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Recent theoretical works exploring the hydrodynamics of soft material in non-equilibrium situ-
ations are reviewed. We discuss the role of hydrodynamic interactions for three different systems:
i) the deformation and orientation of sedimenting semiflexible polymers, ii) the propulsion and
force-rectification with a nano-machine realized by a rotating elastic rod, and iii) the deformation
of a brush made of grafted semiflexible polymers in shear flows. In all these examples deformable
polymers are subject to various hydrodynamic flows and hydrodynamic interactions. Perfect stiff
nano-cylinders are known to show no orientational effects as they sediment through a viscous fluid,
but it is the coupling between elasticity and hydrodynamic torques that leads to an orientation
perpendicular to the direction of sedimentation. Likewise, a rotating stiff rod does not lead to a net
propulsion in the Stokes limit, but if bending is allowed an effective thrust develops whose strength
and direction is independent of the sense of rotation and thus acts as a rectification device. Lastly,
surface-anchored polymers are deformed by shear flows, which modifies the effective hydrodynamic
boundary condition in a non-linear fashion. All these results are obtained with hydrodynamic
Brownian dynamics simulation techniques, as appropriate for dilute systems. Scaling analyses are
presented when possible. The common theme is the interaction between elasticity of soft matter
and hydrodynamics, which can lead to qualitatively new effects.

I. INTRODUCTION

Dynamics in soft matter systems far from equilibrium
is of central interest in various interdisciplinary fields
like biophysics or microfluidics. Most generally, soft
objects subject to thermal noise show thermally ac-
tivated shape fluctuations and are sensitive to even
minute external forces. Moreover, the dynamics of
small objects evolving in liquid solvents, e.g. water,
is modified by the presence of flow and viscosity. As
an example, external forces exerted on micro-objects
lead to long-ranged effects due to momentum diffusion
and modify any motion and flow. In particular, dif-
ferent moving objects or different moving parts of a
macromolecules are coupled among each other via the
hydrodynamic flow fields emanating from the differ-
ent regions. Such hydrodynamic interactions, mediated
by the viscous solvent, are well studied in the context
of colloids [1–4] and polymers [5]. They are respon-
sible for many striking features such as propulsion at
the micron scale or measurable deviations from pure
Brownian random dynamics in sedimentation and elec-
trophoresis experiments [5–7]. For small objects and
rather modest flow velocities, the non-linear term in
the Navier-Stokes equation is negligible and one ob-
tains the Stokes equation which describes the so-called
creeping flows. Since the hydrodynamic equations gov-
erning the flow become then linear, so are all response
relations between forces and torques applied on rigid
micro-objects and the resulting velocities [1]. This lin-
ear relationship is completely defined by the shape of
the objects and thus illustrates the importance of shape
design in microfluidics, for instance. However, the is-
sue becomes more complicated for deformable soft ob-
jects like membranes, soft colloids or elastic rods and
macromolecules (cylindrical viruses, synthetic or bio-
polymers). In that case, the deformation of the object

depends on the flow which thus changes hydrodynamic
boundary conditions in an intricate and non-linear fash-
ion, since the object shape acts back on the flow field via
hydrodynamic screening. Solving the problem becomes
much more complicated, both at the numerical and an-
alytical level. Some analytical results have been ob-
tained either close to equilibrium where linear response
theory applies or by invoking the pre-averaging approx-
imation, as used in the context of the Zimm-model for
dynamics of polymers [5]. However, to unravel the full
coupling between shape and flow in situations far from
equilibrium, simulation techniques prove very useful.
In this review, we focus on three situations involv-
ing hydrodynamics of soft matter far from equilibrium:
i) the sedimentation and orientation of elastic rods,
ii) the propulsion and force-rectification by a rotat-
ing semi-flexible filament, and iii) the deformation of
a brush of grafted semiflexible polymers in shear flows.
As will be discussed, the selection of these topics is
closely related to novel emerging experimental tech-
niques and activities.
Example i) is related to the effect of anomalous bire-
fringence, which is observed in experiments involving
charged rod-like particles such as Tobacco-Mosaic [8],
FD viruses [9] or synthetic polyelectrolytes [10, 11] and
cylindrical micelles [12] in electric fields. Normally,
charged objects in electric fields orient parallel to an
externally applied electric field due to the anisotropic
polarizability which is mostly caused by the easily dis-
placeable counterion cloud. This is called normal bire-
fringence. For almost all rod-like charged systems, one
finds in a certain parameter range also anomalous bire-
fringence, where particles orient perpendicular to the
direction of the electric field and motion. This effect
is obtained for long particles, law salt concentration or
particle concentrations beyond mutual overlap. A sim-
ilar effect, namely perpendicular orientation of moving
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cylindrical objects, is in principle also observable with
sedimenting rod-like particles [13]. This phenomenon
is, at present, not completely understood [14]. A pos-
sible relation with a mechanism for hydrodynamic ori-
entation associated with rod deformation was recently
suggested [15]. As follows from the linear-Stokes equa-
tion, perfectly straight and stiff nano-cylinders show no
orientational effects as they sediment through a viscous
fluid. But an elastic rod is deformed due to hydrody-
namic forces, and the coupling between elasticity and
hydrodynamic torques leads strikingly to an orientation
perpendicular to the direction of sedimentation.

In example ii) the question of propulsion of a microm-
eter sized object through a viscous fluid is addressed
from an engineering point of view. Due to the linear-
ity of hydrodynamic equations, propulsion on the nano-
meter scale calls for design strategies very different from
the macroscopic world, since inertia plays no role and
friction is the only way of producing thrust [16, 17].
The studied propulsion mechanism is inspired by bi-
ological systems such as bacteria, which move by ro-
tating propeller-like appendices, so-called flagella [18–
20]. Those propellers involve helical stiff polymers that
are rotated at their base by a rotary molecular motor.
Hydrodynamic friction converts the rotational motion
of the helix into thrust along the helix axis [16, 18].
For a number of biomedical applications, e.g. for di-
rected motion of artificial viruses through cells or nano-
devices through the bloodstream, it is desirable to de-
velop similar synthetic propulsion mechanisms or to in-
corporate biological single-molecule motors into syn-
thetic environments. A second possible field of ap-
plication involves mixing strategies in nano-fluidic de-
vices, which could be achieved by moving or rotat-
ing surface-anchored polymers [21]. Recent discoveries
opened the route to the synthetic manufacture of ro-
tary single-molecule motors driven by chemical [22] or
optical [23, 24] energy. An ATPase can also be fixed to
different substrates and used to rotate metallic [25] or
organic nano-rods [26]. All these experiments raise the
question about the minimal design necessary to con-
vert the rotational power of such nano-engines into di-
rected thrust in a viscous environment. Since stiff he-
lices are actually difficult to manufacture down to the
micron scale, we investigate whether a straight elastic
filament can act as a propeller. Our design consists of
a straight elastic rod that rotates around a point with
a constrained azimuthal angle, i.e., on the surface of
a cone. In the absence of elasticity, no effective thrust
is produced as one averages the motion over one whole
cycle of rotation. But a rod with finite bending mod-
ulus will be deformed and in fact take on a shape that
resembles one period of a helix. Due to the symmetry
breaking, a net thrust is obtained which in fact does not
depend on the sense of rotation of the rod: the device
acts as a nano force-rectification device [27].

Finally, we study the influence of a shear flow on the
conformations of surface-anchored semiflexible poly-
mers. When the shear rate increases, polymers will
be oriented in the direction of the shear and be bent
down in order to be more and more parallel to the sur-

face. These conformational effects clearly depend also
on the grafting density of polymers and on the stiffness
of polymers. As polymers bend down onto the surface,
the hydrodynamic boundary condition changes and the
flow can penetrate closer towards the surface. Again, it
is the coupling between hydrodynamic flow effects and
elastic deformation of polymers which leads to intricate
non-linear effects. These phenomena have been exper-
imentally investigated using colloidal spheres with sur-
face anchored DNA molecules, which were being held
fixed using a laser trap in uniform flows of different
strengths [28]. Since the force acting on the sphere
is measured in such an experiment, the hydrodynamic
drag and therefore the position of the surface of shear
can be measured with high precision. Similar phe-
nomena also appear in the glycocalix layer, which is a
polymer-brush like coating of the endothelial cell layers
in blood vessels. The shear rates in blood stream can
be enormous, and conformational changes of the glyco-
calix layer has important consequences on permeability
of drugs, nutritional agents or viruses.
The paper is divided in five sections. In Section II, we
give an introduction of hydrodynamics at low Reynolds
numbers and focus particularly on hydrodynamic inter-
actions between two moving spheres in a viscous fluid.
The integral representation of the flow velocity, intro-
duced by Oseen using Green’s function techniques, is
developed, since it is at the heart of our simulation
methods. We present Green’s tensors both for an un-
bounded fluid and a semi-infinite fluid medium with a
no-slip wall. Section III presents our model of semi-
flexible polymers under external force which is imple-
mented in Brownian dynamics simulations in the pres-
ence of hydrodynamic interactions. Section V is de-
voted to hydrodynamics of elastic polymers under ex-
ternal force load. After recalling some basic results for
rigid cylinders and helices (Section IV), we focus on the
coupling between hydrodynamic interactions and elas-
tic deformations. This coupling leads to the orientation
of elastic cylinders under an homogeneous field, propul-
sion with rotating polymers, and deformation of brush
layers in shear flows.

