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Abstract

We establish an asymptotic representation formula for the steady state current per-
turbations caused by internal corrosive boundary parts of small surface measure. Based
on this formula we design a non-iterative method of MUSIC (multiple signal classifica-
tion) type for localizing the corrosive parts from voltage-to-current observations. We
perform numerical experiments to test the viability of the algorithm and the results
clearly demonstrate that the algorithm works well even in the presence of relatively
high noise ratios.
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1 Introduction

Hidden corrosion, for instance in pipes, is a serious problem that is responsible for significant
economic losses and represents a dangerous threat to safety. In the field of nondestructive
evaluation, new and improved techniques are therefore constantly being sought to facilitate
the detection of such hidden corrosion.

Corrosion occurs in many different forms, and several mathematical models for elec-
trostatic fields in the presence of corrosion have been studied in the literature (see, for
example, Kaup and Santosa [16], Kaup et al. [17], Vogelius and Xu [21], Inglese [12], Luong
and Santosa [13], Banks et al. [3] and references therein).
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In this paper, we adopt the potential model: Laplace’s equation holds in the metal pipe,
and the effect of corrosion is described by means of a linear Robin boundary condition.
A model like this is motivated by a number of observations. On the one hand, corrosion
tends to roughen a surface: this effect can be modelled by the introduction of a thin coat-
ing characterized by rapid oscillations. In the limit as the thickness of the coating goes
to zero and the rapidity of the oscillations diverges, the emergence of a Robin boundary
conditions has been shown by Buttazo and Kohn [5]. On the other hand, the study of ac-
tive electrochemical corrosion processes can be based on “first principles”, which conjecture
a certain relation between the number of “free electrons” and the energy level (typically
an exponential Boltzmann-type distribution). Potential models with exponential boundary
conditions that arise from such considerations are often associated with the names of Butler
and Volmer. Vogelius and Xu [21] study a potential model of this kind. If we linearize the
boundary condition of this model, we get the linear Robin boundary condition studied here.

To set up the problem mathematically, consider a simply connected, bounded C2,α do-
main U in R

2 for some 0 < α ≤ 1, and a simply connected C2,α domain D, compactly
contained in U . Ω = U \D represents the specimen to be inspected, e.g., the cross section
of the pipe. We define Γe = ∂U and Γi = ∂D, so that ∂Ω = Γi ∪ Γe. Suppose that the
inaccessible boundary Γi contains some corrosive, connected parts Is, s = 1, . . . ,m. The
open curves Is are well-separated, i.e., there is a constant c0 > 0 such that dist (Ii, Ij) > c0
for i 6= j, and the corrosion coefficient, γs ∈ C1(Is), of each Is, s = 1, . . . ,m, satisfies

0 ≤ γs ≤ C0 ,

for some constant C0, and is not identically zero. Let

γ(x) =
m∑

s=1

γsχs(x), x ∈ Γi , (1.1)

where χs denotes the characteristic function of Is. A typical shape of Ω would be an annulus.
We assume that the curve length of each Is is small, to be specific,

d0 ε ≤ |Is|Γi
≤ D0 ε, s = 1, . . . ,m , (1.2)

where ε is a small parameter, representing the common order of magnitude of Is, and d0,
D0 are positive constants. Each curve Is is centered around a fixed point zs:

Is = {z ∈ Γi : dΓi
(z, zs) < |Is|/2} . (1.3)

Here | · |Γi
and dΓi

(·, ·) refer to the one-dimensional curve length on Γi. The internal voltage
potential uε, generated by a voltage f applied to Γe, satisfies





∆uε = 0 in Ω ,

−
∂uε

∂ν
+ γuε = 0 on Γi ,

uε = f on Γe ,

(1.4)

where ν is the inward normal to Ω on Γi (i.e., the outward normal to D).
A realistic inverse problem in corrosion detection consists of the determination of the

corrosion damage on the inaccessible boundary part, Γi, when the available data are a finite
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number of voltage-to-current pairs on the accessible part Γe. The difficulties of this inverse
problem stem from its inherent ill-posedness and nonlinearity. Most of the techniques for
detecting the corrosion are based on iterative algorithms: least-square-fit algorithms and
Newton-type iteration schemes. These methods typically incur tremendous computational
costs to get close to the true corrosion damage, but more troubling: they frequently get
“stuck” near local minima.

The purpose of this work is to design a direct (non-iterative) technique for electrostatic
corrosion detection. This algorithm is of MUSIC-type (multiple signal classification) and
is based on an accurate asymptotic representation formula for the steady state boundary
currents. In many ways it is closely related to the algorithm developed in [4] for the purpose
of detection of small internal defects.

The Cauchy data continuation technique, as studied in the paper by Yang, Choulli,
and Cheng [22] for thermal detection of corrosion, is also a direct method. For reasons of
instability of the solution of the Cauchy problem it is less accurate than the method described
here. Furthermore it makes use of the formula γ = (1/uε) ∂uε/∂ν which, in the electrostatic
case is somewhat “unfortunate”, due to potential sign changes (and corresponding zeroes)
of uε. A significant (“signal-to noise”) advantage of the present method is that it directly
uses the boundary current perturbation data

(
∂uε

∂ν − ∂u0

∂ν

)
|Γe

(as opposed to ∂uε

∂ν |Γe
). Here

u0 is the voltage potential in the absence of corrosion, i.e., the solution to





∆u0 = 0 in Ω ,

−
∂u0

∂ν
= 0 on Γi ,

u0 = f on Γe .

(1.5)

The present paper is organized as follows: In Section 2 we review some basic facts about
layer potentials. In the following section we establish a representation formula for the unique
solution to (1.4). This formula generalizes the formula proved by Kang and Seo in [14, 15].
The main goal of Section 4 is to rigorously derive an asymptotic expansion for ∂uε

∂ν − ∂u0

∂ν
on Γe. Section 5 is then devoted to the design of the numerical algorithm, and several
computational experiments with it.

2 Layer Potentials

In this section we review some well-known properties of layer potentials for the Laplacian,
and establish some useful identities. Let Φ(x) be the fundamental solution associated with
the Laplacian ∆,

Φ(x) =
1

2π
ln |x| , x 6= 0 .

