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ON THE INFINITESIMAL ISOMETRIES OF MANIFOLDS WITH

KILLING SPINORS

ANDREI MOROIANU

Abstract. We study the Lie algebra of infinitesimal isometries of 7–dimensional sim-
ply connected manifolds with Killing spinors. We obtain some splitting theorems for
the action of this algebra on the space of Killing spinors, and as a corollary we prove
that there are no infinitesimal isometry of constant length on a 7–dimensional 3–
Sasakian manifold (not isometric to a space form) except the linear combinations of
the Sasakian vector fields.
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1. Introduction

Let Mn be a spin manifold and let ΣM (resp. ΣcM) be the fiber bundle of real (resp.
complex) spinors. A Killing spinor on Mn is a section ψ of ΣM satisfying

∇Xψ = λX · ψ, ∀X ∈ TM,

for some real number λ 6= 0, called the Killing constant of ψ. A real Killing spinor
gives rise by complexification to a complex Killing spinor, but the converse is not true
in general (see below). The existence of a (real or complex) Killing spinor implies that
M is an Einstein manifold with Einstein constant 4λ2(n− 1).

Note that the terminology of real Killing spinors is sometimes used to denote Killing
spinors with real Killing constant, in opposition to imaginary Killing spinors, whose
Killing constant is imaginary. As in this paper we only consider spinors with real
Killing constants, we preferred to use the attribute real in order to describe the nature
of the object (as section in a real vector bundle), rather than the nature of its Killing
constant.

By rescaling the metric we can always suppose that the Killing constant is equal to
±1

2
, and we denote by N± the dimension of the complex vector space of complex Killing

spinors with Killing constant ±1
2
.

Definition 1.1. A compact spin manifold is called of type N if it is simply connected
and N+ +N− = N .

The simply connected manifolds with Killing spinors were described by Bär using
the cone construction and the Berger–Simons holonomy theorem (see [1]). In the

1



2 ANDREI MOROIANU

even–dimensional case, the only manifolds of nonzero type are the spheres and the
6–dimensional strictly nearly Kähler manifolds. In this paper we will only consider
odd–dimensional simply connected manifolds with Killing spinors, for which we have
the following picture ([1]):

type of M dim(M) M

N = 1 7 proper weak G2–structure
N = 2 2k + 1 Einstein–Sasakian structure
N = k + 2 4k + 3 3–Sasakian structure
N = 2k 2k + 1 S2k+1

The Lie algebra of infinitesimal isometries of 7–dimensional manifolds of type 1 was
studied in [3], where several results about the zero sets of Killing vector fields, as well
as a characterization of their exterior derivative in terms of the weak G2–structure are
obtained.

The aim of this paper is to study the Lie algebra of infinitesimal isometries of man-
ifolds of type 2 and 3, especially in dimension 7. Let (M2k+1, g, ξ) be a spin manifold
of type 2 (i.e. Einstein–Sasakian and not 3–Sasakian). Our first result is that each
infinitesimal isometry of M is an infinitesimal automorphism of the Sasakian structure
of M (Theorem 2.5). We next describe the action of the Killing vector fields on the set
of Killing spinors on M , which enables us to prove a splitting theorem for the Lie alge-
bra of the infinitesimal isometries of spin Einstein–Sasakian manifolds (Theorem 2.6).
In particular, we prove that the Lie algebra of infinitesimal automorphisms of a weak
G2–structure on a 7–dimensional manifold of type 2 is a sub–algebra of codimension 1
in the Lie algebra of infinitesimal isometries. Note that the set of Killing spinors is a
vector space if and only if they all have the same Killing constant, which holds exactly
when k is odd (cf. [2]).

The situation is more complicated for manifolds of type 3 (3–Sasakian manifolds),
since the sub–algebra I spanned by the Sasakian Killing vector fields is no more Abelian.
A closer analysis of the action of the Killing vector fields on the space of Killing spinors
allows us nevertheless to state a splitting theorem in dimension 7, and to deduce that I
is in fact an ideal of the Lie algebra of infinitesimal isometries for every 7–dimensional
simply connected 3–Sasakian manifold not isometric to S7 (Theorem 3.1). As a corol-
lary, we prove that every infinitesimal isometry of constant length on a 7–dimensional
manifold of type 3 is a linear combination (with constant coefficients) of the Sasakian
vector fields (Theorem 4.2 and Corollary 4.4).
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work and J. Figueroa–O’Farrill who pointed out several errors in a previous version of this
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2. Manifolds of type 2

The fundamental tool for most of our results is the Lie derivative of spinors with
respect to Killing vector fields. We refer the reader to [7] for the definition and the
basic properties of this operation. We start by a simple but very useful remark

Lemma 2.1. The Lie derivative with respect to Killing vector fields preserves the space
of Killing spinors.