II. HYDRODYNAMICS ON THE NANOSCALE

A. Hydrodynamics at low Reynolds number

The Navier-Stokes equation combines both convective
and viscous terms, the ratio of which is given by the
Reynolds number, Re = ρUL

η , where U and L are the
typical velocity and size of the flow, ρ the mass per
unit volume and η the shear viscosity of the fluid [29].
In this paper, we are dealing with small objects mov-
ing slowly in a fluid, like a polymer, a macromolecule
or a latex bead. The typical scales are in the range
L ' 10−8–10−5m and U ' 10−8–10−4m/s yielding in
water (ρ = 103kg/m3, η = 10−3Pa/s) Re ' 10−10–
10−3. Hence, hydrodynamics on the nanoscale be-
long to the small Reynolds number regime, Re � 1.
In this framework, viscous damping (momentum diffu-
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sion) dominates inertia (momentum convection), and
the creeping flow produced by moving objects is de-
scribed by the Stokes equations [1, 29]

η∇2v(r)−∇p(r) + fδ(r) = 0 (1)
∇ · v(r) = 0 (2)

where p(r) is the pressure field, v(r) the fluid velocity
and f a point force at r = 0. In this paper, the fluid
can be taken as incompressible at the time scales we
consider.
The solution of the linear equations (1)-(2) can be found
using Green function techniques [30–32]. The Oseen
tensor [33], also called Stokeslet, G(r) describing the
fluid velocity disturbance caused by a point force ex-
erted at the origin, is

G(r) =
1

4πηr
−∇⊗∇ r

8πη

=
1

8πηr

(
1 +

r⊗ r
r2

)
(3)

p(r) = −∇ ·
(

f
4πr

)
(4)

where r = |r| and r ⊗ r = rrT is a dyadic tensor. The
pressure field is the potential of a dipole distribution of
strength −f . Since we are dealing with an unbounded
fluid, the flow disturbance vanishes at infinity: v(r →
∞) = 0. The famous inverse first power dependence
in r means that hydrodynamic interactions are long-
ranged. Moreover the flow velocity v(r) is not uniform,
the perturbation being larger in the direction of f . This
non-uniformity is linked to the symmetry-breaking into
longitudinal and transverse modes in fluids.
The flow around any moving rigid body (volume V
and surface S) in an unbounded medium can then
be theoretically constructed by using a distribution of
Stokeslets on the body surface. Indeed, if there is no
source of momentum in the fluid, the flow is only de-
termined by the no-slip condition at the body surface.
For a steady creeping flow, the propulsive external force
applied to a moving object is balanced by the frictional
force exerted by the fluid on the body surface, which is
given by integrating the stress tensor

σ = −p1 + η[∇⊗ v + (∇⊗ v)T ] (5)

over the body surface [29]. Most generally, the bulk
fluid velocity is then given by the surface integral

v(r) =
∫

S

G(r− r′) · f(r′)d2r′ (6)

where the surface force distribution f(r′) is the source
of the flow field.
As an illustration of these concepts, we calculate in the
following the flow induced by a moving sphere in an
unbounded fluid. It will allow us to introduce hydrody-
namic interactions between spherical particles evolving
in a creeping flow.

B. Flow around a moving sphere and
hydrodynamic interactions

For a rigid object with an unspecified shape, the calcu-
lation of the flow field at distance r from the immersed
object of size a using Eq. (6) becomes hardly tractable
and, similarly to electrostatics, a multipole expansion
can be done in powers of a/r. At first order, one can
approximate the velocity distribution by a point force
exerted at the centre of the body. This corresponds to
the far field solution, which is a Stokeslet. However,
this approximation is no longer valid when we consider
the flow field closer to the immersed body. We shall
then take into account its finite size. Let us consider
a rigid sphere of radius a with its centre positioned at
ri. We rewrite Eq. (6) using a Taylor expansion and
obtain the fluid velocity vi(r), associated to a uniform
force density fi(r) = fi applied on the sphere surface

vi(r) =
(

1 +
a2

6
∇2

ri

)
G(r− ri) · Fi (7)

where Fi =
∮

S
fi(r′)d2r′ = 4πa2fi is the total force

acting on the particle j. This result is indeed exact for
a sphere since its high symmetry ensures that higher
order surface integrals are zero.
One can now calculate the velocity of the rigid sphere,
vs

i , by utilizing the no-slip boundary condition on the
sphere surface: the sphere velocity is equal to the fluid
velocity at the surface. We thus find the Stokes law
for the velocity of a sphere which moves slowly under a
force Fi as [1, 34]

vs
i =

1
4πa2

∮
S

vi(r) d2r =
Fi

6πηa
(8)

Since the sphere is moving with a stationary velocity,
−Fi is also the frictional force acting on a sphere mov-
ing at velocity vs

i .
Suppose now that we have two spheres i and j of same
radius a in an unbounded fluid with two external forces
Fi and Fj acting on them. The fluid velocity gener-
ated by Fj on particle j also tends to drive the sphere
i: these interactions via momentum diffusion are called
hydrodynamic interactions. Of course, the modified ve-
locity of particle i should in return modify the flow field
close to particle j and then its velocity and so on. How-
ever, these effects are successively smaller by a factor
2a/rij where rij = ri− rj and can be calculated by the
method of reflections [1, 35]. In the following, we con-
sider that the spheres are widely separated, 2a/rij � 1,
and the velocity of particle i is simply the sum of two
terms: its self-propulsion by Fi given by Eq. (8) and
the contribution of the flow created by the sphere j,
vj(r), given by Eq. (7). The sum of the two effects can
be written as

vs
i =

Fi

6πηa
+

1
4πa2

∮
Si

vj(r′) d2r′ =
∑

j

µij · Fj (9)

In the above equation we use the Taylor expansion of
the flow field with respect to the particle centre ri. This
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naturally leads to the mobility tensor, that describes
hydrodynamic interactions between particles, as

µii = µ01 =
1

6πηa
1 (10)

µij(rij) =
(

1 +
a2

6
∇2

rij

)(
1 +

a2

6
∇2

rij

)
G(rij)

=
1

8πη rij

(
1 +

rij ⊗ rij

r2ij

)

+
a2

4πη r3ij

(
1
3
− rij ⊗ rij

r2ij

)
(11)

where 1 is the 3 × 3 unit matrix. One notes that this
mobility tensor includes the lowest corrections of par-
ticle size over the Oseen tensor description, and cor-
responds to the well-known Rotne-Prager tensor in an
unbounded fluid [36]. One thus should keep in mind
that our treatment of hydrodynamic interactions is only
approximate for particles which are separated by a dis-
tance on the order of a.

C. Hydrodynamic interactions near a no-slip
surface

If a particle is moving near a rigid boundary like a solid
planar surface, the situation becomes much more com-
plicated due to boundary conditions. The fluid veloc-
ity must vanish at the surface which is at rest. Here
again, theoretical methods used in electrostatics apply.
Blake [37] developed the image method for hydrody-
namics near a plane and obtained the Green’s function
in the presence of a no-slip planar boundary at z = 0
as

Gwall(ri, rj) = G(r)−G(R)+GD(R)−GSD(R) (12)

where r = ri − rj and R = ri − rj′ and j′ is the im-
age with respect to the plane z = 0 (see Fig. 1). The
Blake’s Green function relates the flow at ri to a unit
point force applied at rj in the bounded fluid medium.
One notes that the no-slip boundary condition on the
plane of the wall is satisfied by the image system [38–
44], consisting of the original Stokeslet G(r), the im-
age Stokeslet G(R), a Doublet GD(R) and a source
Doublet GSD(R). If one uses the tensor Gwall given
by Eq. (12), instead of GS given by Eq. (3), in equa-
tion (11), we obtain the equivalent of the Rotne-Prager
mobility tensor in the presence of a no-slip wall, which
is the level of description we chose for the last example
of surface-anchored polymers in shear flows.