Let D be a simply connected, bounded C2,α domain in R
2, and let Γ := ∂D. Let H1(D)

denote the set of functions f ∈ L2(D) such that ∇f ∈ L2(D). Furthermore, we define
H2(D) as the space of functions u ∈ H1(D) such that ∂2u ∈ L2(D), and the space H3/2(D)
as the interpolation space [H1(D),H2(D)]1/2. Let H1/2(∂D) be the set of traces of functions

in H1(D) and H−1/2(∂D) = (H1/2(∂D))∗. Finally, let H1(∂D) denote the set of functions
f ∈ L2(∂D) such that ∂f/∂τ ∈ L2(∂D), where ∂/∂τ is the tangential derivative.
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The single-layer and double-layer potentials of a function ϕ ∈ L2(Γ), denoted SΓ[ϕ] and
DΓ[ϕ], respectively, are defined by

SΓ[ϕ](x) :=

∫

Γ

Φ(x− y)ϕ(y) dσy , x ∈ R
2 , (2.1)

DΓ[ϕ](x) :=

∫

Γ

∂

∂νy
Φ(x− y)ϕ(y) dσy , x ∈ R

2 \ Γ . (2.2)

For a function u, defined in R
2 \ Γ, we denote

∂u

∂ν

∣∣∣∣
±

(x) := lim
t→0+

〈∇u(x± tνx), νx〉 , x ∈ Γ ,

if the limit exists. Here νx is the outward unit normal to Γ = ∂D at x, and 〈 , 〉 denotes
the scalar product in R

2. u|± are defined likewise.
It is well-known (see for example [11]) that for ϕ ∈ L2(Γ)

∂(SΓ[ϕ])

∂ν

∣∣∣∣
±

(x) =

(
±

1

2
I + K∗

Γ

)
[ϕ](x) , x ∈ Γ , (2.3)

DΓ[ϕ]
∣∣
±

(x) =

(
∓

1

2
I + KΓ

)
[ϕ](x) , x ∈ Γ , (2.4)

where KΓ is defined by

KΓ[ϕ](x) =
1

2π

∫

Γ

〈y − x, νy〉

|x− y|2
ϕ(y) dσy ,

and K∗
Γ is the L2-adjoint of KΓ, i.e.,

K∗

Γ[ϕ](x) =
1

2π

∫

Γ

〈x− y, νx〉

|x− y|2
ϕ(y) dσy .

Since Γ is a C2,α curve, there is a constant C such that

|〈x− y, νx〉|

|x− y|2
≤ C , x, y ∈ Γ . (2.5)

Thus it immediately follows that KΓ is bounded on Lp(Γ) for 1 ≤ p ≤ ∞. Moreover, the
operator ϕ 7→ ∇TKΓ[ϕ], where ∇T denotes the tangential derivative on Γ, is a Calderón-
Zygmund operator on Γ which is known to be bounded on Lp(Γ) (1 < p < ∞), Cβ(Γ) and
C1,β(Γ) (0 < β < 1) (see [19]). Therefore KΓ and K∗

Γ map continuously Lp(Γ) into H1,p(Γ),
Cβ(Γ) into C1,β(Γ) (0 < β < 1), and C1,β(Γ) into C2,β(Γ) (0 < β ≤ α) since Γ is C2,α. Here
H1,p(Γ) is the collection of functions in Lp(Γ) whose derivatives also belong to Lp(Γ).

Lemma 2.1 The operators 1
2I + KΓ and 1

2I + K∗
Γ are invertible on Lp(Γ), 1 < p, as well

as on Ck(Γ) for k = 1, 2.

Proofs of Lemma 2.1 on the spaces L2(Γ) and C(Γ) can be found in [11]. The invertibility
on the other spaces can seen as follows: consider the equation

(
1

2
I + KΓ

)
[u] = f or

(
1

2
I + K∗

Γ

)
[u] = f.
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If f ∈ Lp(Γ) for p > 2 and u ∈ L2(Γ), then KΓu ∈ Lp(Γ) and hence u ∈ Lp(Γ). This shows
that 1

2I + KΓ and 1
2I + K∗

Γ are invertible on Lp(Γ) for p > 2. Invertibility on Lp(Γ) for
1 < p < 2 can be seen by duality. Similarly one can prove invertibility on Ck(Γ) for k = 1, 2.

In the case where Γ is a circle of radius r

〈νx, x− y〉

|x− y|2
=

1

2r
, x, y ∈ Γ ,

and hence

KΓ[ϕ](x) = K∗

Γ[ϕ](x) =
1

4πr

∫

Γ

ϕ(y) dσy . (2.6)

It now follows from (2.3) and (2.6) that

SΓ[1](x) =




r ln r if |x| ≤ r ,

r ln |x| if |x| ≥ r ,
(2.7)

in the case where Γ is a circle of radius r.
Finally, we recall some boundedness properties of single layer potentials for later use. If

p > 1, there is a constant Cp such that

‖SΓ[ϕ]‖L∞(Γ) ≤ Cp‖ϕ‖Lp(Γ) (2.8)

for all ϕ ∈ Lp(Γ). In fact, (2.8) can be proved using Hölder’s inequality. It is also well-known
that

‖SΓ[ϕ]‖H1(D) ≤ C‖ϕ‖L2(Γ) (2.9)

for any ϕ ∈ L2(Γ).

3 Representation Formula

Recall that Ω = U \ D, where U and D are simply connected, bounded C2 domains. Let
Γe = ∂U and Γi = ∂D. For f ∈ H1(Γe), let u0 be the solution in the absence of corrosion,
i.e., the solution to the problem (1.5). We seek to represent u0 in the following form

u0 = DΓe
[ϕ0] + SΓi

[ψ0] in Ω

for some functions ϕ0 ∈ H1(Γe) and ψ0 ∈ L2(Γi). The boundary conditions in (1.5) are,
due to the relations (2.4) and (2.3), equivalent to




1

2
I + KΓe

SΓi

−
∂

∂νi
DΓe

−
1

2
I −K∗

Γi




(
ϕ0

ψ0

)
=

(
f

0

)
∈ H1(Γe) × L2(Γi) , (3.1)

where νe and νi denote outward normal ν to Ω on Γe and Γi (the subscripts e and i emphasize
that they are defined on Γe and Γi, respectively). For example, ∂

∂νi
DΓe

[ϕ] = νi · ∇DΓe
[ϕ].
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Lemma 3.1 For p > 1, let Xp := Lp(Γe) × Lp(Γi) and

A0 :=




1

2
I + KΓe

SΓi

−
∂

∂νi
DΓe

−
1

2
I −K∗

Γi


 . (3.2)

Then A0 is invertible on Xp, as well as on H1(Γe) × L2(Γi).

Proof. Since there is a distance between Γe and Γi, the operator A0 is a compact
perturbation of 


1

2
I + KΓe

0

0 −
1

2
I −K∗

Γi


 ,

which is known to be invertible on Xp (Lemma 2.1). Therefore, it suffices, by applying the
Fredholm alternative, to show that the operator A0 is injective. Suppose that (ϕ,ψ) ∈ Xp

satisfies

A0

(
ϕ

ψ

)
= 0 .

Since (1
2I + KΓe

)[ϕ] = −SΓi
[ψ] on Γe and SΓi

[ψ] is C2 on Γe, we obtain that ϕ ∈ C2(Γe).
Likewise it follows that ψ ∈ C2(Γi). Therefore, the function u defined by u = DΓe

[ϕ]+SΓi
[ψ]

in Ω is a classical solution to (1.5), with f = 0. Since this solution is unique, we get

DΓe
[ϕ] + SΓi

[ψ] = 0 in Ω ,

and hence
DΓe

[ϕ] + SΓi
[ψ] = 0 in U .

