A note on relative duality for Voevodsky motives
Luca Barbieri-Viale, Bruno Kahn

To cite this version:

HAL Id: hal-00126975
https://hal.archives-ouvertes.fr/hal-00126975
Submitted on 26 Jan 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A NOTE ON RELATIVE DUALITY FOR VOEVODSKY MOTIVES

LUCA BARBIERI-VIALE AND BRUNO KAHN

INTRODUCTION

Relative duality is a useful tool in algebraic geometry and has been used several times. Here we prove a version of it in Voevodsky’s triangulated category of geometric motives $DM_{gm}(k)$, where k is a field which admits resolution of singularities.

Namely, let X be a smooth proper k-variety of pure dimension n and Y, Z two disjoint closed subsets of X. We prove in Theorem 3.1 an isomorphism

$$M(X - Z, Y) \simeq M(X - Y, Z)^*(n)[2n]$$

where $M(X - Z, Y)$ and $M(X - Y, Z)$ are relative Voevodsky motives, see Definition 1.1.

This isomorphism remains true after application of any \otimes-functor from $DM_{gm}(k)$, for example one of the realisation functors appearing in [8, I.VI.2.5.5 and I.V.2], [4] or [7]. In particular, taking the Hodge realisation, this makes the recourse to M. Saito’s theory of mixed Hodge modules unnecessary in [1, Proof of 2.4.2].

The main tools in the proof of Theorem 3.1 are a good theory of extended Gysin morphisms, readily deduced from Dégile’s work (Section 2) and Voevodsky’s localisation theorem for motives with compact supports [9, 4.1.5]. This may be used for an alternative presentation of some of the duality results of [9, §4.3] (see Remark 4.7). The arguments seem axiomatic enough to be transposable to other contexts.

We assume familiarity with Voevodsky’s paper [9], and use its notation throughout.

1. RELATIVE MOTIVES AND MOTIVES WITH SUPPORTS

Definition 1.1. Let $X \in Sch/k$ and $Y \subseteq X$, closed. We set

$$M(X, Y) = C_* (L(X)/L(Y))$$

$$M^Y(X) = C_* (L(X)/L(X - Y)).$$
Remark 1.2. This convention is different from the one of Déglise in \[2, 3, 4\] where what we denote by $M^Y(X)$ is written $M(X,Y)$ (and occasionally $M_Y(X)$ as well).

Note that $L(Y) \to L(X)$ and $L(X - Y) \to L(X)$ are monomorphisms, so that we have functorial exact triangles

\[
M(Y) \to M(X) \to M(X,Y) \xrightarrow{+1},
\]

We can mix the two ideas: for $Y, Z \subseteq X$ closed, define

\[
M^Z(X, Y) = \mathcal{C}^\bullet(\mathcal{L}(X)/\mathcal{L}(Y) + \mathcal{L}(X - Z)).
\]

Lemma 1.3. If $Y \cap Z = \emptyset$, the obvious map $M^Z(X) \to M^Z(X,Y)$ is an isomorphism, and we have an exact triangle

\[
M(X - Z, Y) \to M(X,Y) \xrightarrow{\delta} M^Z(X) \xrightarrow{+1}. \quad \square
\]

2. Extended Gysin

In the situation of Lemma 1.3, assume that Z is smooth of pure codimension c. F. Déglise has then constructed a purity isomorphism

\[
p_{Z \subseteq X} : M^Z(X) \xrightarrow{\sim} M(Z)(c)[2c]
\]

with the following properties:

1. $p_{Z \subseteq X}$ coincides with Voevodsky’s purity isomorphism of \[3, 3.5.4\] (see \[4, 1.11\]).

2. If $f : X' \to X$ is transverse to Z in the sense that $Z' = Z \times_X X'$ is smooth of pure codimension c in X', then the diagram

\[
f \downarrow \\
M^{Z'}(X') \xrightarrow{p_{Z' \subseteq X'}} M(Z')(c)[2c]
\]

\[
g \downarrow \\
M^Z(X) \xrightarrow{p_{Z \subseteq X}} M(Z)(c)[2c]
\]

commutes, where $g = f|_{Z'}$ (\[4, \text{ Rem. 4}\] or \[4, 2.4.5\]).
(3) If \(i : T \subset Z \) is a closed subset, smooth of codimension \(d \) in \(X \), the diagram

\[
\begin{array}{ccc}
M^Z(X) & \xrightarrow{p_{Z\subset X}} & M(Z)(c)[2c] \\
\downarrow \rho & & \uparrow \alpha \\
M^T(X) & \xrightarrow{p_{T\subset Z}} & M(T)(d)[2d]
\end{array}
\]

commutes, where \(\alpha \) is the twist/shift of the boundary map in the triangle corresponding to (1) [4, proof of 2.3].

