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We show that the expansion of an initially confined interagtlD Bose-Einstein condensate can exhibit
Anderson localization in a weak random potential with clatien lengthox. For speckle potentials the Fourier
transform of the correlation function vanishes for moménta 2/0= so that the Lyapunov exponent vanishes
in the Born approximation fok > 1/0x. Then, for the initial healing length of the condensgte> or the
localization is exponential, and f@gn < or it changes to algebraic.

PACS numbers: 05.30.Jp,03.75.Kk,03.75.Nt,05.60.Gg

Disorder in quantum systems can have dramatic effectRefs. ,|:1’6,|jl7], the BEC is not significantly affected by
such as strong Anderson localization (AL) of non-interagti a single reflection. For thisveak disorderregime we have
particles in random medi§][1]. The main paradigm of AL is identified the following localization scenario on the basis
that the suppression of transport is due to a destructiee-int numerical calculations and the toy model described below.
ference of particles (waves) which multiply scatter frore th At short times, the disorder does not play a significant
modulations of a random potential. AL is thus expected torole, atom-atom interactions drive the expansion of the BEC
occur when interferences play a central role in the multipleand determine the long-time momentum distributi@r{k).
scattering procesﬂ [2]. In three dimensions, this requives According to the scaling theoryI]ZS]D(k) has a high-
particle wavelength to be larger than the scattering mes fr momentum cut-off at /&, where&, = h/\/4mu andy are
path,/, as pointed out by loffe and RegEI [3]. One then finds athe initial healing length and chemical potential of the BEC
mobility edge at momenturhy, = 1/1, below which AL can  andm is the atom mass. When the density is significantly de-
appear. In one and two dimensions, all single-particle quancreased, the expansion is governed by the scattering osalmo
tum states are predicted to be localizgd[4] 5, 6], althoogh f non-interacting waves from the random potential. Each wave
certain types of disorder one has an effective mobility edge with momentumk undergoes AL on a momentum-dependent
the Born approximation (see Ref] [7] and below). A crossovetength L (k) and the BEC density profile will be determined
to the regime of AL has been observed in low dimensionaby the superposition of localized waves. For speckle poten-
conductors[8[]9], and recently, evidences of AL have beettials the Fourier transform of the correlation function ishies
obtained for light waves in bulk powderBlO] and in 2D dis- for k > 2 /0%, whereoy, is the correlation length of the disor-
ordered photonic Iatticeﬂll]. The subtle question is Wheet der, and the Born approach yields an effective mobility eatge
and how the interaction between particles can cause delocal/o,. Then, if the high-momentum cut-off is provided by the
ization and transport, and there is a long-standing disouss momentum distributio® (k) (for &, > ox), the BEC isexpo-
of this issue for the case of electrons in soI@ [12]. nentially localized, whereas if the cut-off is provided by the

Ultracold atomic gases can shed new light on these probeorrelation function of the disorder (fgr < %) the localiza-
lems owing to an unprecedented control of interactionsya petion isalgebraic These findings pave the way to observe AL
fect isolation from a thermal bath, and the possibilities ofin experiments similar to those of Reff.{5] L6, 17].
designing controlled randonﬂlglm 1@ E[ 17] or quasi- We consider a 1D Bose gas with repulsive short-range in-
random [1B] potentials. Of particular interest are theigmidf ~ teractions, characterized by the 1D coupling consiaand
localization in Bose gasef ]1p,]20] and the interplay betweetrapped in a harmonic potentidho(z) = mw?z?/2. The
interactions and disorder in Bose and Fermi gabds[[d1, 22finite size of the trapped sample provides a low-momentum
Localization of expanding Bose-Einstein condensates (BECcut-off for the phase fluctuations, and for weak interaction
in random potentials has been reported in R¢f. [1B[ 46, 17[n > mg/h* wheren is the 1D density), the gas forms a true
However, this effect isiot related to AL, but rather to the BEC at low temperature§ [P6].
fragmentation of the core of the BEC, and to single re- We treat the BEC wave function(z,t) using the Gross-
flections from large modulations of the random potential inPitaevskii equation (GPE). In the presence of a superintpose
the tails [Ib]. Numerical calculation§ [15,]2B,] 24] confirm random potential’(z), this equation reads:
this scenario for parameters relevant to the experiments of 2
Refs. [15[1p[17]. ihOph = %85 + Vio(2) + V(2) + glv)*> — | ¥, (1)