The “continuity” of the normal derivative of a double-layer potential, in combination with
(2.3) now gives

ψ =
∂

∂ν
SΓi

[ψ]

∣∣∣∣
+

−
∂

∂ν
SΓi

[ψ]

∣∣∣∣
−

=
∂

∂ν
(DΓe

[ϕ] + SΓi
[ψ])

∣∣∣∣
+

−
∂

∂ν
(DΓe

[ϕ] + SΓi
[ψ])

∣∣∣∣
−

= 0 on Γi .

In other words ψ = 0, and DΓe
[ϕ] = 0 in U . It follows from (2.4) that

(
1
2I + KΓe

)
[ϕ] = 0,

and the invertibility of 1
2I + KΓe

now insures that ϕ = 0.
Invertibility of A0 on H1(Γe)×L

2(Γi) follows easily by the fact that if (ϕ,ψ) ∈ L2(Γe)×

L2(Γi) and A0

(
ϕ
ψ

)
∈ H1(Γe)×L

2(Γi), then KΓe
[ϕ] ∈ H1(Γe), and hence ϕ ∈ H1(Γe). This

completes the proof. �

As an immediate consequence of Lemma 3.1, we obtain the following theorem.

Theorem 3.2 The solution u0 to (1.5) can be represented as

u0 = DΓe
[ϕ0] + SΓi

[ψ0] in Ω ,

where (ϕ0, ψ0) is the unique solution to (3.1).
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Using the exact same techniques we may also derive a representation formula for the
unique solution to the boundary value problem





∆v0 = 0 in Ω ,

−
∂v0
∂ν

= g on Γi ,

v0 = 0 on Γe ,

(3.3)

where g ∈ L2(Γi). The formula simply reads

v0 = DΓe
[ϕ̃0] + SΓi

[ψ̃0] in Ω ,

where (ϕ̃0, ψ̃0) is the solution to

A0

(
ϕ̃0

ψ̃0

)
=

(
0

g

)
.

We proceed to derive a representation formula for uε, the solution to (1.4), valid for ε
sufficiently small. In this case the relevant integral operator is

Aγ :=




1

2
I + KΓe

SΓi

−
∂

∂νi
DΓe

+ γDΓe
−

1

2
I −K∗

Γi
+ γSΓi


 .

Observe that
Aγ = A0 +MγB , (3.4)

where Mγ represents multiplication by γ, and

B =

(
0 0

DΓe
SΓi

)
.

Since
‖γ‖Lp(Γi) ≤ Cε1/p ,

we have
∥∥∥∥MγB

(
ϕ
ψ

)∥∥∥∥
Xp

≤ ‖γ‖Lp(Γi) ‖DΓe
[ϕ] + SΓi

[ψ]‖L∞(Γi)

≤ Cpε
1/p

∥∥∥∥
(
ϕ
ψ

)∥∥∥∥
Xp

,

for any p > 1. Here ‖(ϕ,ψ)‖Xp
:= ‖ϕ‖Lp(Γe)+‖ψ‖Lp(Γi) and Cp is a constant depending only

on p. In other words, we have a bound for the operator norm, ‖MγBA
−1
0 ‖p , of MγBA

−1
0

on Xp:

‖MγBA
−1
0 ‖p ≤ Cpε

1/p . (3.5)
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Likewise, one can show that

∥∥∥∥MγBA
−1
0

(
ϕ
ψ

)∥∥∥∥
H1(Γe)×L2(Γi)

≤ C2ε
1/2

∥∥∥∥
(
ϕ
ψ

)∥∥∥∥
H1(Γe)×L2(Γi)

(3.6)

Since
Aγ = (I +MγBA

−1
0 )A0 ,

we arrive at the following theorem.

Theorem 3.3 There exists a positive number ε0 such that for any 0 < ε < ε0 Aγ is invertible
on Xp and on H1(Γe)×L

2(Γi). Moreover, for any f ∈ H1(Γe), the solution uε to (1.4) can
be represented as

uε = DΓe
[ϕε] + SΓi

[ψε] in Ω ,

where (ϕε, ψε) ∈ H1(Γe) × L2(Γi) is the unique solution to

Aγ

(
ϕε

ψε

)
=

(
f

0

)
. (3.7)

The last result in this section gives a complete expansion for uε in terms of iterates easily
constructed from u0. We can only prove convergence of this expansion for ε sufficiently small.
First note that

A−1
γ = A−1

0 (I +MγBA
−1
0 )−1 , (3.8)

and

MγB

(
ϕ
ψ

)
=

(
0

γ (DΓe
[ϕ] + SΓi

[ψ])

)
. (3.9)

By expanding (3.8) in a Neumann series, we get

A−1
γ = A−1

0 +

+∞∑

n=1

(−1)nA−1
0

(
MγBA

−1
0

)n
.

Now let (
ϕn

ψn

)
:= A−1

0

(
MγBA

−1
0

)n
(
f
0

)
, n = 0, 1, 2, . . . , (3.10)

then (
ϕε

ψε

)
= A−1

γ

(
f
0

)
=

+∞∑

n=0

(−1)n

(
ϕn

ψn

)
. (3.11)

Moreover, the following recursive relation holds:

(
ϕn+1

ψn+1

)
= A−1

0 MγB

(
ϕn

ψn

)
, n = 0, 1, 2, . . . . (3.12)

It then follows from (3.6) and (3.10) that

‖ϕn‖H1(Γe) + ‖ψn‖L2(Γi) ≤ C0C
nεn/2‖f‖H1(Γe), n = 0, 1, 2, . . . , (3.13)

for some constant C independent of ε. Here C0 is a bound for A−1
0 .
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If we define
un := DΓe

[ϕn] + SΓi
[ψn] in Ω , n = 0, 1, 2, . . . , (3.14)

which as far as u0 is concerned is consistent with being the solution to (1.5), then the identity
(3.11) immediately yields

uε =
+∞∑

n=0

(−1)nun in Ω .

It is not difficult to see that this series converges in H3/2(Ω) (for ε sufficiently small). In
fact, thanks to elliptic estimates, we have

‖un‖H3/2(Ω) ≤ C ′(‖DΓe
[ϕn]|−‖H1(Γe) + ‖SΓi

[ψn]‖H1(Γi))

≤ C ′(‖(
1

2
I + KΓe

)[ϕn]‖H1(Γe) + ‖SΓi
[ψn]‖H1(Γi))

≤ C1(‖ϕn‖H1(Γe) + ‖ψn‖L2(Γi))

for some constant C ′ and C1, and hence, by (3.13),

‖un‖H3/2(Ω) ≤ C0C1C
nεn/2‖f‖H1(Γe) . (3.15)

Thus the series for uε converges strongly in H3/2(Ω) as long as ε is sufficiently small.
By (3.9) and (3.12),

(
ϕn

ψn

)
= A−1

0

(
0

γ (DΓe
[ϕn−1] + SΓi

[ψn−1])

)
= A−1

0

(
0

γun−1|Γi

)
, n ≥ 1 ,

and so un, n ≥ 1, is the solution to





∆un = 0 in Ω ,

−
∂un

∂ν
= γun−1 on Γi ,

un = 0 on Γe .