III. HYDRODYNAMIC NON-EQUILIBRIUM
SIMULATIONS OF SOFT MATTER

A. Review of numerical methods

On the methodological side, the adequate inclusion
of hydrodynamics in a theoretical description of soft-

FIG. 1: Top: Two spherical particles i and j, where r =
ri−rj , in the presence of no-slip planar surface. The dashed
sphere j′ beneath the surface represents the image of j-th
particle and R = ri − rj′ . Bottom: Schematic picture for
determining self-mobility of a single particle where R is the
relative position vector between the particle and its own
image.

matter systems has been a long-standing problem [45–
47]. From a simulation point of view, molecular dy-
namics (MD) simulations with explicit consideration
of solute and solvent take into account hydrodynamic
interactions on an adequate level. However, most of
the simulation time is used to evaluate the solvent
dynamics in great detail, which is not necessary to
achieve the proper hydrodynamic behavior on the col-
loidal or polymer length scale: indeed, MD simulations
require time-resolution on the order of 10−15s to de-
scribe inter-molecular forces whereas the typical diffu-
sion time of a colloid of size a = 10nm in water is
τ = 6πηa3/kBT ' 5×10−6 s. Moreover, it will displace
approximately 108 solvent molecules. This large length-
and time-scale gap between the solvent molecules and
the solute calls for a coarse-grained and simplified de-
scription of the solvent dynamics.
This has led to the development of novel mesoscopic
simulation techniques. Prominent examples are lattice
models such as lattice-Boltzmann methods [48–51], par-
ticle based off-lattice methods such as dissipative par-
ticle dynamics [52–54], and multi-particle-collision dy-
namics [55, 56], and more coarse-grained scheme such
as Lowe-Anderson thermostat [57, 58] and stochastic
rotation dynamics [59].
We next describe the implementation of a Brownian dy-
namics simulation for elastic polymers. We first intro-
duce the general framework of Langevin dynamics with
hydrodynamic interactions and then adapt it to semi-
flexible polymers. In contrast to lattice-based methods,
for which the numerical complexity scales with the sys-
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tem volume, hydrodynamic simulation methods [60–
62] lead to a numerical complexity which scales with
the number of monomers included in the simulation.
Clearly, hydrodynamic simulation methods will be ad-
vantageous whenever dilute systems are being stud-
ied and the number of polymers is small. Likewise,
semi-infinite systems (e.g. polymers grafted or ad-
sorbed to a single solid surface and connected to bulk
solvent) can be straightforwardly simulated using hy-
drodynamic simulation methods and the appropriate
hydrodynamic Greens function satisfying e.g. the no-
slip boundary condition at the surface. Following this
scheme, the solvent is treated as a continuum, which is
acceptable for flows on length scales larger than the size
of solvent molecules [47]. Stokesian dynamics does not
allow to describe the real flow field in the immediate
vicinity of our structural units, the monomers, whose
size ranges between 1 − 10 nm. On the other hand,
the flow field calculated far away form the monomers
by using the Rotne-Prager tensor, Eq. (11) remains ex-
act at the order of (a/r)2 and is not influenced by the
flow close to the monomers. Moreover, the hydrody-
namic interactions between two monomers in contact
are negligible compared to direct monomer-monomer
interactions (stretching and bending) or excluded vol-
ume effects. Hence, our treatment of hydrodynamic in-
teractions between monomers far apart should remain
valid. This is borne out by recent Non-Equilibrium
Molecular Dynamics Simulations of sedimenting carbon
nanotubes in water, where it was demonstrated that
the Stokes equation describes simulated solvent flow-
profiles down to the sub-nanometer length scales [63].
More subtle is the question of the appropriate hydro-
dynamic surface-boundary condition, as it depends on
surface details and displays variable amounts of slip at
hydrophobic surfaces [63]. In our case we are mostly
concerned with hydrophilic objects, where the no-slip
boundary condition is valid to a very good degree.

B. Brownian hydrodynamics

The two following assumptions provide a frame of ref-
erence for the description of Langevin dynamics

• the mesoscopic size of polymers and colloids (a ∼
10 nm to 1 µm) ensures the validity of Langevin
dynamics. Fluid particles are then treated as
variables having fast dynamics and are integrated
out, whereas material particles follow slow dy-
namics and are treated explicitly;

• we assume local thermodynamic equilibrium, i.e.
particle velocities obey fast dynamics which im-
plies that the memory of velocities is lost much
quicker than the time scales of interest. We are
thus interested in time scales larger than the mo-
mentum relaxation time, t � τm = m/(6aη),
which constitutes the diffusive regime.

Our polymers are coarse-grained at the nanometer scale
and modeled as an assembly of M+1 spherical particles
submitted to external and interaction potentials. In

this framework, we are able to write the time evolution
of all sphere positions ri(t), which is governed by the
position-Langevin equation [64–69]

ṙi(t) =
M∑

j=0

µij ·
[
−∇rj

U({rk}) + Fext
j

]
+ kBT

M∑
j=0

∇rj
· µij + ξi(t) (13)

which relates the velocity of sphere i to forces applied
to all beads including hydrodynamic interactions as
given by Eq.(9). One notes that the hydrodynamic
mobility tensor µij introduces long-ranged interactions
and couples distant particles. The stochastic term, the
Langevin random displacement ξ(t), mimics the ac-
tion of a thermal heat bath and obeys the fluctuation-
dissipation relation

〈ξi(t)⊗ ξj(t′)〉 = 2kBTµijδ(t− t′) (14)

which is numerically implemented by a Cholesky de-
composition [68]. We neglect all memory effects in this
work. In the most part, we study the dynamics of elas-
tic rods in an unbounded fluid. In this case we use the
mobility tensor µij given by Eq. (11) and it is straight-
forward to check that ∇r̃j

· µij = 0 for every bead and
the gradient-mobility term in the Langevin equation
vanishes identically. This is different in the presence of
a no-slip surface, where this term is non-zero and has
to be taken into account.
The forces have two contributions: the internal forces,
which are derivatives of the interaction potential U , and
the external force, Fext

j , applied on bead j. These forces
depend on the specific details of the studied system
and will be described in the following sections. Hydro-
dynamic interactions between spheres are implemented
via the Rotne-Prager mobility tensor given by Eq. (11)
for an unbounded medium and by using the procedure
defined in Section II C for a semi-infinite medium with
a no-slip wall at z = 0. It ensures that the mobility
matrix is positive-definite which is necessary to use the
Cholesky decomposition [68].
For the numerical iterations, we discretize Eq. (13) with
a time step ∆ and rescale all lengths by the sphere
radius a according to r̃i = r/a. The iterative Langevin
equation in terms of the discrete time variable n = t/∆
now reads

r̃i(n+ 1) = r̃i(n) +
M∑

j=0

µ̃ij ·
[
−∇r̃j

Ũ(n) + F̃ext
j (n)

]

+
M∑

j=0

∇r̃j
· µ̃ij +

√
2µ̃ij · ξ̃i(n) (15)

where Ũ = U/kBT is the dimensionless potential,
F̃ext

j = aFext
j /kBT the rescaled external force, and

the rescaled random displacement has variance unity
〈ξ̃i(n) ⊗ ξ̃j(m)〉 = δijδnm. We express all mobilities
in dimensionless form by defining µ̃ij = ∆µijkBT/a

2.
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The rescaled bare mobility

µ̃0 =
kBT

a2
∆µ0 (16)

is the diffusion constant in an unbounded space in units
of the particle radius a and time step ∆.

