Coding on countably infinite alphabets

Abstract : This paper describes universal lossless coding strategies for compressing sources on countably infinite alphabets. Classes of memoryless sources defined by an envelope condition on the marginal distribution provide benchmarks for coding techniques originating from the theory of universal coding over finite alphabets. We prove general upper-bounds on minimax regret and lower-bounds on minimax redundancy for such source classes. The general upper bounds emphasize the role of the Normalized Maximum Likelihood codes with respect to minimax regret in the infinite alphabet context. Lower bounds are derived by tailoring sharp bounds on the redundancy of Krichevsky-Trofimov coders for sources over finite alphabets. Up to logarithmic (resp. constant) factors the bounds are matching for source classes defined by algebraically declining (resp. exponentially vanishing) envelopes. Effective and (almost) adaptive coding techniques are described for the collection of source classes defined by algebraically vanishing envelopes. Those results extend ourknowledge concerning universal coding to contexts where the key tools from parametric inference
Type de document :
Article dans une revue
IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2009, 55 (1), pp.358-373
Liste complète des métadonnées
Contributeur : Aurélien Garivier <>
Soumis le : mercredi 16 janvier 2008 - 09:41:45
Dernière modification le : mercredi 21 mars 2018 - 18:56:48
Document(s) archivé(s) le : mardi 21 septembre 2010 - 15:32:44


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales 4.0 International License


  • HAL Id : hal-00121892, version 2
  • ARXIV : 0801.2456



Stéphane Boucheron, Aurélien Garivier, Elisabeth Gassiat. Coding on countably infinite alphabets. IEEE Transactions on Information Theory, Institute of Electrical and Electronics Engineers, 2009, 55 (1), pp.358-373. 〈hal-00121892v2〉



Consultations de la notice


Téléchargements de fichiers