(3.16)

Here we have used the observation immediately following Theorem 3.2. In summary we have
proven:

Theorem 3.4 There exists a positive number ε0 such that, for any 0 < ε < ε0, and any
f ∈ H1(Γe), the solution uε to (1.4) has the expansion

uε =

+∞∑

n=0

(−1)nun in H3/2(Ω) , (3.17)

where u0 is the solution to (1.5) and un, n ≥ 1, are the solutions to (3.16).
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4 Asymptotic Expansion

We now derive a formula for the principal term of ∂
∂ν (uε−u0) (on Γe) as ε→ 0. This formula

forms the basis for our corrosion detection algorithm. In order to derive our formula we need
an elliptic regularity estimate for the solution to the boundary value problem





∆v = 0 in Ω ,

−
∂v

∂ν
= γg on Γi ,

v = 0 on Γe .

(4.1)

In particular we need that
∥∥∥∥
∂v

∂ν

∥∥∥∥
C1(Γe)

≤ Cp‖γg‖Lp(Γi) , (4.2)

for any p > 1. This regularity estimate is a consequence of well-known Schauder estimates,
and could just be stated without proof – however, for completeness we show how it also
immediately follows from our integral representation of the solution. We have seen that the
solution v to (4.1) can be represented as

v = DΓe
[ϕ] + SΓi

[ψ] in Ω ,

where (ϕ,ψ) is the solution to

A0

(
ϕ

ψ

)
=

(
0

γg

)
,

i.e. , 



(
1

2
I + KΓe

)
[ϕ] + SΓi

[ψ] = 0 on Γe,

−
∂

∂ν
DΓe

[ϕ] −

(
1

2
I + K∗

Γi

)
[ψ] = γg on Γi.

(4.3)

Since A0 is invertible on Xp, we have

‖ψ‖Lp(Γi) ≤ Cp‖γg‖Lp(Γi) . (4.4)

Let 2δ = dist(Γi,Γe), and define Ωδ := {x ∈ Ω : dist(x,Γe) ≤ δ}. Then

‖SΓi
[ψ]‖C2,α(Ωδ) ≤ C‖ψ‖Lp(Γi) ≤ Cp‖γg‖Lp(Γi) ,

where constants depend on δ. It now follows from the first equation in (4.3) and Lemma 2.1
that

‖ϕ‖C2,α(Γe) =

∥∥∥∥∥

(
1

2
I + KΓe

)−1

[(SΓi
[ψ])|Γi

]

∥∥∥∥∥
C2,α(Γe)

≤ C ‖SΓi
[ψ]‖

C2,α(Γe)

≤ Cp‖γg‖Lp(Γi) . (4.5)
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Note that if ϕ ∈ C2,α(Γe), then DΓe
[ϕ] ∈ C2,α(U). In fact, if ϕ ∈ C2,α(Γe), then KΓe

[ϕ] ∈
C2,α(Γe). Since u := DΓe

[ϕ] is the unique solution to the Dirichlet problem ∆u = 0 in U
and u|Γe

= 1
2ϕ+ KΓe

[ϕ], we have DΓe
[ϕ] ∈ C2,α(U). Therefore, we have in particular

∥∥∥∥
∂v

∂ν

∥∥∥∥
C1(Γe)

≤ ‖DΓe
[ϕ] + SΓi

[ψ]‖
C2(Ωδ) ≤ Cp‖γg‖Lp(Γi) ,

which is exactly the estimate (4.2). By a combination of (4.2) with the estimate

‖γg‖Lp(Γi) ≤ Cε1/p‖g‖L∞(Γi) ,

we obtain the following lemma.

Lemma 4.1 Let v be the solution to (4.1). Then, for each p > 1, there is a constant Cp,
independent of g, such that

∥∥∥∥
∂v

∂ν

∥∥∥∥
C1(Γe)

≤ Cpε
1/p‖g‖L∞(Γi). (4.6)

Based on (3.16), (3.17), and (4.6)

+∞∑

n=k

∥∥∥∥
∂un

∂ν

∥∥∥∥
C1(Γe)

≤ Cpε
1/p

+∞∑

n=k

‖un−1‖L∞(Γi) , (4.7)

for any k ≥ 1. From (3.14) we have

‖un−1‖L∞(Γi) = ‖DΓe
[ϕn−1] + SΓi

[ψn−1]‖L∞(Γi) ≤ Cp

∥∥∥∥
(
ϕn−1

ψn−1

)∥∥∥∥
Xp

,

which in combination with (3.5) and (3.10) yields

‖un−1‖L∞(Γi) ≤ Cp

(
Cε1/p

)n−1

‖f‖Lp(Γe) .

Insertion into (4.7) now gives

+∞∑

n=k

∥∥∥∥
∂un

∂ν

∥∥∥∥
C1(Γe)

≤ Cpε
1/p

+∞∑

n=k

(
Cε1/p

)n−1

‖f‖Lp(Γe) ≤ Ck,p
εk/p

1 − Cε1/p
‖f‖Lp(Γe) ,

for any k ≥ 1, provided Cε1/p < 1. The preceeding analysis immediately leads to the
following theorem.

Theorem 4.2 For all p > 1, there is a constant Cp such that
∥∥∥∥
∂uε

∂ν
−
∂u0

∂ν

∥∥∥∥
C1(Γe)

≤ Cpε
1/p‖f‖Lp(Γe) . (4.8)

We now derive the desired formula for the principal term of ∂uε

∂ν − ∂u0

∂ν . Using the notation
from before we easily obtain that

∂uε

∂ν
(x) −

∂u0

∂ν
(x) = −

∂u1

∂ν
(x) +O(ε2/p) ,
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uniformly on Γe. We thus need to derive a formula for the principal term of ∂u1

∂ν . For that
purpose, let G(x, y) denote the Green’s function for the problem (3.3), i.e., for each x ∈ Ω,
G(x, y) is the solution to





∆yG(x, y) = −δx(y) in Ω ,

∂

∂νy
G(x, y) = 0, y ∈ Γi ,

G(x, y) = 0, y ∈ Γe .

(4.9)

By continuity G(·, ·) may be extended to all of Ω × Ω \ {(x, y) : x = y}, and it satisfies
G(x, y) = G(y, x). In terms of G the solution v to (4.1) can be written

v(x) =

∫

Γi

G(x, y)γ(y)g(y)dσy , x ∈ Ω .

Remember: ν is the inward normal to Ω on Γi. With g = u0 this yields

u1(x) =

∫

Γi

G(x, y)γ(y)u0(y)dσy , x ∈ Ω ,

and, by taking the normal derivative on Γe we now obtain

∂u1

∂ν
(x) =

∫

Γi

∂

∂νx
G(x, y)γ(y)u0(y)dσy , x ∈ Γe .

Note that ∂
∂νx

G(x, ·) is a C2 function on Γi for any x ∈ Γe and that u0 is also C2 on Γi since
Γi is away from Γe. Thus we have

∂

∂νx
G(x, y)γ(y)u0(y) =

m∑

s=1

[ ∂

∂νx
G(x, zs)u0(zs) +O(ε)

]
γs(y)χs(y) ,

where χs is the characteristic function of Is. We thus finally get

∂u1

∂ν
(x) =

m∑

s=1

∂

∂νx
G(x, zs)u0(zs)

∫

Is

γs dσ +O(ε2) .