Proof. Recall that the Lie derivative with respect to Killing vector fields satisfies the
Leibniz rule for the Clifford product (i.e. LX(Y · ψ) = LXY · ψ + Y · LXψ).

Suppose that ψ satisfies

(1) ∇Y ψ = aY · ψ, ∀Y,

and let X be a Killing vector field. As LX preserves the covariant derivative, by taking
the Lie derivative with respect to X of the above formula we obtain

(2) ∇LXY ψ + ∇Y (LXψ) = aLXY · ψ + aY · LXψ, ∀Y,

so, replacing Y by LXY in (1) and subtracting from (2) gives

∇Y (LXψ) = aY · LXψ, ∀Y.

�

Definition 2.2. A vector field ξ on a Riemannian manifold (M, g) is called a Sasakian
structure if ξ is a Killing vector field of unit length and

(3) (∇Xϕ)Y = g(X, Y )ξ − η(Y )X, for all vectorsX , Y.

In particular, if we take the scalar product with ξ in (3) shows that the tensors
ϕ := −∇ξ and η := g(ξ, .) are related by

ϕ2 = −Id+ η ⊗ ξ.

Definition 2.3. A triple (ξ1, ξ2, ξ3) of Sasakian structures is called a 3–Sasakian struc-
ture on M if the following conditions are satisfied:

1. The frame (ξ1, ξ2, ξ3) is orthonormal;

2. For each permutation (i, j, k) of signature δ, the tensors ϕi := −∇ξi and ηi :=
g(ξi, .) are related by ϕi ϕj = (−1)δ ϕk + ηj ⊗ ξi.

Let (Mn, g, ξ) be a simply connected Einstein–Sasakian manifold and suppose that
M is not 3–Sasakian. We first remark that M is spin (see [8]) and admits complex
Killing spinors ([1]). The space of all Killing spinors on M can actually be constructed
explicitly in the following way (see [2])

Lemma 2.4. If n = 1 or 5 mod 8, then M carries two complex lines of complex Killing
spinors with Killing constants ±1/2. Their fiber at each point is given by the solution
of the Clifford equation

(4) (±2φ(X) + ξX −Xξ)ψ = 0, ∀X.
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If n = 3 or 7 mod 8, then M carries a 2–dimensional complex vector space of complex
Killing spinors, with Killing constant 1/2, whose fiber at each point is given by the
solution of the Clifford equation

(5) (2ϕ(X) + ξ ·X −X · ξ) · ψ = 0, ∀X.

Theorem 2.5. Let X be a Killing vector field on a simply connected Einstein–Sasakian
manifold (Mn, g, ξ), and suppose that M is not 3–Sasakian. Then X is an infinitesimal
automorphism of the Sasakian structure of M , that is, [X, ξ] = 0.

Proof. The spin representations are known to be real for n = 0, 6 and 7 mod 8, complex
for n = 1 and 5 mod 8 and quaternionic for n = 2, 3 and 4 mod 8. In our situation n
is odd, and we consider first the case n = 1 or 5 mod 8. Let ψ be a Killing spinor on
M with Killing constant 1/2 and let X be any Killing vector field. Then LXψ has the
same Killing constant, so

(6) LXψ = aψ

for some complex number a. Moreover

(7) ξ · ψ = bψ

for some b ∈ C (because ξ · ψ is a Killing spinor with the same Killing constant,
as easily shown by equation (4) after covariant differentiation). Then, taking the Lie
derivative with respect to X in (7) and using (6), one obtains LXξ ·ψ = 0, so [X, ξ] = 0.

