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Abstract

We show that the particle actions in the superspace that are invari-
ant with respect to general covariance transformations can be formu-
lated in terms of physical coordinates with non zero evolution Hamil-
tonians by identifying these coordinates with some dynamic variables.
The local κ-symmetry for superparticle actions in this formulation is
briefly discussed.
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1 Introduction and summary

It is known [1]-[5] that the reparameterization invariance of the theories of
relativistic particles and relativistic strings, as well as the invariance of the
gravity theory with respect to general covariance transformations, results in
serious problems when analyzing these theories in the Hamiltonian formalism
: occurs the nullification of the Hamiltonian because of this invariance.

For the relativistic particle, this problem was already circumvented in
the first Einstein and Poincare’ papers [6,7] thanks to identifying one of the
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dynamical variables, x0 (τ) , with the physical time, and this identification
is natural in the special relativity theory.

The idea that the time measured by an observer’s clock is a dynamic
variable seems rather strange in field theories, where the fields are functions of
space and time. In the string theory, time was considered a dynamic variable
in [8, 9], which allows relating this theory with the Born-Infeld theory.

It is possible to give a correct description of these reparameterizations
invariant systems, from a dynamical point of view, passing to the physi-
cal variables by means of the Levi-Civita canonical transformations, as was
shown in [10, 11]. These canonical transformations make the dynamical sys-
tem under consideration suitable to be integrated or quantized.

Strongly motivated to extend the above concepts to a toy superspace we
apply the Levi-Civita canonical transformations to the simple model of super-
particle of Volkov and Pashnev [12,13], that is the type G4 in the description
of Casalbuoni [14,15] to obtain the unconstrained form of the superparticle
action, after that these canonical transformations have been performed. This
final unconstrained action, that is in function on the physical variables, is
suitable to be quantized or integrated. Recently in [18, 19], the importance of
the constraints in the superparticle actions when local supersymmetry trans-
formations are introduced, was shown. The space-time covariant formulation
of super p-branes is known to have a local fermionic invariance on the world
manifold, first discovered by Siegel [21] for the superparticle and posteriorly
in [22] for superstrings. This invariance helps to balance the number of com-
muting and anti-commuting degrees of freedom mainly in models where with
the boson and fermion variables belonging to different representations of the
Lorentz group of the target space-time. As the parameter of this transforma-
tion is an anti-commuting space-time spinor κ varying in an arbitrary way
over the world manifold. In this sense this κ-invariance is a supersymmetry.
The another motivation of this paper is to discuss shortly what happens
with the global SUSY and this local κ-supersymmetry when these Levi-
Civita canonical transformations are performed in the superparticle-model
under consideration because it is well established that the actions that are
κ-invariants have the physical interpretation as the leading term in the effec-
tive action describing the the low energy dynamics of topological defects of
supersymmetric field theories [23-28].
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2 The superparticle model

In the superspace the coordinates are given not only by the spacetime xµ

coordinates, but also for anticommuting spinors θα and θ
.

α
. The resulting

metric [12,13] must be invariant to the action of the Poincare group, and
invariant also to the supersymmetry transformations

x′

µ = xµ + i

(
θα (σ)

α
.

β
ξ

.

β
− ξα (σ)

α
.

β
θ

.

β

)
; θ′α = θα + ξα ; θ′

.

α
= θ

.

α
+ ξ

.

α

The simplest super-interval that obeys the requirements of invariance
given above, is the following

ds2 = ωµω
µ + aωαωα

− a∗ω .

αω
.

α (1)

where

ωµ = dxµ − i
(
dθ σµθ − θ σµdθ

)
; ωα = dθα ; ω

.

α = dθ
.

α

are the Cartan forms of the group of supersymmetry [17].
The spinorial indexes are related as follows

θα = εαβθβ ; θα = θβεβα ; εαβ = −εβα ; εαβ = −εβα ; ε12 = ε12 = 1

and of analog manner for the spinors with punctuated indexes. The complex
constants a and a∗ in the line element (1) are arbitrary. This arbitrarity for
the choice of a and a∗are constrained by the invariance and reality of the
interval (1).