In this Letter, we show that the expansion of a 1D interact-
ing BEC can exhibit AL in a random potential without large where is normalized by[dz|¢|> = N, with N being the
or wide modulations. Here, in contrast to the situation innumber of atoms. It can be assumed without loss of gener-
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ality that the average o¥(z) over the disorder(V), van-  The momentum distributio®() follows from Eq. (}). For
ishes, while the correlation functi@gi(z) = (V(2')V(2'+2))  t> 1/w, itis stationary and has a high-momentum cut-off at
can be written ag’(z) = Vgc(z/0w), where the reduced the inverse healing lengtty -
correlation functione(u) has unity height and width. So, INE
Vr = +/(V?) is the standard deviation, ard is the corre- D(k) = |1Z(k7t)|2 ~ ﬁ(l — k2)0(1 — k&n),  (7)
lation length of the disorder. 4
The properties of the correlation function depend on theyiih the normalization conditiogﬁﬁodkl)(k) —N.

model of disorder. Although most of our discussion is gen- According to the Anderson thé%orﬂ [1;waves will expo-
eral, we mainly refer to a 1D speckle random potenfia) [27Inentially localize as a result of multiple scattering frone t
similar to the ones u_sed in experlment_s Wl_th cold atomsandom potential. Thus, components(ikz) in Eq. @) will
L3, IEELHEP] Itis a random potential with a truncatedyecome localized functions (). At large distancesgy (=)
negative exponential smgle-pomtdlstnbutl[27]: decays exponentially, so thai |¢, ()| ~ —y(k)|z|, with
exp[—(V(2) + VR)/ V&l o V(z) . ) _v(k_) = 1/L(k) the Lyapunov exponent, and k) the I_ocal-

A < A + ) » (@ ization length. The AL of the BEC occurs when the indepen-

dentk-waves have localized. Assuming that the phases of the

whereO is the Heaviside step function, and with a correlationfunctions¢k(Z), which are determined by the local properties
function which can be controlled almost at W|D17] For a of the random potentia| and by the t|m@ are random, un-
speckle potential produced by diffraction through a 1D squa correlated functions for different momenta, the BEC densit
aperture [47 37], we have is given by

C(z) = Vae(z/or);  c(u) = sin®(u) /u®. (3)

PlV(2)] =

no(z) = {[$(2)[?) = 2 / TADm) (en (=), (@)

Thus the Fourier transform @f(z) has a finite support:

O(k)=Vowi(kow): e(k) = /7 /2(1—r/2)0(1—r/2), (4) where we have taken into account tii2atk) = D(—k) and
A {16k (2)[%) = (I9-1(2)]?)-

so thatC(k) = 0 for k > 2/0,. This is actually a general ~ We now briefly outline the properties of the functiag =)
property of speckle potentials, related to the way they awe p from the theory of localization of single particles. For aake
duced using finite-size diffusive platds [27]. random potential, using the phase formalidn] [28] the state

We now consider the expansion of the BEC, using the folwith momentun¥ is written in the form:
lowing toy model. Initially, the BEC is assumed to be at .
equilibrium in the trapping potentidli,(z) and in the ab- ¢r(z) = 7r(2)sin[0(2)]; O-¢x = kr(2) cos[0(2)],  (9)
sence of disorder. In the Thomas-Fermi regime (TF) whergyhg the Lyapunov exponent is obtained from the relation
1 > hw, the initial BEC density is an mverFed parabola, y(k) = —lim. s (log [r(2)] /|2]). If the disorder is suffi-
n(z) = (n/9)(1 = 2*/Lig)O(1L — |2|/Lre), with Lre = ciently weak, then the phase is approximatetyand solving