If n = 7 mod 8, the complex spin bundle has a real structure, so Lemma 2.4 also
holds for real Killing spinors in this case. Let ψ be such a spinor. It is clear that
ξ · ψ is a Killing spinor, too, and as M is not 3–Sasakian, every real Killing spinor on
M is a linear combination of ψ and ξ · ψ. Recall that we have an Euclidean scalar
product on ΣM , with respect to which the Clifford multiplication by a vector is skew–
symmetric. In particular we have (X · φ, φ) = 0 for all X and φ. Moreover, for every
spinor φ of constant length (so, in particular, for every real Killing spinor), we have
0 = X(φ, φ) = 2(LXφ, φ), since the Lie derivation with respect to Killing vector fields
preserves the Euclidean product on ΣM . By Lemma 2.1 we then deduce that LXψ
and LX(ξ · ψ) are proportional with ξ · ψ and ψ respectively. Let a ∈ R such that
LXψ = aξ · ψ. We then have

LX(ξ · ψ) = LXξ · ψ + ξ · LXψ = LXξ · ψ − aψ,

and as the left side of this equation is proportional to ψ, the same must be true for
LXξ ·ψ, which is actually perpendicular to ψ. Thus, LXξ ·ψ = 0, which implies LXξ = 0.

Finally, let n = 3 mod 8 and suppose that n > 3 (for n = 3, M would be a space
form). In this case the spin bundle is quaternionic and we fix a complex Killing spinor
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ψ. It then satisfies (5) and every other complex Killing spinor is of the form qψ, where
q is a quaternion. We obtain as before

(8) ξ · ψ = Aψ

for some quaternion A and

(9) LXψ = Bψ

for every Killing vector field X, where B is a quaternion depending on X. Taking
the Lie derivative in (8) and using (9) yields

[X, ξ]ψ = [A,B]ψ.

We denote [X, ξ] = Z and introduce this in (5) where Y is chosen as to be perpen-
dicular to Z and φ(Z) (here we use the fact that dimM > 3). Since Z is perpendicular
to ξ (because ξ has constant length) this yields Z = 0, as claimed.

�

We now restrict our attention to the 7–dimensional case, and consider a spin manifold
M7 of type 2 (recall that this means that M is Einstein–Sasakian, but not 3–Sasakian).
The existence of a Killing spinor ψ on a 7–dimensional manifold M is equivalent to that
of a weak G2–structure ωψ ([3], [4]), via the following relation (cf. [2])

(10) ωψ(X, Y, ·) · ψ = (X · Y + g(X, Y )) · ψ , ∀X, Y ∈ TM.

By choosing Y = ξ in (10) and using (5) we obtain:

(11) dξ = 2ξyωψ,

Corresponding to the 2–dimensional vector space Kill(ΣM) of Killing spinors, we
have a 2–dimensional vector space G2(M) of weak G2–structures on M , and of course,
this vector space is preserved by the action of the infinitesimal isometries, i.e. we have
a real representation l of i(M) on G2(M). Our aim is to describe this representation.
By Theorem 2.5 we have an exact sequence of Lie algebras

(12) 0 → Rξ → i(M) → i(M)/Rξ → 0.

Theorem 2.6. (splitting theorem for 7–dimensional spin Einstein–Sasakian manifolds)
(i) The restriction of l to Rξ is isomorphic to the (irreducible) representation of u(1)
on C.
(ii) There exists a splitting of the above exact sequence in i(M) = Rξ ⊕ i0(M), such
that the restriction of l to i0(M) is trivial.
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Proof. (i) We already know that Lξψ = aξ · ψ for some a ∈ R, and from this it follows
that Lξ(ξ ·ψ) = −aψ. All we have to show is that a is nonzero. Suppose that LXψ = 0.
Then X is an infinitesimal automorphism of the weak G2–structure ωψ defined by ψ, so
by Theorem 6.1 in [3] we obtain:

(13) π7(dξ) = −
2

3
(ξyωψ).

On the other hand, (11) shows that dξ = 2ξyωψ ∈ Λ2
7M , so π7(dξ) = 2ξyωψ. This,

together with (13) would then imply ξyωψ = 0, so ξ = 0, a contradiction which proves
that a 6= 0.

(ii) Let us fix a Killing spinor ψ as before. Consider the linear function L : i(M) → R

given by

L(X) = (LXψ, ξ · ψ).

By the previous discussion, L can be also given by

LXψ = L(X)ξ · ψ.

