W. T. Baisden and R. Amundson, AN ANALYTICAL APPROACH TO ECOSYSTEM BIOGEOCHEMISTRY MODELING, Ecological Applications, vol.13, issue.3, pp.649-663, 2003.
DOI : 10.2134/jeq1997.00472425002600050009x

P. H. Bellamy, P. J. Loveland, R. I. Bradley, R. M. Lark, and G. J. Kirk, Carbon losses from all soils across England and Wales 1978???2003, Nature, vol.437, issue.7056, pp.245-248, 1978.
DOI : 10.1038/nature04038

R. A. Betts, Offset of the potential carbon sink from boreal forestation by decreases in 318 surface albedo, Nature, vol.408, issue.6809, pp.187-190, 2000.
DOI : 10.1038/35041545

M. A. Bolinder, D. A. Angers, and J. P. Dubuc, Estimating shoot to root ratios and 320 annual carbon inputs in soils for cereal crops, Agriculture Ecosystems & Environment, vol.321, issue.63, pp.61-66, 1997.

B. M. Bolker, S. W. Pacala, and W. J. Parton, LINEAR ANALYSIS OF SOIL DECOMPOSITION: INSIGHTS FROM THE CENTURY MODEL, Ecological Applications, vol.8, issue.2, pp.425-439, 1998.
DOI : 10.1029/93GB00468

E. Bosatta and G. I. Agren, Exact solutions to the continuous-quality equation for soil organic matter turnover, Journal of Theoretical Biology, vol.224, issue.1, pp.97-105, 2003.
DOI : 10.1016/S0022-5193(03)00147-4

M. K. Cao and F. I. Woodward, Dynamic responses of terrestrial ecosystem carbon 327 cycling to global climate change, Nature, vol.393, issue.6682, pp.249-252, 1998.
DOI : 10.1038/30460

K. Coleman and D. S. Jenkinson, ROTHC-26.3, a model for the turnover of carbon in 329 soil. Model description and users guide, Lawes Agricultural Trust, p.330, 1995.

K. Coleman, D. S. Jenkinson, G. J. Crocker, P. R. Grace, J. Klir et al., Simulating trends in soil organic carbon in long-term 332 experiments using RothC-26, Geoderma, vol.3, issue.81, pp.29-44, 1997.

P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, Acceleration of 334 global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, vol.408, pp.335-184, 2000.

P. Falloon and P. Smith, Simulating SOC changes in long-term experiments with 337 RothC and CENTURY: model evaluation for a regional scale application. Soil Use 338 and Management, pp.101-111, 2002.

V. Romanenkov and L. Shevtsova, EuroSOMNET -a database for long-term 341 experiments on soil organic matter in Europe, Computers and Electronics in 342 Agriculture, pp.233-239, 2002.

R. M. Gray, Toeplitz and Circulant Matrices: A Review, Foundations and Trends in 344 Communications and Information Theory, pp.155-239, 2006.
DOI : 10.1561/0100000006

D. S. Jenkinson, D. E. Adams, and A. Wild, Model estimates of CO2 emissions from soil in response to global warming, Nature, vol.351, issue.6324, pp.304-306, 1991.
DOI : 10.1038/351304a0

C. Jones, C. Mcconnell, K. Coleman, P. Cox, P. Falloon et al., Global climate change and soil carbon stocks; predictions from two contrasting 349 models for the turnover of organic carbon in soil, Global Change Biology, vol.348, issue.166, pp.154-350, 2005.

T. Katterer and O. Andren, The ICBM family of analytically solved models of soil carbon, nitrogen and microbial biomass dynamics ??? descriptions and application examples, Ecological Modelling, vol.136, issue.2-3, pp.191-207, 2001.
DOI : 10.1016/S0304-3800(00)00420-8

W. Knorr, I. C. Prentice, J. I. House, and E. A. Holland, Long-term sensitivity of soil carbon turnover to warming, Nature, vol.34, issue.7023, pp.298-301, 2005.
DOI : 10.1046/j.1365-2486.2001.00412.x

S. Manzoni, A. Porporato, P. Odorico, F. Laio, and I. Rodriguez-iturbe, Soil 357 nutrient cycles as a nonlinear dynamical system, Nonlinear Processes in Geophysics, vol.358, issue.11, pp.589-598, 2004.

A. Parshotam, The Rothamsted soil-carbon turnover model ??? discrete to continuous form, Ecological Modelling, vol.86, issue.2-3, pp.283-289, 1996.
DOI : 10.1016/0304-3800(95)00065-8

L. Shevtsova, V. Romanenkov, O. Sirotenko, P. Smith, J. U. Smith et al., Effect of natural and agricultural factors on long-term soil organic matter dynamics in arable soddy-podzolic soils???modeling and observation, Geoderma, vol.116, issue.1-2, pp.165-189, 2003.
DOI : 10.1016/S0016-7061(03)00100-9

Y. Shirato, Testing the suitability of the DNDC model for simulating long-term soil 366 organic carbon dynamics in Japanese paddy soils, Soil Science and Plant Nutrition, vol.367, issue.51, pp.183-192, 2005.

Y. Shirato and M. Yokozawa, Applying the Rothamsted Carbon Model for Long-Term Experiments on Japanese Paddy Soils and Modifying It by Simple Tuning of the Decomposition Rate, Soil Science and Plant Nutrition, vol.49, issue.3, pp.405-415, 2005.
DOI : 10.1016/S0016-7061(03)00191-5

Y. Shirato, K. Paisancharoen, P. Sangtong, C. Nakviro, M. Yokozawa et al., Testing the Rothamsted Carbon Model against data from long-term 373 experiments on upland soils in Thailand, European Journal of Soil Science, vol.372, issue.188, pp.179-374, 2005.

J. Swinnen, J. A. Vanveen, and R. Merckx, Carbon Fluxes In The Rhizosphere Of 376, 1995.

. Winter-wheat, And Spring Barley With Conventional Vs Integrated Farming. Soil 377, Biology & Biochemistry, vol.27, pp.811-820

P. E. Thornton and N. A. Rosenbloom, Ecosystem model spin-up: Estimating steady 379 state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecological 380 Modelling, pp.25-48, 2005.

L. M. Vleeshouwers and A. Verhagen, Carbon emission and sequestration by agricultural land use: a model study for Europe, Global Change Biology, vol.39, issue.6, pp.519-530, 2002.
DOI : 10.1023/A:1004233920896

X. Yang, M. X. Wang, Y. Huang, and Y. S. Wang, A one-compartment model to study 384 soil carbon decomposition rate at equilibrium situation, Ecological Modelling, vol.151, pp.385-63, 2002.