Coding on countably infinite alphabets

Abstract : This paper describes universal lossless coding strategies for compressing sources on countably infinite alphabets. Classes of memoryless sources defined by an envelope condition on the marginal distribution provide benchmarks for coding techniques originating from the theory of universal coding over finite alphabets. We prove general upper-bounds on minimax regret and lower-bounds on minimax redundancy for such source classes. The general upper bounds emphasize the role of the Normalized Maximum Likelihood codes with respect to minimax regret in the infinite alphabet context. Lower bounds are derived by tailoring sharp bounds on the redundancy of Krichevsky-Trofimov coders for sources over finite alphabets. Up to logarithmic (resp. constant) factors the bounds are matching for source classes defined by algebraically declining (resp. exponentially vanishing) envelopes. Effective and (almost) adaptive coding techniques are described for the collection of source classes defined by algebraically vanishing envelopes. Those results extend ourknowledge concerning universal coding to contexts where the key tools from parametric inference
Type de document :
Article dans une revue
IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2009, 55 (1), pp.358-373
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00121892
Contributeur : Aurélien Garivier <>
Soumis le : mercredi 16 janvier 2008 - 09:41:45
Dernière modification le : lundi 29 mai 2017 - 14:24:18
Document(s) archivé(s) le : mardi 21 septembre 2010 - 15:32:44

Fichiers

nml.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales 4.0 International License

Identifiants

  • HAL Id : hal-00121892, version 2
  • ARXIV : 0801.2456

Collections

Citation

Stéphane Boucheron, Aurélien Garivier, Elisabeth Gassiat. Coding on countably infinite alphabets. IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2009, 55 (1), pp.358-373. 〈hal-00121892v2〉

Partager

Métriques

Consultations de la notice

260

Téléchargements de fichiers

93