This formula shows that L is in fact a Lie algebra homomorphism, since

L[X,Y ]ψ = [LX ,LY ]ψ = LX(L(Y )ξ · ψ) −LY (L(X)ξ · ψ)

= −L(X)L(Y )ψ + L(X)L(Y )ψ = 0.

The kernel i0(M) of L is thus an ideal of i(M) of codimension 1. By (i) we see that
i0(M) ∩ Rξ = 0, so i(M) = Rξ ⊕ i0(M). The last statement of the theorem is now
trivial, by the very definition of i0(M).

�

3. Manifolds of type 3

We now consider a 7–dimensional manifold M of type 3, i.e. a simply connected
3–Sasakian manifold not isometric with the Euclidean 7–sphere. Denote by ξi and
ϕi := −∇ξi , i ∈ {1, 2, 3}, the 3–Sasakian structure. It is easily seen that the structure
group of the frame of oriented orthonormal bundles on M restricts to SU(2), which can
be viewed (being simply connected) as a subgroup of Spin(7), soM is automatically spin.
M is also Einstein, by a theorem of Kashiwada ([6]). As before, each Sasakian structure
ξi defines a 2–dimensional sub–bundle of ΣM , Hi := Φ(ξi), trivialized by Killing spinors,
and conversely, each Hi determines ξi. If for some x ∈ M the fibers Hi(x) and Hj(x)
are equal, then Hi = Hj (a Killing spinor is determined by its value at any point), so
ξi = ξj, thus implying i = j. Consequently, for i 6= j we have dim(Hi(x) ∩Hj(x)) ≤ 1,
so dim(Hi(x) ∪ Hj(x)) ≥ 3. But the space of Killing spinors has dimension 3, so
dim(Hi(x)∪Hj(x)) = 3, thus showing that dim(Hi(x)∩Hj(x)) = 1. We choose Killing
spinors of unit norm ψ1, ψ2, ψ3 spanning H2 ∩H3, H3 ∩H1 and H1 ∩H2 respectively.
We first show that these three spinors are orthogonal to each other in every point of
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M . Let us fix some x ∈ M and denote by aij := (ψi, ψj) in x. Using the computation
of [2], p.84, we see that ψ1 and ξ2 · ψ1 span H2, so we can write

(14) ψ3 = a13ψ1 + aξ2 · ψ1

for some real number a. Similarly we can find b ∈ R such that

(15) ψ1 = a12ψ2 + bξ3 · ψ2.

Using (14) and (15) we obtain

(16) ψ3 = a13a12ψ2 + a13bξ3 · ψ2 + aa12ξ2 · ψ2 + abξ2 · ξ3 · ψ2,

and taking the scalar product with ψ2 in (16) gives a23 = a13a12. Similarly we obtain
a13 = a23a12, and hence a23(1 − a2

12) = 0. But a2
12 < 1, since otherwise ψ1 = ±ψ2, so

a23 = 0, and by symmetry, a12 = a13 = 0.

We thus have shown that ψi are everywhere orthogonal to each other, which means
that Hi is the orthogonal space to ψi in H = ∪Hi. Using this and relation (5) we see
that ξ2 ·ψ1 lies inH1∩H2, so we can suppose without loss of generality that ξ2 ·ψ1 = −ψ3,
and similarly ξ3 ·ψ1 = −ψ2. We then also have ξ1 ·ψ2 = εψ3, where ε = ±1. By replacing
ψ1 with εψ1 we finally obtain the homogeneous formulas

(17) ξi · ψj = δεψk,

where δ is the signature of the permutation {i, j, k}.

Let us now compute the Lie derivative of the spinors ψi with respect to ξj. As Lξ1
preserves H1, Lξ1ψ3 lies in H1. Moreover it is orthogonal to ψ3, so there is some a ∈ R

such that Lξ1ψ3 = aψ2. Taking the Lie derivative with respect to ξ1 in ξ2 ·ψ3 = εψ1 and
using the definition of the 3–Sasakian structure we obtain εLξ1ψ1 = ξ3 · ψ3 + aξ2 · ψ2.
This is orthogonal to all of the ψi, as easily follows from (17). On the other hand,
Lξ1ψ1 ∈ H by Lemma 2.1, so Lξ1ψ1 = 0. This implies that ξ3 · ψ3 + aξ2 · ψ2 = 0, so
a = −1 (by (17)) and hence

(18) Lξiψj = δψk,

where δ denotes the signature of the permutation {i, j, k}, with the convention δ = 0 if
{i, j, k} 6= {1, 2, 3}.