C. Semi-flexible polymer model

An elastic polymer is modeled as a chain of connected
spheres (monomers) that interact via stretching and
bending forces. The non-dimensional elastic potential
Ũ is the discrete version of the extensible worm-like
chain model

Ũ({rk}) =
M−1∑
i=0

[
γ̃

4
(|r̃i − r̃i+1| − 2)2 +

ε̃

2
(1− cos θi)

]
(17)

where θi is the angle between neighbouring bonds of
sphere i. The parameters γ̃ = γa/kBT and ε̃ =
ε/(akBT ) are the adimensionnal stretching and bend-
ing moduli. For an isotropic elastic cylinder with radius
a, bending and stretching moduli are determined by
Young’s modulus EY as ε = EY πa

4/4 and γ = EY πa
2,

which gives the relation γ̃ = 4ε̃. If not stated other-
wise, we always consider isotropic elastic rods in the
following. The persistence length, i.e. the correlation
length of tangent vectors along the polymer contour, is
given by `p = ε/(kBT ). Twist and torsional degrees are
omitted since for most synthetic polymers, free rotation
around the polymer backbone is possible. The rescaled
bending rigidity is given by the ratio of the persistence
length and the rod length

`p
L

=
ε

2aMkBT
(18)

where L = 2aM is the polymer length.
The external force can be caused by an external homo-
geneous field, electric or gravitational,

F̃ext
j = Ẽ =

aqeE
kBT

(19)

where qe is the electric charge of the bead (q is the va-
lency) for an electric field or the mass for a gravitational
field as applicable to sedimentation experiments. The
external force can also act on only part of the polymer,
as for example the force applied by a molecular motor.
Mutual penetration of monomers is prevented by an
excluded volume interaction modeled by a truncated
Lennard-Jones interaction

ŨLJ = ω
∑
i<j

[(
2

r̃i − r̃j

)12

− 2
(

2
r̃i − r̃j

)6

+ 1

]
(20)

valid for separation |r̃i− r̃j | < 2 with an energy param-
eter ω = 3.
Lateral periodic boundary conditions are implemented
with the Lekner-Sperb summation scheme [70] for hy-
drodynamic and electrostatic interactions. For suffi-
cient numerical accuracy we choose time steps in the

range µ̃0 = 10−3–10−8. Output values are calcu-
lated every 103–104 steps, total simulation times are
of the order of 108–109 steps, giving errorbars typically
smaller than the symbol size.

IV. HYDRODYNAMICS OF RIGID RODS

We have seen that one of the principal feature of small
Reynolds numbers hydrodynamics is that the fluid ve-
locity field exhibits a linear dependence on exerted
forces on immersed solid objects. In this paragraph,
we explore this feature in some detail and demonstrate
that propulsion at low Reynolds numbers is intimately
related to shape design. The torque, assumed to act
at the origin r = 0, and force exerted on a body are
calculated by integrating the stress tensor σ, Eq. (5),
over the particle surface as [1]

F =
∮

S

σ · dS (21)

N =
∮

S

r× σ · dS (22)

It is plausible that the body shape – and thus any sym-
metry properties of the solid – influence the flow at
short distances, r & a. However for large distances
r � a, we remind the reader that the flow field is
invariably given by the Stokeslet, Eq. (3)–(4). For a
rigid object, the velocity v at any point r belonging to
the solid is obtained by decomposing its motion into
a global translation of velocity vs and a rotation with
angular velocity ωs related by v = vs + ωs × r. Using
the no-slip condition at the body surface, one can then
obtain the linear relationship between the forces F and
torques N exerted on the rigid object and translational
as well as rotational velocities vs and ωs by inverting
equations (21)–(22)(

vs

ωs

)
=
(

µt µtr

µrt µr

)(
F
N

)
(23)

where the tensors µt and µr are the translation and ro-
tation mobility tensors. Hence the off-diagonal tensors,
µtr and µrt, are the two coupling tensors and repre-
sent cross-effects where rotation is induced by forces
and translation induced by torques. Using the gener-
alized reciprocal theorem [1], one can prove that the
whole mobility tensor defined in Eq. (23) is symmet-
ric. Moreover, if the solid object exhibits some type of
symmetry, they will be reflected by symmetries of the
mobility tensors µ.
In the following we are interested in bodies with three
mutual orthogonal planes of symmetry (orthotropic
bodies) such as ellipsoids, spheres, cylinders or cubes.
In this case, we find µrt = µtr = 0 for every coordinate
system. Hence translational and rotational motions are
completely decoupled and only a torque can induce a
rotation of the body. Moreover, tensors µt and µr are
diagonal when expressed in the principal axes coordi-
nate frame [1]. Hence for a cylinder, we have only two
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eigenvalues and the translation mobility tensor simpli-
fies into

µt = P

 µ⊥ 0 0
0 µ⊥ 0
0 0 µ||

PT (24)

where P is the rotation matrix into the principal axes
coordinate frame. The two mobility constants µ|| and
µ⊥ correspond to motions parallel and perpendicular
to the cylinder, respectively. The exact values of these
mobilities are only available for ellipsoids from which
the values for a finite cylinder of length L have been
approximately deduced. The literature gives the fol-
lowing approximate values [1]

µ⊥ =
2 ln(L/a) + 1

8πηL
(25)

µ|| =
2 ln(L/a)− 1.44

4πηL
(26)

The important point is that for sufficient long cylinders
these values can be legitimately approximated by

µ|| ' 2µ⊥ (27)

Suppose that a cylinder is falling under its gravitation-
nal weight in a quiescent fluid at low Reynolds number.
The angle β between its symmetry axis and the cylinder
velocity vs is then given by (see Figure 2a)

tanβ =
vs
⊥
vs
||

=
µ⊥mg cosα
µ||mg sinα

' 1
2 tanα

=
tanα′

2
(28)

where m is the cylinder mass, g the gravitationnal ac-
celeration and α the angle between the symmetry axis
and the horizontal (α′ = π/2−α). The deviation angle
with respect to the vertical is given by [71]

α′ − β =
π

2
− α− β ' arctan

(
tanα′

2 + tan2 α′

)
(29)

We thus recover the result that for a a cylinder parallel
(α = π/2) or perpendicular (α = 0 ) to gravity, it falls
vertically (β = 0). The maximum fall angle is obtained
for tanα′ '

√
2 and is around α′ − β ' 20◦.

Now we assume that the object is a circular helix with
its axis pointing along ẑ. We choose it arbitrary to
be left-handed (see Figure 2b). Planes perpendicular
to the centerline are no more symmetric planes and
the coupling mobility µrt is non-zero. The rotation
of the helix at angular velocity ω = ωẑ (in Fig. 2b
we arbitraly choose ω > 0) can now induce a thrust
FT = µtrωẑ. A simple local argument of the generation
of the thrust is given by H. Berg [72] and schematically
shown in Fig. 2b. We approximate the helix filament
by a chain of small cylinders, which make an angle δ =
2πR/Λ with the helix axis, where R is the helix radius
and Λ the pitch. Because a cylinder has two different
mobilites, Eq. (24), the viscous drag is twice as big
when it moves sideways than when it moves end-on.
Hence the components of the drag normal to the helix
axis contribute to the torque whereas components of

FIG. 2: a) Oblique fall of a cylinder under gravity. b)
Schematic analysis of the viscous drag on two cylinders of
a helical filament contributing to thrust. The helix is left-
handed and ω = ωẑ. The velocity of each segment is decom-
posed into normal and parallel velocities, v⊥ and v||. Hence
normal and tangential friction forces, F⊥ and F||, act in op-
posite direction and their ratio is F⊥/F|| ' 2v⊥/v||. The
total force has thus a component parallel to ẑ, FT .

the drag parallel to the axis are all of the same sign and
contribute to a propulsive thrust FT = FT ẑ with FT >
0. Note that with our sign convention in Fig. 2b, we find
µtr > 0. This sign is related to the helix handedness: a
right-handed helix would give µtr < 0. The velocity is
v = ω ×R and we find for the tangential and normal
forces to the filament per unit length

F⊥ =
ωR cos δ
µ̃⊥

(30)

F|| =
ωR sin δ
µ̃||

(31)

where µ̃−1
|| and µ̃−1

⊥ are the friction cefficients per unit
length. The thrust is then

FT = (F⊥ sin δ − F|| cos δ) ẑ

=
1
2

sin 2δ
(

1
µ̃⊥

− 1
µ̃||

)
Rω (32)

Hence the thrust is maximized for δ = π/4. By approx-
imating µ̃|| ' 2µ̃⊥, we finally find the coupling mobility

µrt '
4µ̃⊥

R sin 2δ
(33)

Similarly, the rotation mobility associated with the re-
sisting torque is given by

µr ' − 4µ̃⊥
R2(3 + cos 2δ)

(34)
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These approximate results allow a simple understand-
ing of the propulsion mechanism. They are found using
the so-called resistive force theory developed by Gray-
Hancock [73] and Lighthill [18–20]. The roughest ap-
proximation is the neglect of hydrodynamic interactions
between different segments which is of course not jus-
tified since these interactions are long-ranged in 1/r.
Lighthill improves this approach by showing that these
hydrodynamic interactions can be asymptotically cal-
culated in the limit of slender body theory [74, 75],
the small parameter being a/q where q � Λ is the
unknown typical length of small cylinders and a their
thickness. Hydrodynamics are then taken into account
by considering a helical line of Stokeslets for the far
region (r > q) plus Doublets to fulfill the no-slip con-
dition for the close region (r < q) where the helix is
approximated by a straight filament. This allows a
determination of q = 0.09Λ and local resistance co-
efficients per unit length µ̃−1

|| = 2πη/ ln(2q/a) and
µ̃−1
⊥ = 8πη/[2 ln(2q/a) + 1]. Other works tackle the

question of end effects and the influence of the cell body
on the flow field, by considering Stokeslets, Doublets
and a Rotlets which represents a point torque [76, 77].
Of course these studies suppose infinitely stiff helices.