Define

〈γ〉s :=

∫

Is

γs dσ .

Then we have arrived at the following formula for the principal term of ∂
∂νuε −

∂
∂νu0.

Theorem 4.3 For x ∈ Γe:

∂uε

∂ν
(x) −

∂u0

∂ν
(x) = −

m∑

s=1

〈γ〉su0(zs)
∂

∂νx
G(x, zs) +O(ε1+β) (4.10)

for any 0 < β < 1.
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5 MUSIC type algorithm for reconstruction

We now apply the asymptotic formula (4.10) to design a MUSIC (MUltiple SIgnal Clas-
sification) algorithm for locating small internal corrosive parts from boundary measure-
ments. MUSIC is generally used in signal processing problems as a method for estimating
the individual frequencies from multiple-harmonic signals [20]. In the present context the
MUSIC algorithm uses information about the spectral structure of the (exterior Dirichlet-
to-Neumann) boundary map for the Laplace operator with the “internal” corrosion (Robin)
boundary condition. The eigenvectors corresponding to the most significant eigenvalues
span a “signal subspace” in the sense that they contain nearly all the information about the
corrosive parts that can be extracted from the boundary map. The remaining eigenvectors
span a sort of “noise subspace”. In order to be of any practical interest our algorithm uses
spectral information about a particular discrete version of the boundary map.

It is worth mentioning that the present algorithm is also related to the linear sampling
method of Colton and Kirsch [9]. We refer to Cheney [7], and Kirsch [18], for detailed discus-
sions of the connection between MUSIC-type algorithms and the linear sampling method.

Define the (exterior Dirichlet-to-Neumann) map Λγ from H1/2(Γe) into H−1/2(Γe) by

Λγ(f) =
∂uε

∂ν

∣∣∣
Γe

, (5.1)

where uε is the solution to (1.4). Let Λ0 be the exterior Dirichlet-to-Neumann map for the
case when no corrosion is present. We proceed to show how partial spectral information
about Λγ − Λ0 may effectively be used to determine the corroded internal boundary parts.
The estimate (4.8) immediately gives that

‖(Λγ − Λ0)(f)‖
C1(Γe) ≤ Cpε

1/p‖f‖L2(Γe) , (5.2)

for any 1 < p ≤ 2. In particular this shows that the operator Λγ −Λ0, originally defined on
H1/2(Γe), can be extended as an operator on all of L2(Γe). This operator is compact when
regarded as an operator from L2(Γe) into itself. We also note that for g ∈ H1/2(Γe)

∫

Γe

(Λγ − Λ0)(f) g dσ =

∫

Ω

[∇uε · ∇vε −∇u0 · ∇v0] dx+

∫

Γi

γuε vε dσ (5.3)

where vε and v0 are solutions to (1.4) and (1.5) with f replaced by g, respectively. Note
that ∫

Ω

∇uε · ∇u0 dx =

∫

Γe

f
∂u0

∂ν
dσ =

∫

Ω

∇u0 · ∇u0 dx.

Thus we obtain by substituting f in place of g in (5.3)
∫

Γe

(Λγ − Λ0)f f dσ =

∫

Ω

|∇(uε − u0)|
2 dx+

∫

Γi

γ|uε|
2 dσ .

In summary we have established the following lemma.

Lemma 5.1 Λγ − Λ0 is self-adjoint, positive, and compact on L2(Γe).

The identity (4.10) shows that

(Λγ − Λ0)(f)(x) = −

m∑

s=1

〈γ〉su0(zs)
∂

∂νx
G(x, zs) +O(ε1+β), x ∈ Γe , (5.4)
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for any 0 < β < 1. It is not difficult to see that the remainder term O(ε1+β) is actually
bounded by Cβε

1+β‖f‖L2(Γe) with Cβ independent of f . Define the operator T on H1/2(Γe)
by

(Tf)(x) = −
m∑

s=1

〈γ〉su0(zs)
∂

∂νx
G(x, zs), x ∈ Γe . (5.5)

Since u0 depends linearly on f , T is a linear operator and can be extended as a bounded
operator on L2(Γe). Furthermore the estimate we have just verified may easily be sharpened
to show that

Λγ − Λ0 = T +O(ε1+β) , (5.6)

in the operator norm on L2(Γe).

Lemma 5.2 The operator T is a compact, self-adjoint, positive semi-definite operator on
L2(Γe).

If 〈γ〉s = csε for some fixed constants cs, then this follows immediately by multiplication of
(5.4) by ε−1, consideration of the ε→ 0 limit, and use of Lemma 5.1. Here it is essential that
the remainder term is bounded by Cβε

1+β‖f‖L2(Γe), i.e., that we have norm convergence.
More generally the lemma can also be verified by noting that T is a finite-dimensional
operator, and that u0 is given by

u0(y) = −

∫

Γe

∂

∂νx
G(x, y)f(x) dσ(x), y ∈ Ω , (5.7)

so that ∫

Γe

T (f)h =
m∑

s=1

〈γ〉su0(zs)v0(zs) ,

where v0 is the solution to (1.5), with f replaced by h.
We introduce the linear operator G : L2(Γe) → R

m

Gf = (u0(z1), . . . , u0(zm)) , (5.8)

where u0, as before, is the solution to (1.5). If R
m is endowed with the standard Euclidean

inner product then

〈Gf, a〉 =

m∑

s=1

asu0(zs) = −

∫

Γe

( m∑

s=1

as
∂

∂νx
G(x, zs)

)
f(x) dσ(x) ,

for arbitrary a = (a1, . . . , am) ∈ R
m. Therefore, the adjoint operator G∗ : R

m → L2(Γe) is
given by

G∗a = −

m∑

s=1

as
∂

∂νx
G(·, zs) . (5.9)

Exactly as in Brühl et al. [4] there is a simple factorization of the operator T , and a
corresponding characterization of its range.

Lemma 5.3

14



(i) G∗ is injective;

(ii) G is surjective;

(iii) T = G∗MG, where

Ma =

(
〈γ〉1a1, . . . , 〈γ〉mam

)
, a = (a1, . . . , am) ∈ R

m;

(iv) Range(T ) = span
{ ∂

∂νx
G(x, zs); s = 1, . . . ,m

}
.

Proof. Suppose G∗a = 0, and let w denote the function w(x) =
∑m

s=1 asG(x, zs). Then
w = ∂w

∂ν = 0 on Γe, and therefore by unique continuation w(x) =
∑m

s=1 asG(x, zs) = 0 in all
of Ω. It immediately follows that as = 0 for s = 1, . . . ,m. Assertion (ii) follows from (i) and
the well-known relation between the range and the null space of adjoint finite-dimensional
operators: Range(G) = Ker(G∗)⊥. Using (5.5), (5.8), and (5.9), it is easy to see that (iii)
holds. Now, according to (iii) we have Range(T ) = Range(G∗MG) = Range(G∗), since M
and G are surjective. This yields (iv), and the proof is complete. �

The following result forms the basis for our algorithm to identify the midpoint locations,
zs, of the small corroded boundary parts.