We are now ready for the main result of this section. As in the Einstein–Sasakian case,
there is a natural bijection between the 3–dimensional vector space H of Killing spinors
and the set of weak G2–structures G2(M), and we consider the real representation l of
i(M) on G2(M) given by the Lie derivative via the above bijection. Let I denote the
sub–algebra of i(M) spanned by ξ1, ξ2 and ξ3.

Theorem 3.1. (splitting theorem for 7–dimensional 3–Sasakian manifolds)
(i) The restriction of l to I is isomorphic to the (irreducible) representation of su(2) =
so(3) on R3.
(ii) There exists a Lie algebra homomorphism L : i(M) → I, whose restriction to I is
the identity.
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(iii) The restriction of l to i0(M) := ker(L) is trivial.
(iv) The induced exact sequence of Lie algebras

(19) 0 → i0(M) → i(M) → I → 0

is splitting. Equivalently, I is an ideal of i(M) and i(M) ≃ I ⊕ i0(M).

Proof. (i) Follows directly from (18).

(ii) Given X ∈ i(M), we denote by bij(X) = (LXψi, ψj), and define L(X) =
1
2
(b23(X)ξ1 + b31(X)ξ2 + b12(X)ξ3). Let us check that L is a Lie algebra homomor-

phism. Take X, Y ∈ i(M). We will just show that the ξ1–component of L([X, Y ]) and
[L(X), L(Y )] are the same, which is clearly sufficient, by symmetry. From the definition
of a 3–Sasakian structure we obtain directly

(20) g([L(X), L(Y )], ξ1) =
1

2
(b31(X)b12(Y ) − 2b31(Y )b12(X)).

Using L[X,Y ] = [LX ,LY ] we find

b23([X, Y ]) = (LXLY ψ2, ψ3) − (LYLXψ2, ψ3)

= (LX(b21(Y )ψ1 + b23(Y )ψ3), ψ3)

−(LY (b21(X)ψ1 + b23(X)ψ3), ψ3)

= b21(Y )b13(X) − b21(X)b13(Y ),

so finally

g(L([X, Y ]), ξ1) =
1

2
b23([X, Y ]) =

1

2
(b31(X)b12(Y ) − 2b31(Y )b12(X)).

The last assertion follows from (18).

(iii) If X ∈ i0(M), then bij = 0 so LXψi is orthogonal to H . As LXψi ∈ H (by
Lemma 2.1), we obtain LXψi = 0.

(iv) We have to show that I is an ideal of i(M) or, equivalently, that I and i0(M)
are commuting sub–algebras of i(M). Let X ∈ i0(M). Taking the Lie derivative of (17)
with respect to X and using (iii), we see that LXξi · ψj = 0, so LXξi = 0.

�

4. Infinitesimal isometries of unit length on 7–dimensional manifolds
of type 3

As a first application of the above result we have the following

Corollary 4.1. On a 7–dimensional manifold M of type 3, every Killing vector field
X of unit length is either a Sasakian structure or an infinitesimal automorphism of the
3–Sasakian structure.

Proof. We decompose X with respect to i(M) = I⊕ i0(M) as X = A+Y . From (iv) of
the previous theorem we know that Y commutes with the unit Killing vector fields ξi
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spanning I, i.e. it is an infinitesimal automorphism of the 3–Sasakian structure. If ai
denotes the ξi–component of A, we have to show that either Y = 0 or ai = 0. Consider
the functions fi := g(X, ξi). As [Y, ξ1] = 0, we can compute [X, ξ1] = a2ξ3 − a3ξ2, so

0 = −
1

2
Lξ1g(X,X) = −g(Lξ1X,X) = g([X, ξ1], X)

= a2f3 − a3f2,

and similarly

(21) a2f1 = a1f2 and a3f1 = a1f3.

On the other hand, using the definition of the 3–Sasakian structure one easily obtains

(22) ξi(fi) = 0

and

(23) ξi(fj) = 2δ(fk − ak),

where δ denotes as usual the signature of the permutation {i, j, k}.