\/2p/mw? being the TF half-length. The expansion is in- the Schradinger equation up to first orderdnd(z) /k — 1,
duced by abruptly switching off the confining trap at time 5o finds]

t = 0, still in the absence of disorder. Assuming that the

condition of weak interactions is preserved during the aexpa v(k) ~ (V271 /80%)(Vr/E)*(kog)?¢(2kog),  (10)
sion, we work within the framework of the GPE (). Repulsive - ) i
atom-atom interactions drive the short-timeq( 1 /) expan-  WhereE = i’k /2m. Such a perturbative (Born) approxima-
sion, while at longer times (> 1/w) the interactions are not 10N @ssumes the inequality

important and the expansion becomes free. According to the 2 1/2

scaling approacI'mZS], the expanding BEC acquires a dynam- Vion < (Fk/m)(kow) ", (D)
ical phase and the density profile is rescaled, remaining aor equivalentlyy(k) < k. Typically, Eq. [T]l) means that the
inverted parabola: random potential does not comprise large or wide peaks.

L Deviations from a pure exponential decay &f are ob-
Y(z,t) = (1/1[2/’?@), 0]/ v b(t)) exp {imz"b(t) /2hb(t)}, tained using diagrammatic methofs|[29], and one has

(5) s oo

where the scaling parametigt) = 1 for ¢t = 0, andb(t) ~ A2y = © (k) / du u sinh(mw) % 12

V2wt for t > 1/w [[I5]. (ox(2)1) 2 Jo ") (12
We assume that the random potential is abruptly switched 1 4 42 2 )

on at a timel, > 1/w. Since the atom-atom interactions are <1+Tsr(m)> exp{—2(1 + u?)y(k)|z|},

no longer important, the BEC represents a superposition of
almost independent plane waves: where (k) is given by Eq. [(10). Note that at large dis-
tances {(k)|z| > 1), Eq. (12) reduces td|ox(2)|?) ~

b(z,t) = /\%J(k,t) expl(ikz). (6) (w7/2/64,/27(k;)|z|3/2) exp{—2y(k)|z]}.
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of &n = oy, or for &, very close tas, and at distances where

the correlation function of the disorder. For the 1D speckleyy(ke)|(1 — &2 /02)z| < 1, still assuming thado (kc)|z| > 1

potential the correlation functiofi(k) has a high-momentum
cut-off 2/, and from Egs.[{4) and (1L0) we find

mm? VR2 Or

(k) =20(k)(1—-kor)O(1—kor); vo(k)= STAR2

Thus, one has/(k) > 0 only for ko, < 1 so that there is
a mobility edge atl /o, in the Born approximation. Strictly

(13)

we findng(z) o |z]73.

Since the typical momentum of the expanding BEC is
1/&n, according to Eq.[(31), our approach is valid iGr <
w(€in/ow)'/?. For a speckle potential, the typical momen-
tum of the waves which become localizedliso, and for
&in < g the restriction is strongeW’z < ju(&n/0x)?. These
conditions were not fulfilled, neither in the experiments of

speaking, on the basis of this approach one cannot say that tiRefs. [15,[1] 117], nor in the numerics of Refs ][5, P3, 24].
Lyapunov exponent is exactly zero fbr> 1/0,. However, We now present numerical results for the expansion of a
direct numerical calculations of the Lyapunov exponentxsho 1D interacting BEC in a speckle potential, performed on the
that fork > 1/0yitis at least two orders of magnitude smaller basis of Eq. |]1). The BEC is initially at equilibrium in the

than~,(1/0x) representing a characteristic valueydgt:) for
k approachind /o. Foror = 1um, achievable for speckle
potentials [1}7] and fokk satisfying Eq. [(T1) withk ~ 1/0%,
the localization length at > 1/0, exceedslOcm which is

combined random plus harmonic potential, and the expansion
of the BEC is induced by switching off abruptly the confining

potential at timet = 0 as in Refs. [15] 14, 11, k0]. The dif-
ferences from the model discussed above are that the random

much larger than the system size in the studies of quanturpotential is already present for the initial stationary demn-

gases. Thereford; = 1/0, corresponds to an effective mo- sate and that the interactions are maintained during théewho

bility edge in the present context. We stress that itgeaeral ~ expansion. This, however, does not significantly change the

feature of optical speckle potentials, owing to the finitp-su physical picture.