Theorem 5.4 A point z ∈ Γi belongs to the set {zs : s = 1, . . . ,m} if and only if

∂

∂νx
G(·, z)

∣∣
Γe

∈ Range (T ) . (5.10)

Proof. Assume ∂
∂νx

G(·, z)
∣∣
Γe

∈ Range (T ). As a consequence of (iv) of Lemma 5.3 there
exist coefficients as, 1 ≤ s ≤ m such that

∂

∂νx
G(x, z) =

m∑

s=1

as
∂

∂νx
G(x, zs) , for x ∈ Γe . (5.11)

Since G(x, z) = 0 for any x ∈ Γe and z ∈ Γi, we also have

G(x, z) =

m∑

s=1

asG(x, zs) , for x ∈ Γe , (5.12)

and by unique continuation it follows that G(x, z) =
∑m

s=1 asG(x, zs) for all x ∈ Ω. Due to
the singularity of G(x, z) at x = z this is only possible if z ∈ {zs : s = 1, . . . ,m}, and so we
have established the sufficiency of the condition (5.10). The necessity follows immediately
from (iv) of Lemma 5.3. �

The finite-dimensional, self-adjoint operator T has a spectral decomposition

T =

m∑

p=1

λpvp ⊗ vp , ||vp||L2(Γe) = 1 ,

where λp, 1 ≤ p ≤ m, are the (positive) eigenvalues of T , and vp is the corresponding
eigenfunction. Note that the rank of T , m, is exactly the number of corroded parts. We
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assume that λ1 ≥ λ2 ≥ . . . ≥ λm > 0. Let Pk : L2
0(Γe) → span {v1, . . . , vk}, k = 1, . . . ,m,

be the orthogonal projector Pk =
∑k

p=1 vp ⊗ vp. It then follows from Theorem 5.4 that

z ∈ {zs : s = 1, . . . ,m} iff (I − Pm)

(
∂

∂νx
G(·, z)

∣∣
Γe

)
= 0 ,

or equivalently,
z ∈ {zs : s = 1, . . . ,m} iff cot θ(z) = +∞, (5.13)

where the angle θ(z) ∈ [0, π/2) is defined by

cot θ(z) =

∥∥∥Pm

(
∂

∂νx
G(·, z)

∣∣
Γe

)∥∥∥
L2(Γe)∥∥∥(I − Pm)

(
∂

∂νx
G(·, z)

∣∣
Γe

)∥∥∥
L2(Γe)

. (5.14)

Since Λγ − Λ0 is a self-adjoint, positive, and compact operator on L2(Γe), it admits a
spectral decomposition

Λγ − Λ0 =
+∞∑

p=1

λε
pv

ε
p ⊗ vε

p , ||vε
p||L2(Γe) = 1 , (5.15)

with λε
1 ≥ λε

2 ≥ . . . ≥ λε
m ≥ . . . > 0. Let P ε

k : L2(Γe) → span {vε
1, . . . , v

ε
k}, k = 1, 2, . . . , be

the orthogonal projector P ε
k =

∑k
p=1 v

ε
p ⊗ vε

p.
The data for our identification algorithm consist of (an appropriate approximation to)

the spectral decomposition of Λγ − Λ0. Motivated by (5.10), we seek to find those points
z ∈ Γi such that

∂

∂νx
G(·, z)

∣∣
Γe

∈ Range (Λγ − Λ0) . (5.16)

This condition is fulfilled approximately by z ∈ Γi if the following quantity is sufficiently
large:

cot θε
k(z) :=

∥∥∥P ε
k

(
∂

∂νx
G(·, z)

∣∣
Γe

)∥∥∥
L2(Γe)∥∥∥(I − P ε

k)
(

∂
∂νx

G(·, z)
∣∣
Γe

)∥∥∥
L2(Γe)

. (5.17)

Since we don’t a priory know m, we plot the angles θε
k(z) (for k = 1, 2, . . .) as a function

of z. When the plots “stabilize”, i.e., don’t significantly change by increasing k, we have
a good estimate for m, and we interpret locations where small angles are attained as good
candidates for the zs.

Once the locations zs are approximately found, we can also estimate the integrated
corrosion coefficients 〈γ〉s. Our procedure for doing this is the following. Define ws, s =
1, . . . ,m, to be the solution to





∆ws = 0 in Ω ,

−
∂ws

∂ν
= 0 on Γi ,

ws(x) =
∂

∂νx
G(x, zs) x ∈ Γe .

(5.18)
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It then follows from (5.4) and (5.15) that

−
m∑

s=1

〈γ〉sws′(zs)
∂

∂νx
G(·, zs) ≈ (Λγ − Λ0)

(
∂

∂νx
G(·, zs′)

)

≈

m∑

p=1

λε
p

〈
vε

p,
∂

∂νx
G(·, zs′)

〉
vε

p .

By integrating both sides of the above formula against vs′ , we obtain

−
m∑

s=1

ws′(zs)

〈
vε

s′ ,
∂

∂νx
G(·, zs)

〉
〈γ〉s ≈ λε

s′

〈
vε

s′ ,
∂

∂νx
G(·, zs′)

〉
, (5.19)

for s′ = 1, . . . ,m. Therefore the values of 〈γ〉s, s = 1, . . . ,m, can be calculated by solving a
linear system. For the simplest case, m = 1, the formula reads

〈γ〉1 ≈ −
λε

1

w1(z1)
.

5.1 Numerical Results

In this section we present some numerical experiments with the MUSIC-type algorithm we
have designed to find the internally corroded parts, Is ⊂ R

2, s = 1, 2, · · · ,m. The domain
Ω ⊂ R

2 is taken to be an annulus, i.e., Ω = U \ D, where U and D are disks centered
at (0, 0) with radii re and ri, respectively. The measurements used for the identification
represent a discrete analogue of the Dirichlet-to-Neumann map Λγ − Λ0 on Γe. In order to
find a good approximation from the “identification point of view” the following observation
will be useful.

Lemma 5.5 The functions ∂G
∂νx

(·, y), y ∈ Γi span a dense subspace of L2(Γe).

Proof. The solution to the boundary value problem (1.5), for a given f ∈ L2(Γe), is given
by

u0(y) = −

∫

Γe

∂

∂νx
G(x, y)f(x) dσ(x) .

If f ∈ L2(Γe) were orthogonal to { ∂G
∂νx

(·, y) : y ∈ Γi } it thus follows that

∂u0

∂ν
= u0 = 0 on Γi .