Suppose now that at least one of the ai’s doesn’t vanish. Without loss of generality,
we can suppose a1 6= 0. Differentiating in (21) with respect to ξ1 and using (22) and
(23) we obtain f2 = a2 and f3 = a3. Using [Y, ξi] = 0 we find 0 = dfi = 2ϕi(Y ) (i = 2
and i = 3), so Y ∈ Rξ2 ∩ Rξ3 = {0}. It is now clear that X belongs to the 2–sphere of
Sasakian structures of M .

�

Actually a closer analysis of this situation allows us to show that the second case
never occurs in the above corollary. Indeed, we have the

Theorem 4.2. Consider an infinitesimal isometry of unit length X on a simply con-
nected 3–Sasakian manifold (M7, g, ξi). If X is an infinitesimal automorphism of the
3–Sasakian structure, then M is isometric to the sphere S7.

Proof. It is obvious that {ξ1, ξ2, ξ3, X, ϕ1(X), ϕ2(X), ϕ3(X)} is a frame in each point
of M7 where X doesn’t belong to the distribution spanned by the ξi. The set N of
such points is obviously open. Suppose that N is not dense in M . Then there exists
an open subset U of M such that X is a vertical Killing vector field over U (in the
sense of Ishihara and Konishi [5]). From Lemma 7 of loc. cit. we obtain that X is a
linear combination with constant coefficients of ξi over U , and hence over M since two
infinitesimal isometries which coincide on an open set must be equal. This contradicts
the fact that X is an infinitesimal automorphism of the 3–Sasakian structure, so we
conclude that N is everywhere dense in M .

The next step is to prove that in any point of N , the sectional curvature of M is
constant and equal to 1. In order to prove this, it suffices to show that

(24) g(R(Y1, Y2)Y3, Y4) = g(Y2, Y3)g(Y1, Y4) − g(Y1, Y3)g(Y2, Y4),
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whenever each Yi belong to the frame {ξ1, ξ2, ξ3, X, ϕ1(X), ϕ2(X), ϕ3(X)}. First of all,
when Yi = ξj for some i, j, then we are done by Lemma 4 at the page 78 in [2]. Actually,
this simple lemma just says that the sectional curvature of every 2–plane containing one
of the Sasakian directions is equal to 1.

It is thus enough to check (24) in the case when Yi ∈ {X,ϕ1(X), ϕ2(X), ϕ3(X)}.
A priori we would have 44 = 256 possibilities, but thanks to the symmetries of the
curvature tensor and of the 3–Sasakian structure, the reader can easily convince himself
that it is enough to prove (24) in the following cases:

a) Y1 = ϕ1(X), Y2 = Y3 = X

b) Y1 = X, Y2 = Y3 = ϕ1(X)

c) Y1 = ϕ2(X), Y2 = Y3 = ϕ1(X)

d) Y1 = ϕ3(X), Y2 = ϕ1(X), Y3 = ϕ2(X)

e) Y1 = ϕ1(X), Y2 = ϕ2(X), Y3 = X

In order to compute the curvature tensor we need the

Lemma 4.3. The following relations hold

(25) ∇XX = 0 ; [X, ξi] = 0 ∀i ∈ {1, 2, 3}

(26) [X,ϕi(X)] = 0 ∀i ∈ {1, 2, 3}

(27) dfi = 2ϕi(X) ∀i ∈ {1, 2, 3} (fi = g(X, ξi))

(28) g(X,ϕi(X)) = 0 ; g(ϕi(X), ϕj(X)) = δij − fifj

(29) ∇X(ϕi(X)) = ξi − fiX ∀i ∈ {1, 2, 3}

(30) ∇ϕi(X)(ϕi(X)) = −2fiϕi(X) ∀i ∈ {1, 2, 3}

(31) ∇ϕi(X)(ϕj(X)) = −fiϕj(X) − fjϕi(X) − δξk,

where in the last equation, δ denotes as usual the signature of the permutation {i, j, k}.

Proof. (25) is just the hypothesis on X; (26) follows from the fact that LX preserves ξi
and ∇, so it preserves ϕi; (27) and (28) are trivial, and (29), (30), (31) follow directly
from (26) and the definition of a 3–Sasakian structure.

