure (http://www.bayesim). BayesiaLab is used to simulate the reltgbil
behaviour of the system over 2000 time steps wighDBN depicted in figure 5.d.

The MC model is managed thanks to tBepercab+ software (http://www.cabinnovation.fr). The system
reliability has to be computed as:

> p(s) (8)

Even if the results obtained by means of DBN amy wiose to those obtained with the MC model, they in
fact more precise. Indeed, the differences aretdule approximation made in the Markov model tegumes
that simultaneous failures can not occurred, thothesis being not assumed in the DBN model.

6. CONCLUSION ANDFURTHER WORK

The proposed method, based on the Dynamic Baydd&works theory, easily allows constructing DBN
structures for the modelling of the temporal evioluiof complex systems. The correspondence betWegkov
Chain, Fault Tree and DBN is presented and appdigde estimation of the system reliability.

The proposed method seems to be a solution to ntbelekliability of complex systems. Indeed, thenier of
states needed to model a complex system with MCeases in an exponential fashion (a state for each
combination of elementary states). As the DBNseas@ntation is based on the modelling of processemtthe
obtained model is far more compact and readable M@ (compare for example the two models illustiaite
Figure 4 and 5 that correspond to the small vajgtesn). Furthermore, the dependency between sefaditaie
modes of a component and common modes are easiigll®d by DBN. This paper shows then that DBNs
constitute a very powerful tool for decision-makimid in maintenance.

In a future works, in order to achieve to perfotistmodelling technique we have to define how gearing
algorithms of BN can contribute to model the dynesmof the system reliability and how the parameters
behaviour can be then modelled.
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