V. HYDRODYNAMICS OF SOFT RODS

In the following, we consider elastic rods out of equi-
librium under external forces. Contrary to rigid rods,
hydrodynamic effects lead to a bending of elastics rods
and therefore a reduction in symmetry [78, 79]. It re-
sults in an hydrodynamic translational-rotational cou-
pling since now µrt 6= 0, which can be samll but
coupled to large forces and torques can lead to very
different qualitative behaviour compared to infinitely
rigid rods. Indeed, sedimenting rods orient perpendic-
ularly to the direction of motion due to a hydrodynamic
torque. Likewise, the bending of rotating rods can in-
duce propulsion in the same way as helices, contrary
to rotating stiff cylinders for which the frictional force
is always perpendicular to the rotation axis. Hence a
bent rod can play the role of propeller.

A. Orientation of elastic rods under external field

We consider an elastic rod submitted to an external
force F ext = qeE which can be the gravitational field in
sedimentation experiments or an electric field (E) act-
ing on a charged rod in birefringence experiments [15].
As briefly described in the introduction, the orientation
of stiff charged rods such as tobacco-mosaic viruses in
electric fields is mostly determined by polarizability ef-
fects. The anisotropic electric polarizability favors in
general an orientation with the direction of the largest
polarizability parallel to the external field E. The
largest contribution to the polarizability comes from
the easily deformable counterion cloud close to each
charged rod, which is maximal along the rod axis [80–
83]. As a result, at not too low fields, charged rod-like

particles orient parallel to E. However, when hydrody-
namic effects are dominant and overwhelm this induced
dipole mechanism, rod like particles can orient perpen-
dicular to the field E. In the following, we focus on this
hydrodynamic orientation.

FIG. 3: Stationary deformation and orientation of an
isotropic elastic rod at zero temperature. a) Snapshots for
M = 19 and ε∗=0.03, 0.3 and 3 (from top to bottom) of a
rod moving downwards. b) Rescaled mean curvature K/M
(open symbols) and alignment parameter (χ + 0.5)/M2 as
a function of the rescaled rigidity ε∗ confirming scaling pre-
dictions Eq. (37) (broken lines with slopes -1 and -2).

The mean chain bending is measured by K = |r̂01 −
r̂N−1 N |/2 = sin θ where θ is the bending angle of the
terminal chain segment (see Fig. 3a) and r̂ are the nor-
malized bond vectors. The overall rod orientation can
be measured by the orientation parameter ψ which is
defined as

ψ =
3
2

(
Re ·E
ReE

)2

− 1
2

=
3 sin2 α− 1

2
(35)

where Re ≡ rN−1 − r0 is the end-to-end vector of the
chain, and the orientation angle α is the same as in
Fig. 2a. The electric birefringence signal, on the other
hand, is proportional to the alignment parameter [78]

χ =
1
M

M−1∑
i=0

[
3
2

(
rii+1 ·E
rii+1E

)2

− 1
2

]
(36)

which is a measure of the average orientation of indi-
vidual bonds and only equal to ψ for straight rods. The
hydrodynamic orientation mechanism, which of course
only works at low Reynolds number, can be explained
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in simple terms as follows: the external force drives all
monomers in the same way; the effective force, which
results from the product of the hydrodynamic interac-
tion tensor times direct forces, cf. Eq.(13), is larger in
the middle than at the two ends, because the middle
receives hydrodynamic thrust from both sides. Since
in stationary motion, all monomer velocities have to be
the same, this imbalance in driving thrust is balanced
by an elastic deformation, which in turn leads to an
orientation of the rod.
On a scaling level, the elastic torque of a rod of length
L = 2aM bent by an angle θ, as shown in Fig. 3a,
is Nθ ' εθ/L and is balanced by an hydrodynamic
torque, Nh, which arises from the above-mentioned in-
homogeneity of hydrodynamic thrust. Nh is thus pro-
portional to the direct force per bead, the number of
monomers M and the rod length : Nh ' L2qeE/a.
Equating Nθ ' Nh yields a stationary bending angle

θ ' L3qeE

aε
' L

a

1
ε∗

(37)

where ε∗ = ε/(qeEL2) is the proper scaling variable in
the continuum limit (a → 0). In Fig. 3b, we show the
numerically determined rescaled chain bending K/M
(open symbols) and the bond alignment (χ+ 1/2)/M2

(dark symbols) as a function of the inverse driving force
ε∗ at zero temperature (the Langevin forces are switched
off). Data are well described by the laws θ ' K = 1.1×
10−3L/(aε∗) and θ2 ' χ + 1/2 = 1.1 × 10−6L2/(aε∗)2
(broken lines), for not too strong bending, in agreement
with our scaling predictions.
Rod bending reduces the symmetry and hydrodynam-
ically couples translational and rotational degrees of
freedom; due to a shift between the center of mass and
hydrodynamic stress the bent rod is oriented perpen-
dicularly to the direction of motion with the opening
pointing backwards [1]. For finite temperature the ori-
entation is subject to thermal fluctuations and thus not
complete. If we consider an assembly of elastic rods
in solution as in sedimentation or birefringence exper-
iments, we can deduce the average bending and ori-
entation using Boltzmann statistics. Within linear re-
sponse, the orienting torque Nα is proportional to the
orientation angle α, the bending angle θ and the driving
torque Nh: Nα ∼ αθNh.
For low temperatures, the average orientational energy
equals the thermal energy, αNα ∼ kBT , leading to a
mean square orientational fluctuation

2
3

(
ψ +

1
2

)
' 〈α2〉 = 6.1× 103

( a
L

)3 ε∗

Ẽ
(38)

where Ẽ is defined in Eq. (19). It is checked for a fixed
rescaled chain stiffness ε∗L/a = `p/(LẼ) in Fig. 4a
with a numerically determined prefactor. The orienta-
tional fluctuations at linear response are governed by a
quadratic form proportional to a coupling constant J
with expectation value

〈sin2 α〉 = − ∂

∂(J/2)
ln
∫ π/2

−π/2

dα cosα e−
J
2 sin2α (39)

For low temperatures (high J-values) one obtains
〈sin2 α〉 ' 〈α2〉 = 1/J which together with Eq. (38)
fixes the coupling constant J .

FIG. 4: a) Rescaled orientational parameter (ψ + 0.5)M4

as a function of the rescaled temperature kBT/(qeEa) =

1/Ẽ for fixed rigidity ε∗L/a = 100 in agreement with the
low-temperature scaling prediction Eq.(38) (broken line).
b) Same data plotted as −ψ/M4 compared with the high-
temperature scaling prediction Eq.(40).

The high-temperature regime is experimentally more
relevant and corresponds to an almost isotropic rod ori-
entation distribution. In this limit, one obtains from
Eq. (39) 〈sin2 α〉 ' 1/3 − 2J/45 + O(J2), which to-
gether with the definition of ψ, Eq. (35) yields the final
result

ψ ' − J

15
= −1.1× 10−5Ẽ2 L

`p

(
L

a

)4

(40)

Equation (40) including the numerical prefactor is con-
firmed in Fig. 4b (broken line). As might be expected
for the stationary behavior, the result is independent
of the solvent viscosity. The dependence on the rod
length ψ ∼ L5 is stronger than for a mechanism based
on electric counterion polarizability, where one typi-
cally assumes an L-dependence like ψ ∼ L3E2 or even
smaller [80]. This means that hydrodynamic orienta-
tion is dominant for long rods, in agreement with exper-
imental observations showing increased anomalies for
long polymers [10]. Finally using Eq. (37) and (40),
the ratio between chain orientation and chain bending
becomes |ψ|/θ2 ' `p/L, which suggest that for stiff
polymers `p > L one can observe weakly bent but still
strongly oriented chains.
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Transient birefringence and dichroism experiments [84]
deal with the time dependence of the orientational re-
sponse χ(t) and ψ(t) after the electric driving field,
F ext = qeE is suddenly turned off (or on). The orienta-
tional diffusion time of a rod, τ̃D = τDqeEµ0/a = 218,
is given by the perturbative expression for the rota-
tional diffusion constant [85] in powers of a/L. At the
simplest level, the decay of the orientation angle α in
an applied electric field follows a drift orientational dif-
fusion and is governed by the equation

dα
dt

= − D

kBT
Nα (41)

where Nα is the orientational torque. The hydrody-
namic orientation time is therefore