�
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We will now check the relation (24) in each of the cases a) – e) using the definition
of the 3–Sasakian structure and the above lemma.

a) R(ϕ1(X), X)X = −∇X∇ϕ1(X)X = −∇X(ξ1 − f1X)

= ϕ1(X) = g(X,X)ϕ1(X) − g(X,ϕ1(X))X;

b) R(X,ϕ1(X))ϕ1(X)

= ∇X(−2f1ϕ1(X)) −∇ϕ1(X)(ξ1 − f1X)

= −2f1(ξ1 − f1X) + ϕ2
1(X) + f1(ξ1 − f1X) + 2X|ϕ1(X)|2

= −f1(ξ1 − f1X) −X + ξ1f1 + 2X|ϕ1(X)|2

= X|ϕ1(X)|2

= g(ϕ1(X), ϕ1(X))X − g(X,ϕ1(X))ϕ1(X);

c) R(ϕ2(X), ϕ1(X))ϕ1(X)

= ∇ϕ2(X)(−2f1ϕ1(X)) −∇ϕ1(X)(−f2ϕ1(X) − f1ϕ2(X) + ξ3) − 2∇ξ3(ϕ1(X))

= −2f1(−f2ϕ1(X) − f1ϕ2(X) + ξ3) + 4f1f2ϕ1(X) − 2f1f2ϕ1(X) − 2f1f2ϕ1(X)

+2(1 − f 2
1 )ϕ2(X) + f1(−f2ϕ1(X) − f1ϕ2(X) − ξ3) + ϕ3(ϕ1(X)) + 2ϕ1(ϕ3(X))

−2f3ξ1 + 2f1ξ3

= f1f2ϕ1(X) + (2f 2
1 + 2 − 2f 2

1 − f 2
1 )ϕ2(X) − 2f1ξ3 − f1ξ3 + ϕ2(X) + f1ξ3

−2ϕ2(X) + 2f3ξ1 − 2f3ξ1 + 2f1ξ3

= f1f2ϕ1(X) + (1 − f 2
1 )ϕ2(X)

= g(ϕ1(X), ϕ1(X))ϕ2(X) − g(ϕ1(X), ϕ2(X))ϕ1(X);

d) R(ϕ3(X), ϕ1(X))ϕ2(X)

= ∇ϕ3(X)(−f1ϕ2(X) − f2ϕ1(X) − ξ3) −∇ϕ1(X)(−f2ϕ3(X) − f3ϕ2(X) + ξ1)

+2∇ξ2(ϕ2(X))

= 2f1f3ϕ2(X) + 2f2f3ϕ1(X) − f1(−f2ϕ3(X) − f3ϕ2(X) + ξ1) − f2(−f1ϕ3(X)

−f3ϕ1(X) − ξ2) −X + ξ3f3 − 2f1f2ϕ3(X) − 2f1f3ϕ2(X)

+f2(−f1ϕ3(X) − f3ϕ1(X) + ξ2) + f3(−f1ϕ2(X) − f2ϕ1(X) − ξ3) −X + ξ1f1

+2f2ξ2 − 2f2ξ2 + 2X − 2f2ξ2

= f2f3ϕ1(X) − f1f2ϕ3(X)

= g(ϕ1(X), ϕ2(X))ϕ3(X) − g(ϕ2(X), ϕ3(X))ϕ1(X);
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e) R(ϕ1(X), ϕ2(X))X

= ∇ϕ1(X)(ξ2 −Xf2) −∇ϕ2(X)(ξ1 −Xf1) + 2∇ξ3X

= ϕ3(X) − f1ξ2 − f2(ξ1 −Xf1) + 2f1f2X + ϕ3(X) + f2ξ1 + f1(ξ2 −Xf2)

−2f1f2X − 2ϕ3(X)

= 0 = g(X,ϕ2(X))ϕ1(X) − g(X,ϕ1(X))ϕ2(X).

In order to complete the proof of the theorem, we remark that, N being dense in
M , the sectional curvature of M has to be constant on the whole M , so by simply
connectedness, M is isometric to S7.

�

Corollary 4.4. On a 7–dimensional manifold M of type 3, the only Killing vector
fields of constant length are the trivial ones, i.e. the linear combinations with constant
coefficients of the Sasakian vector fields.
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