port of the Fourier transform of their correlation function The properties of the initially trapped BEC have been dis-
We then use Eqsf](7)_(12) ar[d}(13) for calculating the dencussed in Ref[[32] for an arbitrary ratig/ox. Forén < o,

sity profile of the localized BEC from EJ](8). Since the high- the BEC follows the modulations of the random potential,

momentum cut-off oD (k) is 1/, and for the speckle poten- while for &, > ok the effect of the random potential can

tial the cut-off ofy(k) is 1 /0%, the upper bound of integration be significantly smoothed. In both cases, the weak random

in Eq. (@) iskc = min{1/&n, 1/0:}. As the density pro- potential only slightly modifies the density profilfJ22]. At

file no(z) is a sum of functiong|¢;, (z)|*) which decay expo- the same time, the expansion of the BEC is strongly sup-

nentially with a rate2v(k), the long-tail behavior ofy(z) is  pressed compared to the non-disordered case. This is seen

mainly determined by the components with the smal¢s),  from the time evolution of the rms size of the BEG; =

i.e. those withk close tok¢, and integrating in Eq[k8) we limit (22) — (2)2, in the inset of Fig[|1, At large times, the BEC

ourselves to leading order terms in Taylor seriesI?k) and  density reaches an almost stationary profile. The numéyical

~(k) atk close toke. obtained density profile in Fig] 1 shows an excellent agree-
For &in > o, the high-momentum cut-off in Eq. (§) is  ment with a fit ofn, () from Egs. [J), [B) and[(32), where a

set by the momentum distributidn(k) and is equal td /&n.  multiplying constant was the only fitting parameter. Notatth

In this case all functiong|¢,(2)|?) have a finite Lyapunov

exponenty (k) > v(1/&n), and the whole BEC wave function

is exponentially localizedFor the long-tail behavior afy(z), 1

from Egs. [[7), [B) and (12) we obtain: 01 b = numerics
_ — analytics
nO(Z) & |Z| /2 eXp{*27(1/§in)|Z|}; &in > O%. (14) . 0.01 asymptotics
S o001 3
Equation [1Ih) assumes the inequalityl /&in)|z| > 1, or S
. o le-04
equivalentlyyg (ke)(1 — or/&n)|z| > 1. &
For &, < ow, ke is provided by the Lyapunov expo- 1e-05
nents of (|¢x(2)]?) so that they do not have a finite lower 1le-06
bound. Then the localization of the BEC beconage- 1e-07 . . . B

braic and it is onlypartial. The part of the BEC wave func-
tion, corresponding to the waves with momenta in the range
1/ox < k < 1/&n, continues to expand. Under the condition
Yo(ke)(1 — &2 /02)|z| > 1 for the asymptotic density distri-
bution of localized particles, Eq4] (8) arld](12) yield:

-200 -150 -100 -50 0 50
z/ Ly

100 150

200

Figure 1: (color online) Density profile of the localized BECa
speckle potential @ = 150/w. Shown are the numerical data (black
points), the fit of the result from Eqs[| (7L1.(8) a@(lZ) [redics
line], and the fit of the asymptotic formula {14) [blue dotiete].

Far tails ofng(z) will be always described by the asymp- Inset: Time evolution of the rms size of the BEC. The paranseiee
totic relations [Z4) o(35), unlegs = 0. In the special case V& = 0144, &in = 0.01Le, andog = 0.78n.

no(z) o 2|7 &in < ow. (15)
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