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On Kirchberg’s inequality for compact Kahler manifolds
of even complex dimension

Andrei Moroianu
Centre de Mathématiques de 1’Ecole Polytechnique
URA 169 du CNRS, 91128 Palaiseau Cedex

Abstract - In 1986 K.-D. Kirchberg showed that each eigenvalue of the Dirac operator on a
compact Kéahler manifold (M?™, g) of even complex dimension satisfies the inequality \> >
fl(mL—l) infy; S, where by S we denote the scalar curvature. It is conjectured that the manifolds
for the limiting case of this inequality are products T? x N, where T? is a flat torus and N
is the twistor space of a quaternionic Kihler manifold of positive scalar curvature. In 1990
A. Lichnerowicz announced an affirmative answer for this conjecture (cf. [11]), but his proof
seems to work only when assuming that the Ricci tensor is parallel. The aim of this note is to
prove several results about manifolds satisfying the limiting case of Kirchberg’s inequality and

to prove the above conjecture in some particular cases.

1 Introduction

The first inequality on the eigenvalues of the Dirac operator on a compact spin
manifold (M, g) was obtained in 1980 by T. Friedrich ([2]), who showed that

2 n .
A% > =1 1}1} S, (1)
where S is the scalar curvature of M. Of course, this inequality is interesting
only for manifolds with positive scalar curvature. In order to obtain it, Friedrich
considered a modified connection and used the Lichnerowicz formula ([10]). The
eigenspinors corresponding to eigenvalues in the limiting case of the inequality
(1) are just the Killing spinors of M. The manifolds carrying Killing spinors were
classified by C. Bér in [1].

In 1984, O. Hijazi ([5], [6]) showed that a K&hler manifold doesn’t admit Killing
spinors, i.e. the inequality (1) is always strict for K&hler manifolds. In the
Kéhlerian case Friedrich’s inequality was improved by K.-D. Kirchberg (cf. [8])
who showed that each eigenvalue A of the Dirac operator on a compact spin
Kéhler manifold (M?™, g) satisfies

1
22> P Lies it m s odd, (2)
dm M
and m
2y M . e
A° > Im=1) %fS, if m is even. (3)



Kéhler manifolds satisfying the limiting case in these inequalities are called lim-
iting manifolds. In the odd case, limiting manifolds admit Kahlerian Killing
spinors ([7]) and they were classified by the author (cf. [12]) in 1994.

On the other hand, limiting manifolds of even complex dimension admit spinors
satisfying a more complicated equation (cf. [9], [4]) and moreover the product
T? x N of a flat torus and an odd-dimensional limiting manifold is an even-
dimensional limiting manifold. It is conjectured that each even-dimensional lim-
iting manifold can be constructed in this way.

In 1990 A. Lichnerowicz announced a solution of this conjecture (cf. [11]) but
when taking a derivative at the fourth line from the bottom of page 720, he
chooses an orthonormal frame adapted with respect to the eigenvalues of the
Ricci tensor and parallel in a point, so it seems that his proof only works when
assuming that the Ricci tensor is parallel. The aim of this paper is to deduce
several results about even-dimensional limiting manifolds, the most important
being the following

Theorem. The Ricci tensor of a limiting manifold of even complex dimension
has two eigenvalues, S/(n —2) and 0, with multiplicitiesn — 2 and 2 respectively.

The author is very indebted to P. Gauduchon for his competent advises and his
important contribution to the preparation of this work.

2 Previous results

We use the following terminology, taken from [4]. Let (M?™, g, J) be an even-
dimensional compact spin Kahler manifold (m = 21) and ¥M the spinor bundle
of M. On XM there is an action of the exterior forms on M, given by

G = Y wlen e e

11 < <ip
With respect to this action, the Kdhler form of M, €2, defines a decomposition
XM = @)L XM,

where XYM is the eigenbundle of rank CY, associated to the eigenvalue i u? =
i (m —2q) of 2. Via this decomposition, every spinor ¥ can be uniquely written

in the form .
U = Z AN
q=0

For ¢ € {0,...,m} denote by ¢? the restriction of the Clifford contraction ¢ to
T*M @ X9M. We then have
d=cl +c2 (4)
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where ¢? and ¢, who take their values in X9 M, and X971 M respectively, are
given by

Aa®y)= (o —iJo) 1, (5)

1
c(i(a®¢)=§(oz+iJa)-¢, (6)
VoaoeT;M, Vi € XIM, Vo € M.

