Resampling-based confidence regions and multiple tests for a correlated random vector

Abstract : We derive non-asymptotic confidence regions for the mean of a random vector whose coordinates have an unknown dependence structure. The random vector is supposed to be either Gaussian or to have a symmetric bounded distribution, and we observe $n$ i.i.d copies of it. The confidence regions are built using a data-dependent threshold based on a weighted bootstrap procedure. We consider two approaches, the first based on a concentration approach and the second on a direct boostrapped quantile approach. The first one allows to deal with a very large class of resampling weights while our results for the second are restricted to Rademacher weights. However, the second method seems more accurate in practice. Our results are motivated by multiple testing problems, and we show on simulations that our procedures are better than the Bonferroni procedure (union bound) as soon as the observed vector has sufficiently correlated coordinates.
Document type :
Book section
Nader H. Bshouty and Claudio Gentile. Learning Theory 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA; June 13-15, 2007. Proceedings, Springer Berlin / Heidelberg, pp.127-141, 2007, Lecture Notes in Computer Science - Volume 4539/2007, <10.1007/978-3-540-72927-3_11>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00125670
Contributor : Sylvain Arlot <>
Submitted on : Monday, January 22, 2007 - 11:40:36 AM
Last modification on : Thursday, July 20, 2017 - 9:29:08 AM
Document(s) archivé(s) le : Tuesday, April 6, 2010 - 8:45:06 PM

Files

ABR07court.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Sylvain Arlot, Gilles Blanchard, Etienne Roquain. Resampling-based confidence regions and multiple tests for a correlated random vector. Nader H. Bshouty and Claudio Gentile. Learning Theory 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA; June 13-15, 2007. Proceedings, Springer Berlin / Heidelberg, pp.127-141, 2007, Lecture Notes in Computer Science - Volume 4539/2007, <10.1007/978-3-540-72927-3_11>. <hal-00125670>

Share

Metrics

Record views

327

Document downloads

102