Definition 2.1. We set:

\[g_{Z\subset X}^Y = p_{Z\subset X} \circ \delta \]

where \(p_{Z\subset X} \) is as in (2) and \(\delta \) is the morphism appearing in Lemma 1.3.

In view of the properties of \(p_{Z\subset X} \), these extended Gysin morphisms have the following properties:

Proposition 2.2.

a) Let \(f : X' \to X \) be a morphism of smooth schemes. Let \(Z' = f^{-1}(Z) \) and \(Y' = f^{-1}(Y) \). If \(f \) is transverse to \(Z \), the diagram

\[
\begin{array}{ccc}
M(X', Y') & \xrightarrow{g_{Z'\subset X'}} & M(Z')(c)[2c] \\
\downarrow f_* & & \downarrow g_* \\
M(X, Y) & \xrightarrow{g_{Z\subset X}^Y} & M(Z)(c)[2c]
\end{array}
\]

commutes, with \(g = f|_Z \).

b) Let \(X \supset Z \supset Z' \) be a chain of smooth \(k \)-schemes of pure codimensions, and let \(d = \text{codim}_Z Z' \). Let \(Y \subset X \) be closed, with \(Y \cap Z = \emptyset \). Then

\[g_{Z'\subset X}^Y = g_{Z\subset Z'}(d)[2d] \circ g_{Z\subset X}^Y. \]

3. Relative Duality

In this section, \(X \) is a smooth proper variety purely of dimension \(n \) and \(Y, Z \) are two disjoint closed subsets of \(X \). Consider the diagonal embedding of \(X \) into \(X \times X \): its intersection with \((X - Y) \times (X - Z) \) is closed and isomorphic to \(X - Y - Z \). The closed subset \((X - Y) \times \)
Y ∪ Z × (X − Z) is disjoint from X − Y − Z; from Definition \([2.1]\) we get a extended Gysin map

\[
M((X − Y) × (X − Z), (X − Y) × Y ∪ Z × (X − Z)) \to M(X − Y − Z)(n)[2n].
\]

Note that the left hand side is isomorphic to \(M(X − Y, Z) ⊗ M(X − Z, Y)\) by an explicit computation from the definition of relative motives. Composing with the projection \(M(X − Y − Z)(n)[2n] \to Z(n)[2n]\), we get a map

\[
M(X − Y, Z) ⊗ M(X − Z, Y) \to Z(n)[2n]
\]

due to the projection \(M(X − Y − Z)(n)[2n] \to Z(n)[2n]\), we get a map

\[
M(X − Y, Z) ⊗ M(X − Z, Y) \to Z(n)[2n]
\]

hence a map

\[
(3) \quad M(X − Z, Y) \xrightarrow{\alpha_{X}^{Y,Z}} M(X − Y, Z)^{*}(n)[2n].
\]

Theorem 3.1. The map (3) is an isomorphism.

The proof is given in the next section.

4. **Proof of Theorem 3.1**

Lemma 4.1. If \(Y = Z = \emptyset\) and \(X\) is projective, then (3) is an isomorphism.

Proof. As pointed out in \([3, \text{p. } 221]\), \(\alpha_{X}^{\emptyset,\emptyset}\) corresponds to the class of the diagonal; then Lemma \([1, \text{p. } 224]\) follows from the functor of \([3, \text{2.1.4}]\) from Chow motives to \(DM_{gm}(k)\). (This avoids a recourse to \([3, \text{4.3.2 and } 4.3.6}\).)