One can introduce a natural decomposition of the Dirac operator restricted to
sections of X¢M into
D=D,+D_, (7)

where D, and D_ are defined by
Dy=ctoV |, D_=coV. (8)

Gauduchon introduces then the Kahlerian Penrose operator given by

1
4(m —q+1)

QLY = ViU + (X +iJX)- D, + (X —iJX)-D_U.

1
4(g+1)
Using this operator and a simple algebraic lemma, he easily obtains Kirchberg’s
inequalities and the necessary conditions for the equality case to occur. Namely,
we have the following

Theorem 2.1 (cf. [4], [7], [8], [11]) Let (M, g) be a compact spin Kdhler manifold
of (real) dimension n = 2m = 41. Then every eigenvalue X of the Dirac operator
of M satisfies the inequality (3). The equality holds iff there exists a nonzero
spinor ¥ € S M satisfying

1
VX\II:—E(X—Z'JX)-D\IJ (9)
and
D>V = D, DV = )V (10)
One then easily obtains
QU =20 |, Q-DU=0 (11)

From now on, we will always suppose n > 4. The case n = 4 was completely
solved by T. Friedrich in [3].

Straightforward computations, that we will not reproduce here yield the following



Lemma 2.1 Forn >4 and M as above, the following formulas hold
1
VxDV¥ = —Z(Ric(X) +iJRic(X)) - ¥ (12)

K(X —iJX) ¥ = (Ric(X) — iJRic(X)) - ¥
K(X —iJX) DV = (Ric(X) — iJRic(X)) - D¥
p-UV=4iKV | p-D¥=—iKDVU
Vxp-U=0 , Vxp-D¥U=—i(Ric*(X)— KRic(X))- T,

13
14
15

(
(
(
(16

)
)
)
)
where p is the Ricci form, Ric is the Ricci tensor and K = %

As standard references for these formulas see [4], [9]. One should note however
a slight difference between the notations of [9] and ours, due to the fact that
our ¥ is just Kirchberg’s ji)'~!, j being the canonical C-anti-linear quaternionic
(resp. real) structure of the spinor bundle. This is why all the complex vectors
appearing in [9] have to be conjugated in our notations.

3 The eigenvalues of the Ricci tensor of a lim-
iting manifold

In this section we obtain our main result, which states that the Ricci tensor of
a limiting manifold of even complex dimension has only two eigenvalues, 0 with
multiplicity 2 and S/(n — 2) with multiplicity n — 2. This is, in our opinion, a
first step towards the classification of these manifolds.

Let us define the 2-forms

1 1 &
pe= 5 > e AJRIC(e) = 5 Y ei - JRic'(e), (17)

=1 i=1

(

t

(as) : tr(Ric’) = (n — 2)K* (where tr denotes the trace);
(bs) : ps -V =1K°V;

(cs) : ps - DV = —iK*DV;

(ds) : Vxps ¥ =0;

(es) Vxps - DU = —i(Ric*™(X) — K*Ric(X)) - ¥;

(fs) ops = 0.

By the above formulas, all these propositions are true for s = 1. We will now
prove that they are actually true for all s € N.



Lemma 3.1 The following implications hold :
1. (as) = (bs) , (cs);
t (cs) = (ds) et (es);
et (fou1) = (f3);
(e

s)» (fs) = (as41)-

2. (bs) e
3. (as)
4. (ds),

Proof. Let x € M and consider an orthonormal basis {X;, X, }, adapted with
respect to the Ricci tensor in the sense that Ric(X,) = puaX,, a € {1,...,r},
with p, # K and Ric(X;) = KX;, ¢ € {r+1,...,n}. From (13) and (14) we
then obtain

(X, —iJX,) ¥ =0, (18)
(X, —iJX,) DU =0, (19)
foralla e {1,...,r}.

