Theoreme de Dobrowolski-Laurent pour les extensions abeliennes sur une courbe elliptique a multiplication complexe

Abstract : Let E/K be an elliptic curve with complex multiplication and let $K^{ab}$ be the Abelian closure of $K$. We prove in this article that there exists a constant $c(E/K)$ such that : for all point $P\in E(\bar{K})-E_{tors}$, we have \[\hat{h}(P)\geq\frac{c(E/K)}{D}(\frac{\log \log 5D}{\log 2D})^{13},\] where $D=[K^{ab}(P):K^{ab}]$. This result extends to the case of elliptic curve s with complex multiplication the previous resultof Amoroso-Zannier \cite{AZ} on the analogous problem on the multiplicative group $\mathbb{G}_m$, and generalizes to the case of extensions of degree D the result of Baker \cite{baker} on the lower bound of the Néron-Tate height of the points defined over an Abelian extension of an elliptic curve with complex multiplication. This result also enables us to simplify the proof of a theorem of Viada \cite{viada}.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00122369
Contributor : Import Arxiv <>
Submitted on : Saturday, December 30, 2006 - 11:06:16 AM
Last modification on : Sunday, March 31, 2019 - 1:37:23 AM

Links full text

Identifiers

Citation

Nicolas Ratazzi. Theoreme de Dobrowolski-Laurent pour les extensions abeliennes sur une courbe elliptique a multiplication complexe. International Mathematics Research Notices, Oxford University Press (OUP), 2004, 58, pp.3121-3152. 〈hal-00122369〉

Share

Metrics

Record views

120