τhd =
kBT

DθNh
' aε

µ0(qeE)2L2
(42)

hence within logarithmic corrections τD/τhd = 1.1 ×
10−5L5(qeE)2/(a2εkBT ). The strong length depen-
dence makes the orientational process much faster for
long rods. For charged rod-like objects, the hydrody-
namic orientation mechanism competes with the coun-
terion polarization mechanism which favors parallel ori-
entation. The orienting polarization torque is NP

α ∼
L3ε0αE

2 where ε0 is the dielectric constant (neglecting
the dispute about the L dependence of the polarizabil-
ity [80]). The characteristic orientation time due to
electric polarization, τP , follows from a similar equa-
tion as above, τP ∼ (kBT/D)(α/NP

α ) ∼ 1/(ε0µ0aE
2),

and is independent of the length. Hence, for long poly-
mers one has τD > τP > τhd, and the hydrodynamically
induced anomalous birefringence is the fastest process.
We illustrate the proposed mechanism with fd-viruses
which have a length of L ' 880 nm and a diameter of
2a ' 9 nm. The total net charge is roughly 500 e− so
that the valency per length 2a is about q = 5 [9]. For
a typical electric field E = 105 V/m the rescaled field
strength is Ẽ ' 0.1. Equation (40) yields an orienta-
tion of the order of unity when L/`p > 107(a/L)4 ∼
0.1, a realistic number for a virus material. In the
case of sedimentation, the reduced driving field act-
ing on the monomers is Ẽ ' 4πa4ρgG/(3kBT ) where
G = 9.81m/s2 is the gravitational acceleration, g is
the g-factor of a centrifuge, and ρ ' 103 kg/m3 is the
density difference between the sedimenting particle and
the solvent. For a particle radius a ' 10−8 m, we ob-
tain Ẽ ' 10−7g. To obtain the same effect as in the
above charged-rod example, one would need a g-factor
of g ' 106 which is large but reachable in an ultracen-
trifuge. For larger colloidal rod-like particles, sedimen-
tation will lead to hydrodynamic orientation even with-
out centrifuging: large particles are predicted to sedi-
ment perpendicularly to the direction of motion [13].
All our results are valid only for low Reynolds num-
bers: for an object of length L moving at velocity u,
the Reynolds number is Re ∼ Lρu/η. For a cylin-
der the velocity scales as u ∼ F/ηL where the total
force is F ∼ qeEL. The condition Re < 1 leads to
(L/a)(aqeE/kBT ) ∼ NẼ < η2/(ρkBT ) ≈ 1011 (where

we used the density and viscosity of water) which is ver-
ified in our simulations. Hence the hydrodynamic orien-
tation discussed here is compatible with low Reynolds
number hydrodynamics.

B. Propulsion with a rotating elastic rod

We have seen in the previous section that the coupling
between elasticity and hydrodynamics leads to surpris-
ing effects: a straight elastic rod that is sedimenting
in a quiescent fluid and thus subject to a homogeneous
external force distribution becomes bent and oriented
perpendicular to the force. Here we investigate a dif-
ferent scenario: if one rotates an elastic rod by ap-
plication of a torque at one of its ends, it will bend
due to frictional forces. In the absence of bending, i.e
for an infinitely stiff rod, a simple symmetry argument
shows that the net thrust when averaged over a full
turn vanishes. Clearly, a rod fixed at one end which
rotates making a tilt angle with the rotation axis in
the direction ẑ, will induce no thrust along ẑ. The
cylinder moves sideways and the frictional force, given
by F = µ⊥ω × r, is always perpendicular to ω = ωẑ.
However, if the rotating rod is elastic, the friction forces
will bend the rod and the question of propulsion thrust
can be raised again. A few theoretical works have fo-
cused on the coupling between hydrodynamics in a vis-
cous medium and elasticity of soft polymers [86–88]. It
was shown that finite stiffness of beating straight fila-
ments breaks the time-reversal symmetry and enables
propulsion. Self-propulsion using alternative mecha-
nisms such as surface distortions [89] or chemical re-
actions [90] has been actively proposed for designing
macromolecular machines working in a viscous media.
In this section, we present simulation results which in-
dicate propulsion for rotating straight filaments [27].

FIG. 5: Sketch in 3D (a) and projected views (b) of the

rotating filament before (A, Ñ = 600) and after (B, Ñ =
800) the bifurcation (M = 30 beads, `p/L = 103).

To mimic a rotary motor, we apply an external force
on monomer 2 of a linear array of monomers, which is
related to the applied torque N = N ẑ by Fext = N ×
r12/r

2
12. The geometry and sign convention are shown

in Fig. 5. Two different force ensembles are investi-
gated: the stalled case, where the first two monomers
forming the polymer base are held fixed in space by
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applying virtual forces which exactly cancel all other
elastic and hydrodynamic forces. In the moving case,
we let the polymer move along the ẑ direction and we
apply virtual forces only laterally such that the base
moves along a vertical straight track. A finite tilt angle
at the base is imposed by a spontaneous curvature term
in the elastic energy (ε/2a)[1 − cos(θ1 − θ∗1)]; here we
show data for spontaneous curvature θ∗1 = 45◦.
When a torque is applied to the filament base, it ro-
tates and after a few turns exhibits a stationary shape.
Due to friction the filament bends into a curved struc-
ture. It should be noticed that, contrary to Section VA,
the applied force is not homogeneous along the poly-
mer. However the angular velocity of the whole poly-
mer is the same for every monomer. Hence, the velocity
v = ω × r, and therefore the frictional force, is larger
at the end of the polymer, causing a stronger bending
opposite to the direction of rotation. The bending due
to hydrodynamic interactions (which are larger in the
middle of the rod than at the ends), similar to effects
studied in Section VA, is thus a secondary and negli-
gible effect.
The stationary angular velocity ω̃ = ω∆/µ̃0 (in de-
grees), as a function of the applied torque Ñ = N/kBT ,
is plotted in Fig. 6a. It shows a non-linear increase,
which is associated to the finite bending rigidity. In-
deed, for an infinitely stiff polymer, this relation would
be strictly linear due to Stokes flow properties. For
a critical torque, Ñc, a shape bifurcation occurs and
the angular frequency jumps dramatically. Figure 5
shows the stationary shape of the polymer before (A)
and after the bifurcation (B). The high-torque state is
characterized by a smaller distance r⊥ from the rotation
axis. This explains the observed jump in angular veloc-
ity since the applied torque, i.e. the frictionnal forces,
remain constant at the bifurcation. Since the velocity
of a bead i is vi = ω × ri, we find ω = vi/r⊥i which
jumps dramatically since r⊥i decreases. Pronounced
hysteresis, which becomes slightly weaker with decreas-
ing torque sweep rate, is observed when Ñ is varied
across the critical region, as illustrated in Fig. 6b. This
hysteresis cycle indicates that this shape bifuraction is
subcritical.
What is the control parameter of this bifurcation? Fig-
ure 6c shows the dependence of the critical torque on
the persistence length of the rod. Since the torque
sweep rate is finite, increasing (◦) and decreasing torque
(�) give rise to slightly different bifurcation values. For
very small persistence lengths, conformational fluctu-
ations suppress the transition. The shape bifurcation
can be understood by simply balancing elastic and driv-
ing torques: the bending torque due to the filament
deformation, projected along the vertical axis, reads
∼ ε sin θ1/R where R is the bending radius of the fila-
ment, which has to be balanced by the external torque
N . The onset of the transition is fixed when the bend-
ing radius reaches the length of the filament, R ∼ L.
This yields a critical torque

Ñc '
`p
L

sin θ1 (43)

which is shown in Fig. 6c as a solid line and agrees

FIG. 6: a) Angular velocity as function of external torque,

Ñ , for various `p/L: 3333 (◦), 6667 (�), 1.33× 104 (�) and
2×104(◦) [inset: 333 (�), 1000 (�) and 2500 (◦)]. b) Hystere-
sis cycle for `p/L = 1667 for increasing (◦) and decreasing

torque (�) at constant rate δÑ/(δt/∆) = 1.25 × 10−6. c)
Persistence length vs. critical torque for increasing (◦) and
decreasing torque (�) both obeying a linear law according
to Eq. (43) (All data for stalled case, Vz = 0).