As we have extended our manifold to include fermionic coordinates, it is
natural extend also the concept of trayectory of point particle to the super-

space. To do this we take the coordinates x (τ ), θ (τ ) and θ
.

α
(τ) depending

on the evolution parameter τ . Geometrically, the function action that will
describe the world-line of the superparticle, is

S = −m

∫ τ2

τ1

dτ

√
◦

ωµ

◦

ωµ + a
.

θα

.

θα
− a∗

.

θ .

α

.

θ
.

α
=

∫ τ2

τ1

dτL
(
x, θ, θ

)
(2)

where
◦

ωµ =
.
xµ − i

(
.

θ σµθ − θ σµ

.

θ

)
and the upper point means derivative

with respect to the parameter τ , as is usual.
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The momenta, canonically conjugated to the coordinates of the superpar-
ticle, are

Pµ = ∂L/∂xµ =
(
m2/L

) ◦

ωµ

Pα = ∂L/
.

∂θα = iPµ (σµ)
α

.

β
θ

.

β
+

(
m2a/L

) .

θα

P .

α = ∂L/

.

∂θ
.

α
= iPµθ

α (σµ)α
.

α −
(
m2a/L

) .

θ .

α (3)

It is difficult to study this system in the Hamiltonian formalism framework
because of the constraints and the nullification of the Hamiltonian. As the
action (2) is invariant under reparametrizations of the evolution parameter

τ → τ̃ = f (τ ) (4)

one way to overcome this difficulty is to make the dynamic variable x0 the
time. For this, it is sufficient to use the chain rule of derivatives (with special
care of the anticommuting variables)1 and to write the action in the form

S = −m

∫ τ2

τ1

.
x0dτ

√
[
1 − iW 0

,0

]2
−

[
xi − W i

,0

]2
+ a

.

θα

.

θα
− a∗

.

θ .

α

.

θ
.

α
(5)

where the W µ
,0 was defined by

◦

ω
0

=
.
x

0 [
1 − iW 0

,0

]

◦

ω
i
=

.
x

0 [
xi

,0 − iW i
,0

]
(6)

whence x0 (τ) turns out to be the evolution parameter

S = −m

∫ x0(τ2)

x0(τ1)

dx0

√
[
1 − iW 0

,0

]2
−

[
xi − W i

,0

]2
+ a

.

θα

.

θα
− a∗

.

θ .

α

.

θ
.

α
≡

∫
dx0L

(7)
Physically this parameter (we call it the dynamical parameter) is the time
measured by an observer’s clock in the rest frame.

Therefore, the invariance of a theory with respect to the invariance of the
coordinate evolution parameter means that one of the dynamic variables of

1We take the Berezin convention for the Grassmannian derivatives: δF (θ) = ∂F

∂θ
δθ
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the theory (x0 (τ ) in this case) becomes the observed time with the corre-
sponding non-zero Hamiltonian

H = Pµ

.
x

µ
+ Πα

.

θ
α

+ Π .

α

.

θ
.

α

− L

=

√

m2 −

(
PµP

µ +
1

a
ΠαΠα −

1

a∗
Π .

αΠ
.

α

)
(8)

where

Πα = Pα + i Pµ (σµ)
α

.

β
θ

.

β

Π .

α = P .

α − iPµθα (σµ)α
.

α

Choosing x0 (τ) as the evolution parameter, we thus fix the reference frame.
This procedure to fix the reference frame is called the physical realization of
the relativistic particle [11].When a specific physical realization is chosen, we
lose all other realizations. In particular, the co-moving frame in which the
time is the proper time with the interval

dt =

√
ds2

dτ 2
dτ (9)

But, it is easy to show that the relativistic action (2), written in the invariant
form with the additional variable e (τ) (einbein)

S = −
m

2

∫ τ2

τ1

dτ

[
1

e

(
◦

ωµ

◦

ωµ + a
.

θα

.

θα
− a∗

.

θ .

α

.

θ
.

α
)

+ e

]

=

∫
dτ

[
PµP

µ +
1

a
ΠαΠα

−
1

a∗
Π .

αΠ
.

α

]
−

e

2m

[
m2

−

(
PµP

µ +
1

a
ΠαΠα

−
1

a∗
Π .