By unique continuation this implies that u0 = 0 in all of Ω, and so consequently f = 0. �

With this observation in mind we approximate Λγ − Λ0 by using Dirichlet data of the
form f(·) = ∂G

∂νx
(·, y), y ∈ Γi, and solving the integral equations (3.1) and (3.7). Note that

G is a quite particular fundamental solution, namely the solution to (4.9). Practically it is
very important that these normal derivatives can be calculated efficiently. To understand
how, let G̃ be the Green’s function for U , that is, for each x ∈ U , let G̃(x, y) be the solution
to 




∆yG̃(x, y) = −δx(y) in U,

G̃(x, y) = 0 y ∈ Γe.
(5.20)
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Since U is a disk, G̃(x, y) has a simple explicit expression. In fact, G̃ is given by

G̃(x, y) = −
1

2π
ln |x− y| +

1

2π
ln

∣∣∣∣
re
|x|
x−

|x|

re
y

∣∣∣∣ . (5.21)

For any y ∈ Γi we may now compute ∂G
∂νx

(·, y) on Γe by solving the integral equation (5.22)
of the following lemma.

Lemma 5.6 For any y ∈ Γi, let Gy(x) := G(x, y), and G̃y(x) := G̃(x, y) for x ∈ Γe. Then

(
I + 2K∗

Γe
− 4

∂SΓi

∂νe

∂SΓe

∂νi

)[
∂Gy

∂νe

]
(x) = 2

∂G̃y

∂νe
(x), x ∈ Γe, (5.22)

where νe and νi denote outward normal vectors to U on Γe, and to D on Γi, respectively.

Proof. Fix y ∈ Ω and let u(x) = (Gy − G̃y)(x) for x ∈ Ω. Because of the symmetry of G

and G̃, u satisfies ∆u = 0 in Ω, u = 0 on Γe, and ∂u
∂νi

= −
∂ eGy

∂νi
on Γi. Thus by the Green

theorem, we have

u(x) = −SΓe

[
∂u

∂νe

]
(x) + DΓi

[u](x) + SΓi

[
∂u

∂νi

]
(x), x ∈ Ω .

However, in view of (2.3), we have

DΓi
[u](x) = SΓi

(
1

2
I + K∗

Γi

)−1 [
∂

∂νi
DΓi

[u]
∣∣∣
Γi

]
(x)

for all x ∈ R
2 \D. Therefore there is a density function ψ with

∫
Γi
ψ = 0 such that

(Gy − G̃y)(x) = −SΓe

[
∂Gy

∂νe
−
∂G̃y

∂νe

]
(x) + SΓi

[ψ](x) , x ∈ Ω . (5.23)

Similarly to (3.1) we now obtain from (5.23)

(
1

2
I + K∗

Γi

)
[ψ] = −

∂G̃y

∂νi
+
∂SΓe

∂νi

[
∂Gy

∂νe
−
∂G̃y

∂νe

]
on Γi .

Since Γi is a circle, K∗
Γi

[ϕ] = 0 when
∫
Γi
ϕ = 0 (cf. (2.6)) and hence

ψ = −2
∂G̃y

∂νi
+ 2

∂SΓe

∂νi

[
∂Gy

∂νe
−
∂G̃y

∂νe

]
.

Since G̃y(x) + SΓe
[
∂ eGy

∂νe
](x) = −Φ(x, y) for x ∈ U and y ∈ U (cf. Equation (2.23) of [1]), it

follows that

ψ = 2
∂SΓe

∂νi

[
∂Gy

∂νe

]
+ 2

∂Φy

∂νi
. (5.24)
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By substituting (5.24) into (5.23) and taking normal derivatives (on Γe) of both sides of
(5.23), we obtain

(
1

2
I + K∗

Γe
− 2

∂SΓi

∂νe

∂SΓe

∂νi

)[
∂Gy

∂νe

]
=

(
1

2
I + K∗

Γe

)[
∂G̃y

∂νe

]
+ 2

∂SΓi

∂νe

[
∂Φy

∂νi

]
on Γe ,

for any fixed y ∈ Ω. We claim that in the limit as y approaches Γi from inside Ω

lim

((
1

2
I + K∗

Γe

)[
∂G̃y

∂νe

]
+ 2

∂SΓi

∂νe

[
∂Φy

∂νi

])
=
∂G̃y

∂νe
, (5.25)

and (5.22) immediately follows. It remains to verify (5.25). First of all, by (2.6),

K∗

Γe

[
∂G̃y

∂νe

]
=

1

4πre

∫

Γe

∂G̃y

∂νe
(x)ds

=
1

4πre

∫

U

∆G̃y(x)dx = −
1

4πre
,

for any y ∈ Ω. Secondly, in the limit as y approaches Γi from inside Ω, we have

limSΓi

[
∂Φy

∂νi

]
(x) = −

1

4π
[ln |x− y| − ln |x|] , for |x| > ri . (5.26)

In fact, we have

SΓi

[
∂Φy

∂νi

]
(x) =

1

4π2

∫

Γi

ln |x− z|
∂

∂νz
ln |z − y|ds(z) = DΓi

[Φx](y),

and hence from (2.4) and (2.6)

limSΓi

[
∂Φy

∂νi

]
(x) = −

1

2
Φx(y) +

1

4πri

∫

Γi

Φx(y)dσ(y)

= −
1

4π
[ln |x− y| − ln |x|] ,

which is the desired formula. Note that the last equality holds because of (2.7).
A similar statement holds for any derivative with respect to x, |x| > ri. In view of (5.21),

it is now a matter of straight-forward computation to check that in the limit as y approaches
Γi from inside Ω

lim

(
K∗

Γe

[
∂G̃y

∂νe

]
+ 2

∂SΓi

∂νe

[
∂Φy

∂νi

])
=

1

2

∂G̃y

∂νe
on Γe ,

and we obtain (5.25). This completes the proof. �

For computation, we discretize Γe and Γi by choosing points

{re(cos θn, sin θn)|θn = 2π(n− 1)/N, n = 0, 1, . . . , N − 1}
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and
{ri(cos θn, sin θn)|θn = 2π(n− 1)/N, n = 0, 1, . . . , N − 1},

with N = 256. Put xn := re(cos θn, sin θn) and yn := ri(cos θn, sin θn) for n = 0, 1, . . . , 255.
The discrete data we use for our numerical algorithm consist of the 256 × 256 matrix
((Λγ − Λ0)(

∂G
∂νx

(·, yn))(xm))256m,n=1, or rather its SVD (singular value decomposition). For

comparison we also calculate the 256 × 256 matrix (T (∂G
∂ν (·, yn))(xm))256m,n=1 and its SVD.

Notice than none of these two matrices are symmetric.
Figure 1 displays the singular values of our discrete versions of Λγ − Λ0 and T when

there are two internally corroded parts. The singular values of our approximation to T
exhibit a significant drop, to machine epsilon, after the first two (consistent with the fact
that the range of T is two-dimensional) there is also a drop in the singular values of our
approximation to Λγ −Λ0, but it is of course not nearly as significant due to the discrepancy
between Λγ −Λ0 and T , and due to the very approximate nature of our discrete data. It is
nonetheless still possible to estimate the location of the corroded parts very accurately from
the SVD of our discrete version of Λγ − Λ0.

Using the first k (left-)singular vectors of our data, we plot approximate values of θε
k(z) =

cot−1 Lε
k(z) where

Lε
k(z) :=

‖P ε
k(∂G(·,z)

∂ν )‖L2(Γe)

‖(I − P ε
k)(∂G(·,z)

∂ν )‖L2(Γe)

. (5.27)

We start this process with just one singular vector (k = 1) and continue with increasing k
until the plot of θε

k(z) stabilizes. Values near zero correspond to locations are that likely to
be close to the Is (or zs).

