Generalized Killing Spinors and Conformal Eigenvalue Estimates for Spin^c Manifolds

Abstract : In this paper we prove the Spin^c analog of the Hijazi inequality on the first eigenvalue of the Dirac operator on compact Riemannian manifolds and study its equality case. During this study, we are naturally led to consider generalized Killing spinors on Spin^c manifolds and we prove that such objects can only exist on low-dimensional manifolds (up to dimension three). This allows us to give a nice geometrical description of the manifolds satisfying the equality case of the above-mentioned inequality and to classify them in dimension three and four.
Type de document :
Article dans une revue
Annals of Global Analysis and Geometry, Springer Verlag, 1999, 17, pp.341-370. 〈10.1023/A:1006546915261〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00125994
Contributeur : Andrei Moroianu <>
Soumis le : mardi 23 janvier 2007 - 11:43:36
Dernière modification le : mardi 24 octobre 2017 - 01:16:46
Document(s) archivé(s) le : mercredi 7 avril 2010 - 02:27:47

Fichiers

1999agag.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Marc Herzlich, Andrei Moroianu. Generalized Killing Spinors and Conformal Eigenvalue Estimates for Spin^c Manifolds. Annals of Global Analysis and Geometry, Springer Verlag, 1999, 17, pp.341-370. 〈10.1023/A:1006546915261〉. 〈hal-00125994〉

Partager

Métriques

Consultations de la notice

235

Téléchargements de fichiers

151