very well with the numerical data. It transpires that
the bifurcation is purely elastic in origin, since nei-
ther hydrodynamical parameters nor temperature ap-
pear in Eq. (43). Using the rotational mobility µrot ∼
1/(ηL3), the lower critical angular frequency reads
ωc ∼ µrotNc ∼ ε sin θ1/(ηL4). This threshold turns
out to be much lower than for the continuous twirling-
whirling transition of a rotating rod with torsional elas-
ticity, ωTW

c ∼ ε/(ηa2L2), which was obtained using lin-
ear analysis [88]. Moreover, the twirling-whirling tran-
sition is related to a symmetry breaking, named as su-
percritical bifurcation.
At this point, one may wonder what the role of hy-
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drodynamic interactions is in this transition. This role
is twofold: first, it induces a propulsive thrust, since
we have seen in Section IV, that hydrodynamic inter-
actions are essential in the production of thrust by a
rotating helix. Obviously, our bent filament for large
torques does not have the geometry of a pure helix but
it wraps around the rotation axis. The second aspect is
more subtle. To understand the role of hydrodynamic
interactions for the shape bifurcation, we implemented
two additional approximations:

• the free draining approximation (FDA), where
hydrodynamics are ignored altogether. The mo-
bility matrix is thus isotropic: µij = µ0 1 δij ;

• the resistive force theory within the slender body
approximation (SBA) which is defined in Sec-
tion IV [18]. The mobility matrix is given by
Eq. (24). The choice of the values of the two local
mobilities in the simulations is of course difficult
and heuristic, since at our coarse-grained scale the
monomers are spheres which sets µ⊥ = µ|| = µ0.
Values for long cylinders or long ellipsoids are
given in literature and we arbitrarily chose µ⊥ =
3µ0(2 lnM + 1)/4 and µ|| = 3µ0(2 lnM − 1)/2.
Note that these values should in principle be ad-
justed to the shape of the polymer.

Figure 7 shows the angular velocity versus the applied
torque, Ñ , for the three approximations. In accord with
our elastic scaling model, the transition occurs for all
approximations even in the absence of hydrodynamics
(FDA: ◦). However, the critical torque is overestimated
for both FD and SB approximations by roughly a factor
of 5.

FIG. 7: Angular velocity vs. applied torque for `p/L = 1667
using full hydrodynamic interactions (×), slender-body (�)
and free-draining approximations (◦). The transition occurs
in all cases but hydrodynamics decrease significantly the
critical torque (Stalled case, Vz = 0).

Is it possible to define the mobilities of the whole ob-
ject? The relation between angular velocity and torque
is no more linear and the meaning of the matrix in
Eq. (23) changes. We define four mobilities of the whole
object following Eq. (23). The dimensionality of the
mobility matrix is now 2× 2 since we consider only the
z-component of torques, forces and velocity of the whole
rod: v = Vz ẑ and F = Fextẑ the corresponding exter-
nal force applied at the propeller base. Nevertheless, we

shall keep in mind that the matrix notation is just used
for an easier comparison to rigid propellers, because
these four mobilities (µrr, µrt, µtr and µtt) depend a
priori on N and F ext. Moreover, for a flexible rod the
symmetry of the mobility tensor is not satisfied. The
propulsion velocity along the rotation axis is plotted in
Fig. 8a as a function of the control parameter ÑL/`p
for different persistence lengths for the z-moving case,
i.e with Fext = 0. At the transition (ÑL/`p ' 0.7), a
jump in the propulsion velocity is observed and Ṽz is
almost linear for Ñ > Ñc, revealing that the shape re-
mains almost fixed in this range of torque values. Inset
of Fig. 8a shows the ratio of Vz before and after the
transition against the same ratio for angular velocities.
The variation is roughly linear, meaning that the jump
in propulsion is mostly due to the increase in angular
velocity. A refined analysis would be necessary to de-
tect if the rod takes a specific shape which favors the
forward velocity. For instance, in the case of a per-
fect helix, we have seen that the thrust is maximised
for a pitch angle equal to α = 45o. We have checked
that all the previous results for ω(N) are very similar
in the z-moving case. The only difference appears at
the bifurcation, the critical torque being a little smaller
without any external load force.
Up to now, our model neglected the presence of a base
for the rotor. In reality, the filament is attached at its
end to a body, the head of the whole propeller. We
assume that the relative rotation of both components
is free. The net force and torque on the complete pro-
peller (body + filament) swimming at constant velocity
are zero [16] since the motion is overdamped preventing
any acceleration. Hence, for a spherical body of radius
R and angular velocity Ω, the loading force is propor-
tional to the body velocity whereas the loading torque
is proportionnal to Ω, which reads

Fext = −6πηRVz (44)
N = −8πηR3 Ω (45)

To describe completely the whole propeller with a per-
fect load matching, it is thus necessary to find the char-
acteristic response of the filament to an external load.
To test numerically our propeller under load, we ap-
plied an external force, Fext, which we define to be
positive when it pushes against its natural swimming
direction. Figure 8b shows the variation of Ṽz with
F̃ext for `p/L = 1667 at two different torques, just be-
low and above the bifurcation. The laws are almost
linear in both cases, meaning that µtt is almost inde-
pendent of Fext. Hence for given torque N and body
radius R, load matching fixes Fext and thus Vz by tak-
ing the intersection between the above law and Eq. (44).
The angular velocity of the body is then found using
Eq. (45). The stalled case corresponds to an infinite
spherical body (R → ∞) whereas the free z-moving
case imposes R = 0, i.e. no body. Of course, our study
is in principle not valid for R� 1 because the presence
of a hard wall will perturb the flow at the filament base.
The efficiency of the power converter can be defined as
the ratio of the propulsive power output and the rotary
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FIG. 8: a) Propulsion velocity parallel to the rotation axis

vs. ÑL/`p in the z-moving case for `p/L = 2500 (×), 5000
(�) and 2 × 104 (◦). The inset shows the variations of the
ratio of velocities after and before the transtion vs. the
ratio of angular velocities (�, `p/L = 1667). b) Ṽz vs. the

external force F̃ext applied on monomer 2 (`p/L = 1667)

before the bifurcation for Ñ = 0.78Ñc (�) and after Ñ =

0.84Ñc (◦). c) Efficiency, η, vs. F̃ext (same parameters as
b). The solid line is a parabolic fit.

power input,

η = −FextVz

Nω
. (46)

By inserting Eq. (23) in Eq. (46), we obtain

η(Fext) = −µtrNFext + µttF
2
ext

µrrN2 + µrtNFext
(47)

We have checked that µrt is negligibly small. Hence, the
efficiency becomes parabolic as a function of the exter-
nal force as shown in Fig. 8c. The highest efficiency

is obtained for Fext = −µtrN/(2µtt) = Fstall/2 and is
only of the order of 1% after the transition and 3 times
smaller before. With this load, we find a body size
R ' 5 a and an unique |Ω̃| = 3

4 (a/R)3Ñ ' 8 � ω̃ ' 250
for Ñ = 0.84Ñc after the transition.
In conclusion, we show that a simple straight elastic fil-
ament can induce propulsion when rotated at one end.
The interplay between elastic deformations and hydro-
dynamic interactions results in a substantial directed
thrust due to a subcritical dynamic bifurcation for a
control parameter Ñ/Ñc larger than 1. The mobility
µtr changes its sign when the torque is reversed, which
implies a forward thrust whatever the sense of rotation.
This work provides a clue for the synthetic manufac-
ture of biomimetic micro-propeller, by using simple
semi-flexible polymers instead of rigid helices. This
bifurcation could be experimentally investigated using
a macroscopic scale model similar to the one devel-
oped by Powers group [91]. With their experimental
setup, the bifurcation would occur for torques on the
order of 0.05 N.m and angular velocities larger than
0.01 Hz, which are accessible. Another type of exper-
iments has been developed by Bibette’s group, where
they make microscopic artificial swimmers with chains
of connected ferrofluid droplets swimming by applying
a transverse oscillatory magnetic field [92]. The result-
ing forward thrust is due to a beating of this ”elastic”
chain. Even if these experimental results are associ-
ated to transverse beating, one can imagine quite soon
a rotating chain experiment.