1. Suppose (as) is true. We then have

r

> (up — K°) = tr(Ric®) — nK® = —2K°, (20)
a=1
so, using (18),
(o= K% = 320~ K)Xe - J(X) -
= 52— KX, (0K, -0
_ %é(ﬂa K*)W = —iK*U

Similarly, (19) and (20) give
(ps — K*Q) - DU = —iK*D.

We then use (11) and obtain (bs) and (cy).

2. The relation
ps - X = X - ps + 2JRic’(X), (21)

gives

1
Vxps U = Vx(ps- ) —p, - Vx¥ =iK*VyxU + —p, - (X —iJX) - DU
n



= KX —iJX)- DU+ ~(X —iJX)-p,- DU
n

n

i
+£(Ric5(X) - iJRics(X)) . DU

_ Pg(x—isx).pu+ 2 (Rlc (X) — iJRic*(X)) - DU
= O.n
and similarly,
Vxps DV = Vx(ps-DV)—ps-VxDU

= ~iK'VxDV + 3p, - (Rie(X) + i/Ric(X)) - ¥
_ %KS(Ric(X) + iJRic(X)) - ¥

4 (Rie(X) + 1Rie(X) - 0 — & (Rie ™ (X)
+2JR103+1 (X)) v

= —§(RICS+1(X) K°Ric(X)

+iJRic* (X)) — iJK*Ric(X)) - ¥
= —i(Ric*T(X) — K*Ric(X)) - ¥
where the last equality is justified by a repeated use of (13).

3. Let us first explicit in terms of the Ricci tensor the equality dp, = 0. If X and
{e;} denote a vector field and a local orthonormal frame parallel in x respectively,
we have

dps(X) = =V, ps(ei, X) = =V, (JRic’ (e;), X) = (Ve Ric’(e;), JX),  (22)
S0
dps =0 <= V,Ric’(e;) = 0. (23)
From (a,) we obtain
1
(VxRic)(e;, Ric*te;) = tr(VxRico Ric*™') = =V (tr(Ric*)) = 0, (24)
s
which gives
0 = dp(Je;, Ric® te;, X) = (Vye,p)(Ric* te;, X)
+(Vgies-1 )(X Jez) (Vxp)(Jes, Ric*te;)
= (VJC RIC) 61, X) + (VRiCS_IEiR’iC)(JX’ Jez)
—(VxRic (ez, Ric*te;)

(JR
= 2(V.Ric)(Ric* e, X)
= 2(V,Ric’(e;), X) — 2Ric(V,,Ric* *(e;), X),
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thus proving that (as) and (fs—1) imply (fs).

4. In (es) we put X = e;, make the Clifford product with e; and sum over 4, to
obtain
(dps + ps) - DY = i(tr(Ric*™ — K*tr(Ric)))V. (25)

Taking the scalar product with ¥ in this formula and using (d;) et (e;) gives
(+)  i(tr(Ric™™ — (n = 2)K*T))(¥, W) = ((dp,) - DV, V)

= (DV,dp, - ) = (DU, Dp, - ¥) =0,

and as the support of ¥ is dense in M, we obtain (asy1).
QED

The reader can easily convince himself that the direct recurrence (as) = (as41)
doesn’t work: one has to use the intermediary formulas (bs) — (f5)-

The formulas (a;) show that the sum of the s** powers of the eigenvalues of Ric
equals (n — 2)K* for all s, so by Newton'’s relations we deduce our main result:

Theorem 3.1 The Ricci tensor of a limiting manifold of even complex dimension
has two eigenvalues, K and 0, the first one with multiplicity n — 2 and the second
one with multiplicity 2.

The above result does not imply that the Ricci tensor of a limiting manifold has
to be parallel; we have nevertheless the strong conviction that this must hold,
and consequently that Lichnerowicz’ conjecture is true. We give here a result in
favor of this conjecture:

Proposition 3.1 Suppose that one of the following holds:
1° The length of ¥ is constant on M;

2° The two distributions TM° and TM¥ on M corresponding to the two eigen-
values of the Ricci tensor are holomorphic,

3° The restriction of the sectional curvature to TM° vanishes.

Then the Ricci tensor of M 1is parallel.

For a proof (using Theorem 3.1), see [13], section 9.4.
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