The next step is when \(Z\) is empty. For any \(U \in Sch/k\), write \(M^c(U) := \underline{C}_{\ast}(L^c(U))\) \([4, \text{p. } 224]\). Since \(X\) is proper, by \([4, \text{4.1.5}]\) there is a canonical isomorphism

\[
M(X, Y) \xrightarrow{\sim} M^c(X − Y)
\]

induced by the map of Nisenvich sheaves

\[
L(X)/L(Y) \to L^c(X − Y).
\]

Therefore, from \(\alpha_{X}^{Y,\emptyset}\), we get a map

\[
\beta_{X}^{Y} : M^c(X − Y) \to M(X − Y)^{*}(n)[2n].
\]

Lemma 4.2. The map \(\beta_{X}^{Y}\) only depends on \(X − Y\).
Proof. Let $U = X - Y$. If X' is another smooth compactification of U, with $Y' = X' - U$, we need to show that $\beta_X^Y = \beta_{X'}^{Y'}$. By resolution of singularities, X and X' may be dominated by a third smooth compactification; therefore, without loss of generality, we may assume that the rational map $q : X' \rightarrow X$ is a morphism. The point is that, in the diagram

\[
\begin{array}{ccc}
M(X', Y') & \xrightarrow{\alpha_{X', Y'}} & M(U)(n)[2n] \\
\downarrow & & \downarrow \\
M(U) & \xrightarrow{\alpha_U} & M(U)(n)[2n] \\
\end{array}
\]

both triangles commute. For the left one it is obvious, and for the upper one this follows from the naturality of the pairing (3). Indeed, the square

\[
\begin{array}{ccc}
X' - Y' & \xrightarrow{\Delta'} & (X' - Y') \times X' \\
\downarrow & & \downarrow \\
X - Y & \xrightarrow{\Delta} & (X - Y) \times X \\
\end{array}
\]

is clearly transverse, where $q' = q_{X' - Y'}$ (an isomorphism) and Δ, Δ' are the diagonal embeddings; therefore we may apply Proposition 2.2 a).

From now on, we write β_{X-Y} for the map β_X^Y.

Lemma 4.3. a) Let $U \in Sm/k$ of pure dimension n, $T \xrightarrow{i} U$ closed, smooth of pure dimension m and $V = U - T \xrightarrow{j} U$. Then the diagram

\[
\begin{array}{ccc}
M^c(T) & \xrightarrow{\beta_T} & M(T)^*(n)[2m] \\
\downarrow i_* \downarrow & & \downarrow g_{T \subset V}^*(n)[2n] \\
M^c(U) & \xrightarrow{\beta_U} & M(U)^*(n)[2n] \\
\downarrow j^* \downarrow & & \downarrow j^* \\
M^c(V) & \xrightarrow{\beta_V} & M(V)^*(n)[2n] \\
\end{array}
\]

commutes.

b) Suppose that β_T is an isomorphism. Then β_U is an isomorphism if and only if β_V is.
Proof. a) The bottom square commutes by a trivial case of Proposition 2.2 a). For the top square, the statement is equivalent to the commutation of the diagram

\[
\begin{array}{ccc}
M^c(T) \otimes M(T)(c)[2c] & \xrightarrow{1 \otimes_{STCV}} & Z(n)[2n] \\
\downarrow & & \downarrow \\
M^c(T) \otimes M(U) & \xrightarrow{i_* \otimes 1} & M^c(U) \otimes M(U)
\end{array}
\]

with \(c = n - m \).

Take a smooth compactification \(X \) of \(U \), and let \(\bar{T} \) be a desingularisation of the closure of \(T \) in \(X \). Let \(q : \bar{T} \to X \) be the corresponding morphism, \(Y = X - U \) and \(W = \bar{T} - T \); we have to show that the diagram

\[
\begin{array}{ccc}
M(T, W) \otimes M(T)(c)[2c] & \xrightarrow{1 \otimes_{STCV}} & Z(n)[2n] \\
\downarrow & & \downarrow \\
M(T, W) \otimes M(U) & \xrightarrow{q_* \otimes 1} & M(X, Y) \otimes M(U)
\end{array}
\]

or equivalently

\[
\begin{array}{ccc}
M(\bar{T} \times T, W \times T)(c)[2c] & \xrightarrow{f \otimes_{STCV} \times U} & Z(n)[2n] \\
\downarrow & & \downarrow \\
M(\bar{T} \times U, W \times U) & \xrightarrow{(q \times 1)_*} & M(X \times U, Y \times U)
\end{array}
\]
commutes, where f is the map $M(\bar{T} \times T)(c)[2c] \to M(\bar{T} \times T, W \times T)(c)[2c]$. For this, it is enough to show that the diagram

$\begin{array}{ccc}
M(\bar{T} \times T, W \times T)(c)[2c] & \xrightarrow{g_{T \subset T} \times T} & M(T)(n)[2n] \\
\downarrow (q \times 1)_* & & \downarrow i_* \\
M(X \times U, Y \times U) & \xrightarrow{\gamma_{U \subset X \times U}} & M(U)(n)[2n]
\end{array}$

commutes. Since extended Gysin extends Gysin, Proposition 2.2 a) shows that this amounts to the commutativity of