αΠ
.

α

)]

(10)
also describes the relativistic particle in the co-moving frame. The equations
of motion for the action (11) are

m2
−

(
PµP

µ +
1

a
ΠαΠα

−
1

a∗
Π .

αΠ
.

α

)
= 0

∂H

∂Π
=

.

θ

(
or

.

θ

)
∂H

∂P
=

.
x (11)

5



Equations (12) contain two times: x0 is the time in the rest frame and t is
the time in the co-moving frame.

The relation

x0 =
P0

m
t (12)

between these two times describes the purely relativistic effect of changing
the time when passing to another reference frame.

As shown in [12], there exists a scenario of a dynamic transition to the co-
moving frame using the Levi-Civita canonical transformation

(
Pµ, Πα, Πα; xµ, θα, θ .

α

)
→

(Pµ, Pα, P .

α; Qµ, Q .

α, Qα) [10, 11]

P0 =
1

2m

(
PµP

µ +
1

a
ΠαΠα

−
1

a∗
Π .

αΠ
.

α

)
, Pi = Pi , Pα = Πα P .

α = Π .

α,

(13)

Q0 = x0
m

P0

Qi = xi+
x0

P0

Pi Qα = θα+
x0

P0a
Πα Q .

α = θ .

α−
x0

P0a∗
Π .

α

which transforms the constraint into the new momentum P0 and the time x0

into the proper time (10). Indeed we can use the eqs. (14) to express the old
momenta Pµ, Πα, Πα and coordinates xµ, θα, θ .

α through the new ones as

P0 = ±

√

2mP0 −

(
PiP i +

1

a
PαP α −

1

a∗
P .

αP
.

α

)
; Pi = Pi

x0 = ±
Q0

m

√

2mP0 −

(
PiP i +

1

a
PαP α −

1

a∗
P .

αP
.

α

)

xi = Qi +
Q0

m
Pi θα = Qα +

Q0

ma
Pα θ .

α = Q .

α −
Q0

ma∗
P .

α (14)

the action (7) in the new variables then becomes

S =

∫ τ2

τ1

[
Pµ

.

Qµ + Pα

.

Qα + P .

α

.

Q
.

α

− e
(
P0 −

m

2

)
+

d (tP0)

dt

]
(15)

Varying the action (16) with respect to P0, we define the new variable Q0 = t

dQ0

dτ
= e (τ ) (16)
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to be the new proper time (10) , and varying (16) with respect to e (τ ) we
obtain the constraint

P0 −
m

2
= 0 (17)

Finally, resolving this constraint with respect to the momentum component
P0, we obtain the expression

S =

∫ t2

t1

[
Pi

dQi

dt
+ Pα

dQα

dt
+ P .

α

dQ
.

α

dt
−

m

2
−

d (tP0)

dt

]
(18)

Inverse Levi-Civita canonical transformations (14) and solutions (16) and
(17) establish the relation between two reference frames, in this case in the
superspace, with different physical realizations of the same particle. The
reparametrization invariance therefore allows describing two physical real-
izations of the same particle by two constraint-free mechanics, while these
mechanics are related through purely relativistic effects. In the dynamic
transition given by the formulas (13), the global SUSY is preserved but the
the κ-invariance is not explicitly manifest in the expression (18). In order to
restore the local relativistic κ-symmetry there are two possibilities to induce
it in (18). These two ways are2

LA ≡ L + ςD + ςD + eH

LB ≡ L +
.
ςD +

.

ςD + eH

where only the second choice (i.e:LB) is the correct one3. It is interesting to
note that these different ways to introduce the local supersymmetry was also
obtained and analyzed in ref.[20] taking as the starting point the functional
approach of the the classical mechanics and the BRST formulation where
was explicitly shown that are two gauge theories which differ in the gauge
couplings: in the Lagrangian and in the physical Hilbert spaces.

2Here is the L is the Lagrangian density, ς
.
, ς(ς,

.

ς) are Lagrange multipliers and D
(
D

)
are

the covariant derivatives, as usual.
3It fact is easily seen from the point of view of the first order formulation of the

superparticle action: when the metric (1) degenerates, this new Lagrangian is closest to
the Siegel model.
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