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Abstract

It is surmised that the algebra of the Pauli operators on the Hilbert space of N -qubits is em-
bodied in the geometry of the symplectic polar space of rank N and order two, W2N−1(2). The
operators (discarding the identity) answer to the points of W2N−1(2), their partitionings into max-
imally commuting subsets correspond to spreads of the space, a maximally commuting subset has
its representative in a maximal totally isotropic subspace of W2N−1(2) and, finally, “commuting”
translates into “collinear” (or “perpendicular”).

MSC Codes: 51Exx, 81R99
PACS Numbers: 02.10.Ox, 02.40.Dr, 03.65.Ca
Keywords: Symplectic Polar Spaces of Order Two – N-Qubits

It is well known that a complete basis of operators in the Hilbert space of N -qubits, N ≥ 2,
can be given in terms of the Pauli operators — tensor products of classical 2 × 2 Pauli matrices.
Although the Hilbert space in question is 2N -dimensional, the operators’ space is of dimension
4N . Excluding the identity matrix, the set of 4N − 1 Pauli operators can be partitioned into
2N + 1 subsets, each comprising 2N − 1 mutually commuting elements [1]. The purpose of this
note is to put together several important facts supporting the view that this operators’ space can
be identified with W2N−1(q = 2), the symplectic polar space of rank N and order two.

A (finite-dimensional) classical polar space (see [2–6] for more details) describes the geometry
of a d-dimensional vector space over the Galois field GF (q), V (d, q), carrying a non-degenerate
reflexive sesquilinear form σ. The polar space is called symplectic, and usually denoted as Wd−1(q),
if this form is bilinear and alternating, i.e., if σ(x, x) = 0 for all x ∈ V (d, q); such a space exists only
if d = 2N , where N is called its rank. A subspace of V (d, q) is called totally isotropic if σ vanishes
identically on it. W2N−1(q) can then be regarded as the space of totally isotropic subspaces of
PG(2N − 1, q), the ordinary (2N − 1)-dimensional projective space over GF (q), with respect to a
symplectic form (also known as a null polarity), with its maximal totally isotropic subspaces, also
called generators G, having dimension N − 1. For q = 2 this polar space contains

|W2N−1(2)| = |PG(2N − 1, 2)| = 22N − 1 = 4N − 1 (1)

points and

|Σ(W2N−1(2))| = (2 + 1)(22 + 1) . . . (2N + 1) (2)

generators [2–4]. An important object associated with any polar space is its spread, i. e., a set of
generators partitioning its points. A spread S of W2N−1(q) is an (N − 1)-spread of its ambient
projective space PG(2N−1, q) [4, 5, 7], i. e., a set of (N−1)-dimensional subspaces of PG(2N−1, q)
partitioning its points. The cardinalities of a spread and a generator of W2N−1(2) thus read

|S| = 2N + 1 (3)
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and

|G| = 2N − 1, (4)

respectively [2, 3]. Finally, it needs to be mentioned that two distinct points of W2N−1(q) are
called perpendicular if they are “isotropically” collinear, i. e., joined by a totally isotropic line of
W2N−1(q); for q = 2 there are

#∆ = 22N−1 (5)

points that are not perpendicular to a given point of W2N−1(2) [2, 3].
Now, in light of Eq. (1), we can identify the Pauli operators with the points of W2N−1(2). If, fur-

ther, we identify the operational concept “commuting” with the geometrical one “perpendicular,”
from Eqs. (3) and (4) we readily see that the points lying on generators of W2N−1(2) correspond
to maximally commuting subsets (MCSs) of operators and a spread of W2N−1(2) is nothing but a
partitioning of the whole set of operators into MCSs. From Eq. (2) we then infer that the operators’
space possesses (2 + 1)(22 + 1) . . . (2N + 1) MCSs and, finally, Eq. (5) tells us that there are 22N−1

operators that do not commute with a given operator; the last two statements are, for N > 2, still
conjectures to be rigorously proven. However, the case of two-qubits (N = 2) is recovered in full
generality [1, 8, 9], with the geometry behind being that of the generalized quadrangle of order two

[9] — the simplest nontrivial symplectic polar space.1
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1This object can also be recognized as the projective line over the Jordan system of the full 2 × 2 matrix ring
with coefficients in GF (2) [9].
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