Theoreme de Dobrowolski-Laurent pour les extensions abeliennes sur une courbe elliptique a multiplication complexe

Abstract : Let E/K be an elliptic curve with complex multiplication and let $K^{ab}$ be the Abelian closure of $K$. We prove in this article that there exists a constant $c(E/K)$ such that : for all point $P\in E(\bar{K})-E_{tors}$, we have \[\hat{h}(P)\geq\frac{c(E/K)}{D}(\frac{\log \log 5D}{\log 2D})^{13},\] where $D=[K^{ab}(P):K^{ab}]$. This result extends to the case of elliptic curve s with complex multiplication the previous resultof Amoroso-Zannier \cite{AZ} on the analogous problem on the multiplicative group $\mathbb{G}_m$, and generalizes to the case of extensions of degree D the result of Baker \cite{baker} on the lower bound of the Néron-Tate height of the points defined over an Abelian extension of an elliptic curve with complex multiplication. This result also enables us to simplify the proof of a theorem of Viada \cite{viada}.
Type de document :
Article dans une revue
International Mathematics Research Notices, Oxford University Press (OUP), 2004, 58, pp.3121-3152
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00122369
Contributeur : Import Arxiv <>
Soumis le : samedi 30 décembre 2006 - 11:06:16
Dernière modification le : jeudi 20 juillet 2017 - 09:28:19

Identifiants

Collections

Citation

Nicolas Ratazzi. Theoreme de Dobrowolski-Laurent pour les extensions abeliennes sur une courbe elliptique a multiplication complexe. International Mathematics Research Notices, Oxford University Press (OUP), 2004, 58, pp.3121-3152. <hal-00122369>

Partager

Métriques

Consultations de la notice

63