$\begin{array}{ccc}
M(\bar{T} \times U, W \times U) & \xrightarrow{g_{T \subset T} \times U} & M(T)(n)[2n] \\
\downarrow (q \times 1)_* & & \downarrow i_* \\
M(X \times U, Y \times U) & \xrightarrow{\gamma_{U \subset X \times U}} & M(U)(n)[2n]
\end{array}$

which follows from the functoriality of the extended Gysin maps (Proposition 2.3 b)).

b) This follows immediately from a). \qed

Proposition 4.4. β_U is an isomorphism for all smooth U.

Proof. We argue by induction on $n = \dim U$, the case $n = 0$ being known by Lemma 4.1. In general, let V be an open affine subset of U and pick a smooth projective compactification X of V, with $Z = X - V$. Let $Z \supset Z_1 \supset \cdots \supset Z_r = \emptyset$, where Z_r is the singular locus of Z_i. Let also $T = U - V$ and define similarly $T \supset T_1 \supset \cdots \supset T_s = \emptyset$ (all Z_i and T_j are taken with their reduced structure). Let $V_i = X - Z_i$ and $U_j = U - T_j$. Then $V_i - V_{i-1}$ and $U_j - U_{j-1}$ are smooth for all i, j. Thus β_U is an isomorphism by Lemma 4.3 (case of β_X) and a repeated application of Lemma 4.3 b). \qed

Remark 4.5. We haven’t tried to check whether β_U is the inverse of the isomorphism appearing in the proof of [9, 4.3.7]: we leave this interesting question to the interested reader.

End of proof of Theorem 3.1. By Lemma 1.3, the triangle $M(Z) \to M(X - Y) \to M(X - Y, Z) \to$ and the duality pairings induce a map
of triangles
\[M(X - Y, Z)^*(n)[2n] \longrightarrow M(X - Y)^*(n)[2n] \longrightarrow M(Z)^*(n)[2n] \]
\[\alpha_{X,Z}^Y \uparrow \quad \alpha_{X}^Z \uparrow \quad \Phi \uparrow \]
\[M(X - Z, Y) \longrightarrow M(X, Y) \longrightarrow M^Z(X) . \]

(The left square commutes by a trivial application of Proposition 2.2a), and \(\Phi \) is some chosen completion of the commutative diagram by the appropriate axiom of triangulated categories.)

Consider the following diagram (which is the previous diagram with \(Y = \emptyset \)):
\[M(X, Z)^*(n)[2n] \longrightarrow M(X)^*(n)[2n] \longrightarrow M(Z)^*(n)[2n] \]
\[\alpha_{X}^{0,Z} \uparrow \quad \alpha_{X}^{0} \uparrow \quad \Phi \uparrow \]
\[M(X - Z) \longrightarrow M(X) \longrightarrow M^Z(X) \]

Note that \(\alpha_{X}^{0,Z} \) is dual to \(\alpha_{X}^{Z,0} \); therefore it is an isomorphism by Lemma 1.2 and Proposition 4.4. It follows that \(\Phi \) is an isomorphism. Coming back to the first diagram and using Lemma 1.2 and Proposition 4.3 a second time, we get the theorem. □

Remark 4.6. It would be interesting to produce a canonical pairing
\[\cap_{(X,Z)} : M^Z(X) \otimes M(Z) \rightarrow \mathbb{Z}(n)[2n] \]
playing the rôle of \(\Phi \) in the above proof, i.e., compatible with \(\alpha_{X}^{Y,Z} \).

Remark 4.7. As explained in [4, App. B], resolution of singularities and the existence of the \(\otimes \)-functor of [3, 2.1.4] are sufficient to prove that the category \(DM_{gm}(k) \) is rigid. Therefore, to apply the above arguments, one need only know that the motives of the form \(M(X - Y, Z) \) belong to \(DM_{gm}(k) \), which is a consequence of [3, 4.1.4].

References

Dipartimento di Matematica Pura e Applicata, Università degli Studi di Padova, Via Trieste, 63, I-35121 — Padova, Italy
E-mail address: barbieri@math.unipd.it

Institut de Mathématiques de Jussieu, 175–179 rue du Chevaleret, 75013 Paris, France
E-mail address: kahn@math.jussieu.fr