Ergodic type problems and large time behaviour of unbounded solutions of Hamilton-Jacobi Equations

Abstract : We study the large time behavior of Lipschitz continuous, possibly unbounded, viscosity solutions of Hamilton-Jacobi Equations in the whole space $\R^N$. The associated ergodic problem has Lipschitz continuous solutions if the analogue of the ergodic constant is larger than a minimal value $\lambda_{min}$. We obtain various large-time convergence and Liouville type theorems, some of them being of completely new type. We also provide examples showing that, in this unbounded framework, the ergodic behavior may fail, and that the asymptotic behavior may also be unstable with respect to the initial data.
Type de document :
Article dans une revue
Comm. Partial Differential Equations, 2006, 31 (7-9), pp.1209--1225
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00121921
Contributeur : Guy Barles <>
Soumis le : vendredi 22 décembre 2006 - 14:44:55
Dernière modification le : vendredi 26 octobre 2018 - 10:46:12
Document(s) archivé(s) le : mardi 6 avril 2010 - 19:41:13

Fichiers

GBJMR-CPDE.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Guy Barles, Jean-Michel Roquejoffre. Ergodic type problems and large time behaviour of unbounded solutions of Hamilton-Jacobi Equations. Comm. Partial Differential Equations, 2006, 31 (7-9), pp.1209--1225. 〈hal-00121921〉

Partager

Métriques

Consultations de la notice

199

Téléchargements de fichiers

100