Skip to Main content Skip to Navigation
Journal articles

Ergodic type problems and large time behaviour of unbounded solutions of Hamilton-Jacobi Equations

Abstract : We study the large time behavior of Lipschitz continuous, possibly unbounded, viscosity solutions of Hamilton-Jacobi Equations in the whole space $\R^N$. The associated ergodic problem has Lipschitz continuous solutions if the analogue of the ergodic constant is larger than a minimal value $\lambda_{min}$. We obtain various large-time convergence and Liouville type theorems, some of them being of completely new type. We also provide examples showing that, in this unbounded framework, the ergodic behavior may fail, and that the asymptotic behavior may also be unstable with respect to the initial data.
Complete list of metadatas

Cited literature [19 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00121921
Contributor : Guy Barles <>
Submitted on : Friday, December 22, 2006 - 2:44:55 PM
Last modification on : Friday, January 10, 2020 - 9:08:06 PM
Document(s) archivé(s) le : Tuesday, April 6, 2010 - 7:41:13 PM

Files

GBJMR-CPDE.pdf
Files produced by the author(s)

Identifiers

Citation

Guy Barles, Jean-Michel Roquejoffre. Ergodic type problems and large time behaviour of unbounded solutions of Hamilton-Jacobi Equations. Comm. Partial Differential Equations, 2006, 31 (7-9), pp.1209--1225. ⟨hal-00121921⟩

Share

Metrics

Record views

284

Files downloads

302