Example 1. In this example, the outer radius re = 1 and the inner one ri = 0.8 and there
are two corroded parts. The top part of Figure 1 shows the locations of the corrosion and
the approximate SVD of Λγ − Λ0 and T . The bottom of Figure 1 clearly shows that there
are two corroded parts, since the minima of θε

k stabilize already at k = 2. The minima of θε
2

are the locations of the corroded parts. Since we use the same 256 points for the calculation
and plotting of θε

k and for the potential location of the points zs, the fact that |zs − zc
s| = 0

really asserts that zs is accurately estimated up to the spacing between two adjacent mesh
points, which is approximately 0.0172. By solving (5.19), we compute the integrated cor-
rosion coefficients: 〈γ〉c1 = 0.3846, 〈γ〉c2 = 0.1660. The actual, integrated coefficients are
〈γ〉1 = 0.3927, 〈γ〉2 = 0.1767.

Example 2. In this example we consider a case with five corroded parts. The actual data
of the configuration is summarized in the top of Table 1. The corroded parts are num-
bered counter-clock-wise starting with the smallest positive angle. Note that the first three
corroded parts have low corrosion coefficients while the remaining two have relatively high
ones. The computational results with 1% noise are summarized in Table 1 and Figure 2.
It is interesting to note that the corroded parts 1 and 2 which are close to each other and
have low corrosion coefficients, are detected as a single one. The actual midpoint locations
of corroded parts 1 and 2 are (0.0686, 0.6966) and (−0.1197, 0.6897), and the single detected
location is (−0.1027, 0.6924). On the other hand, the corroded parts 4 and 5, which have
high corrosion coefficients, are clearly detected already with k = 3.

20



actual data
m γs zs 〈γ〉s
5 0.1 (0.0686, 0.6966) 0.0120

0.5 (-0.1197, 0.6897) 0.0430
0.3 (-0.4307, 0.5518) 0.0206
1.0 (0.2519, - 0.6531) 0.1203
1.2 (0.5723, - 0.4031) 0.1031

detected data
mc zc

s 〈γ〉cs |zs − zc
s| |〈γ〉s − 〈γ〉cs|

4 (-0.1027, 0.6924) 0.0514 0.0172 0.0084
(-0.4170, 0.5622) 0.0212 0.0172 0.0006
(0.2519, - 0.6531) 0.1181 0 0.0021
(0.5723, - 0.4031) 0.1026 0 0.0005

result for each step
number of

sing. vectors(k)
mc zc

s |zs − zc
s| 〈γ〉cs |〈γ〉s − 〈γ〉cs|

1 1 (0.3889, - 0.5820) 0.1554
2 2 (-0.1366, + 0.6865) 0.0579

(0.3889, - 0.5820) 0.1554
3 3 (-0.1366, + 0.6865) 0.0579

(0.2519, - 0.6531) 0.1181
(0.5723, - 0.4031) 0.1026

4 (-0.0686, + 0.6966) 0.0515 0.0486 0.0056
(-0.4031, + 0.5723) 0.0344 0.0237 0.0030
(0.2519, - 0.6531) 0 0.1181 0.0021
(0.5723, - 0.4031) 0 0.1026 0.0005

5 4 (-0.1027, + 0.6924) 0.0172 0.0514 0.0084
(-0.4170, + 0.5622) 0.0172 0.0212 0.0006
(0.2519, - 0.6531) 0 0.1181 0.0021
(0.5723, - 0.4031) 0 0.1026 0.0005

6 4 ( -0.1027, + 0.6924) 0.0172 0.0514 0.0084
(-0.4170, + 0.5622) 0.0172 0.0212 0.0006
(0.2519,- 0.6531) 0 0.1181 0.0021
(0.5723, - 0.4031) 0 0.1026 0.0005

Table 1: Summary of computational results with five corroded parts, and 1% noise. Two
corroded parts with low corrosion coefficient are detected as a single one.
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The results for steps
number of

sing. vectors(k)
mc zc

s |zs − zc
s| 〈γ〉cs |〈γ〉s − 〈γ〉cs|

1 1 (-0.6759, 0.4280) 0.3846
2 2 (-0.6759, 0.4280) 0 0.3846 0.0081

(-0.3597, -0.7146) 0 0.1660 0.0107
3 2 (-0.6759, 0.4280) 0 0.3846 0.0081

(-0.3597, -0.7146) 0 0.1660 0.0107

Figure 1: Pipe with two internal corroded parts, and “approximate” singular values of
Λγ − Λ0 and T in upper figures. The bottom figure shows θε

k for three different values of
k. In the table, mc is the number of estimated corroded parts, zs and zc

s are the actual
midpoint locations and the estimated midpoint locations, and 〈γ〉s, 〈γ〉

c
s are the actual and

the estimated, integrated, corrosion coefficients, for a particular k.

Example 3. Figure 3 shows the computational results with various degree of noise. The
information about the actual locations and corrosion coefficients is summarized in Table 2.
Observe that the first two corroded parts have low corrosion coefficients. They are detected
as a single corroded part with 5% noise. The other two corroded parts, which have high
corrosion coefficients, are detected very well even with a high ratio of noise.

6 Conclusion

We have designed a non-iterative algorithm of MUSIC-type for detecting small, internal,
corroded boundary parts based on external, electrostatic boundary measurements. Our
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Figure 2: The computational results with 1% noise. The last plot shows the values of
(Λγ − Λ0)(

∂G
∂ν ) on Γe × Γi.

method relies on an asymptotic representation formula for the steady state current pertur-
bations caused by small, internal corroded boundary parts. We have performed numerical
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m γs zs 〈γ〉s
4 0.1 (0.5657, + 0.5657) 0.0137

0.05 (0.3597, + 0.7146) 0.0049
3.0 (0.6307, - 0.4922) 0.2945
3.0 (0.7464 ,- 0.2879) 0.2945

Table 2: Pipe with four corrosive parts.
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Figure 3: Computational results with varying degree of noise

experiments to test the viability of the algorithm using a discrete version of Λγ −Λ0 as data.
The numerical tests clearly demonstrate that the algorithm works well even in the presence
of relatively high noise ratios, provided the corrosion coefficients are sufficiently large. The
latter restriction is to be expected, since only those corroded parts with reasonably sized
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corrosion coefficients can cause sufficient changes in currents. Furthermore, it is practically
most important to detect the corroded parts with the highest coefficients, since they are
likely to “develop” more rapidly, and therefore potentially cause the most serious damage
(to the pipe). It should be mentioned that our algorithm cannot identify separately the size
of the corroded parts (without assuming that we know the corrosion coefficients). We can
only reconstruct the integral 〈γ〉s =

∫
Is
γ dσ for s = 1, . . . ,m. It is likely that a higher-order

asymptotic expansion of the boundary perturbations would yield formulas that permit such
identification.
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