C. Grafted elastic polymers in shear flow

In previous theoretical studies, the effects of shear
flows on surface-anchored polymers have been primarily
studied analytically and numerically for dense brushes
and flexible polymers [93–95]. In this section, we study
the shear flow response of a layer of semiflexible poly-
mers grafted to a planar surface (a so-called polymer
brush) as a function of polymer stiffness, grafting den-
sity and shear rate [96]. A finite orientational stiffness
is introduced at the grafting points, tending to ver-
tically orient the grafted chains at the basal region.
The time evolution of the system is described by the
Langevin equation (13) where a linear external shear
flow v(r) = γ̇zx̂ along the x direction with a shear rate
γ̇ is included. We explicitly incorporate full hydrody-
namic interactions between monomers in the presence
of a no-slip surface through a non-diagonal mobility
tensor µij on the Rotne-Prager level [4] following Sec-
tion II C. As before, we rescale all lengths and energies
and express the rescaled shear rate by ˙̃γ = a3γ̇η/kBT .
In order to mimic a semi-infinite surface covered with
anchored chains at a finite density, we consider 4 poly-
mers with monomer number N = 10 grafted regularly
within a square unit cell of lateral size D and treat
hydrodynamic interactions via lateral periodic bound-
ary conditions imposed on the flow field. The grafting
density is defined as ρ = 4a2/D2.
The effects of a shear flow is demonstrated in typical
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FIG. 9: Snapshots of polymer configurations for grafting
density ρ = 0.005 and semiflexible polymers (top row, per-
sistence length `p/L = 1)and rather stiff polymers (bottom
row, persistence length `p/L = 5). To the left no shear flow
is acting, in the middle column the shear rate is ˙̃γ = 0.003
(corresponding to a shear rate in unrescaled units of γ̇ ≈ 107

s−1 for sphere radius a = 1nm and water as a solvent), and
to the right the shear rate is ˙̃γ = 0.03 (corresponding to a
shear rate in unrescaled units of γ̇ ≈ 108 s−1 for a = 1 nm).

simulation snapshots shown in Fig. 9. The upper row is
for semiflexible polymers, while the bottom row shows
results for rather stiff polymers. As one goes from the
left to the right, the applied shear rate is increasing
steadily, and one observes a clear change of the polymer
conformations. Upon shearing the brush, the polymers
tend to be bent to reduce hydrodynamic friction, and in
turn exert a resistive response to the flow due to a finite
bending stiffness. Therefore, the resulting solvent flow
velocity is expected to be reduced compared to the case
of a bare surface in the absence of grafted chains. As
the shear rate increases, the bending of the polymers
becomes stronger and they move closer to the surface.
As a result, the flow can approach the no-slip surface
more closely.
Figure 10 shows the stationary solvent velocity pro-
files ṽ(z̃) = ∆v/(12π˜̇γL) measured from the simula-
tion, and clearly exhibits a shear-dependent lift-up of
the shear plane. By linear extrapolation of the flow
profile from large distances to the surface, the shear-
dependent stagnation thickness δ (corresponding to the
lift-up of the shear plane) in units of a is quantitatively
determined in the figure (dashed lines). It is numer-
ically difficult to reach the small shear rates typically
used in experiments. We instead perform simulations
for elevated shear rates at which numerical errors are
small and extrapolate down to small shear rates. Let us
discuss the experimental relevance of parameters used
in the simulation: we rescaled every parameter using
monomer radius a and thermal energy kBT . There-
fore, choosing a proper value of a, we are able to cover
a wide range of experimental situations. For example,
when a = 1 nm is assumed, as applicable to DNA,
it gives a contour length L = 20 nm and shear rate
γ̇ ≈ 108 s−1 for ˙̃γ = 0.03 (which is a quite big number
in a conventional set-up). However, assuming a = 100
nm, one gets L = 2µm and γ̇ ≈ 102 s−1 for ˙̃γ = 0.03,
which can be easily reached in the laboratory.
In order to compare with the experimental results,
we study the stagnation thickness for different applied

FIG. 10: Solvent flow profiles as a function of distance from
the surface for grafting densities ρ = 0.003 (diamonds) and
ρ = 0.007 (triangles). Parameters of the system are chosen
as `p/L = 5 and ˙̃γ = 0.03 (which corresponds to γ̇ ≈ 108 s−1

for a = 1 nm). The length of polymers is roughly L = 20a.
The effective shear-dependent stagnation length δ is deter-
mined by a linear extrapolation of the flow profile towards
the grafting surface (dashed lines). For comparison, the un-
perturbed flow velocity in the absence of grafted chains is
denoted by a solid line.

FIG. 11: Stagnation length δ vs. shear rate γ̇ for two dif-
ferent grafting densities: ρ = 0.005 (filled diamonds) and
0.001 (open diamonds).The unitless shear rate ˜̇γ actually
used in the simulation has been converted into an explicit
shear rate γ̇ via γ̇ = kBT ˜̇γ/a3η and assuming a monomer
radius of a = 1 nm, as applicable to DNA. The persistence
of the filament is `p/L = 5.

shear rates. As shown in Fig. 11, the stagnation length
δ decreases for increasing shear rate. While the chains
are strongly bent close to the surface under strong
shear, they tend to keep an upright conformation under
weak shearing, leading to significantly enhanced hydro-
dynamic friction.
This is in qualitative agreement with recent laser-
trap experiments on DNA chains that are anchored on
spherical colloids [28] which results are reproduced in
Fig. 12. In the experiments the brush-covered colloids,
which have a diameter of roughly a micrometer, are
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FIG. 12: Ratio of the effective hydrodynamics radii rH for
DNA-grafted and blank colloids vs. flow velocity. Repro-
duced from [28] . The symbols corresponds to three col-
loids with different DNA lengths (◦: 1000 bp; 4: 4000 bp;
�: 6000 bp and grafting density of 0.03± 0.01µm2) in two
NaCl electrolytes (open symbols: 150 mM; filled symbols:
100 mM. The results show that the hydrodynamic radius
decreases with increasing shear rate, indicative of confor-
mational changes of the grafted polymers and an effective
decrease of the brush layer.

held fixed in the laser trap and subjected to laminar
flows of the order of up to 1000 µm/s, giving rise to
shear rates of the order of 1000 s−1. The force acting
on the colloid can be measured and thus the hydro-
dynamic radius in inferred. We observe that the hy-
drodynamic radius of DNA-grafted colloids decreases
with the flow velocity, i.e. the shear rate in our model.
Hence, the stagnation length decrease with increasing
shear rate, which constitutes a non-linear friction re-
sponse of the suspended colloidal sphere as a function
of solvent velocity. This is in qualitative agreement
with the simulations.

VI. CONCLUSION

Three different situations have been reviewed having in
common that the coupling between hydrodynamic in-

teractions and elastic deformations of soft matter plays
an important role. When a significant external force
is applied to the monomers of a deformable polymer,
a complex hydrodynamic interaction mediated by the
surrounding water sets in and couples the velocities
of different components of the system. This can lead
to unexpected motions of the whole system: i) a
sedimenting elastic rod deforms and, as a consequence,
aligns perpendicularly to the direction of motion; ii)
a rotating filament deforms and therefore gives rise
to propulsion perpendicularly to the rotation axis,
and iii) the deformation of surface anchored polymers
in shear flow leads to a shear-rate dependent shift
of the stagnation-plane position. Since all materials
have actually finite elastic moduli, their deformations
in flow fields are unavoidable. These phenomena
are therefore relevant to recent experiments probing
the coupling of elasticity and hydrodynamics of
nano-systems far from equilibrium. It is suggested
that hydrodynamic interactions should also be taken
into account in biological systems [87]. Indeed, as an
example, one may consider the propulsion mechanism
studied in Section V B and carry the lesson to bacterial
propulsion. Of course, flagella are helical and their
physics is therefore much more involved than a simple
straight propeller. However, flagellar motors generate
sufficient torques for the non-linear elastic phenomena
discussed in this review to occur: they are powered by
a proton-motive force which yields torques on the order
of N ≈ 103 kBT [97, 98]. Moreover, the flagellum
length is L ' 10 µm, leading to `p/L ' 103 − 104

and ÑL/`p ' 0.1 − 1. Hence, torque-induced shape
transformations are most likely biologically relevant
and might be directly observed with straight biopoly-
mers attached to flagellar motors. Indeed, the role
of flexibility in bacterial propulsion has been recently
stressed since bending is crucial for the bundling of
flagella [91, 99].
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19, 7551.

[95] C. Pastorino, K. Binder, T. Kreer and M. Müller, to
be published.

[96] Y. W. Kim and R. R. Netz, Europhys. Lett., 2005, 72,
837.

[97] R. M. Berry, in Forces, Growth and Form in Soft Con-
densed Matter: At the Interface between Physics and
Biology, eds. A. T. Skjeltorp and A. V. Belushkin,
Kluwer Academic Publishers, Dordrecht, 2004, pp. 145-
164.

[98] L. Turner, W. S. Ryu and H. C. Berg, J. Bacteriol.,
2000, 182, 2793.

[99] M. J. Kim and T. R. Powers, Phys. Rev. E, 2004, 69,
061910.


