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Abstract

We observe that successive applications of known results from the theory of positive systems lead to an efficient

general algorithm for positive realizations of transfer functions. We give two examples to illustrate the algorithm, one
of which complements an earlier result of [6]. Finally, we improve a lower-bound of [18] to indicate that the algorithm
is indeed efficient in general.
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1. Introduction

Given the transfer function

H(z) =
p1z

n−1 + ... + pn

zn + q1zn−1 + ... + qn
, pj , qj ∈ R,

of a discrete time-invariant linear SISO system of
McMillan degree n, we say that a triple A ∈ R

n×n,
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b, c ∈ R
n is an nth order realization of H(z) if it

satisfies the condition:

H(z) = cT (zI− A)−1b.

It is known that an nth order realization of H(z) al-
ways exists (see, e.g. [10, Chapter 9]). In this note,
however, we are interested in the positive realiza-
tion problem, i.e. finding A, b, c with nonnega-
tive entries (and possibly of higher dimension M ≥
n). The nonnegativity restriction on the entries of
A, b, c reflects physical constraints in applications.
Such positive systems appear, for example, in mod-
eling of bio-systems, chemical reaction systems, and
socio-economic systems, as described in detail in
[10,14,15]. A thorough overview of the positive re-
alization problem and related results has recently
been given in [4], while for a direct application in
filter-design we refer the reader to [5].

The existence problem is to decide for a given
transfer function whether any positive realization
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A, b, c of any dimension M exists. It is known that
the constraint of positivity may force the dimension
M to be strictly larger than n, see [1], [6], [18] for
different reasons why this phenomenon may occur.
The minimality problem is to find the lowest pos-
sible value of M . These problems have been given
considerable attention over the past decade. The ex-
istence problem was completely solved in [2] and [9],
cf., [16,17,11], while a few particular cases of the
minimality problem were settled in [8,13,19,3,23,22].

The state of the art of the theory is therefore
rather two-sided. On one hand, there exists a gen-
eral and constructive solution [2,9] to the existence
problem which, however, is inefficient in the sense
that it yields very large dimensions, even in trivial
cases. On the other hand, the minimality problem
is solved only for particular classes of transfer func-
tions, and a general solution seems to be out of reach
for current methods.

In this note we first observe (Section 2) that an
appropriate combination of known results leads to a
constructive, efficient, general algorithm to solve the
existence problem in close-to-minimal dimensions.
We observe that a repeated application of a lemma of
Hadjicostis [12] leads to the positive decomposition
problem which, in turn, may be treated by methods
of [7,20]. In Section 3 we give two illustrative exam-
ples. In the first we compare the arising dimension
to that of the earlier general algorithm of [2]. In the
second we complement the results of [6] by deter-
mining the minimal value of M for a class of trans-
fer functions. Finally, in Section 4 we provide a new
lower-bound on M , improving a result of [18]. This
latter contribution is independent of earlier results.

2. The algorithm

It is known that a necessary condition for the exis-
tence of positive realizations is that one of the dom-
inant poles (i.e. the poles with maximal modulus)
of H(z) be nonnegative real, and there is no loss
of generality in assuming that it is located at λ0 =
1, see, e.g. [2]. The transfer function H(z) is called
primitive if λ0 is a unique dominant pole. It is also
known, see [9], that by the method of down-sampling
the case of non-primitive transfer functions can be
traced back to primitive ones. Therefore it is cus-
tomary to assume that H(z) is a primitive transfer
function with dominant pole at λ0 = 1. We shall also
assume, for technical simplicity, that λ0 = 1 is a sim-
ple pole (this makes the calculations less involved;

we note that the case of a multiple dominant pole
can be reduced to the simple pole case as in [17, Step
4]). Without loss of generality we may assume that
the residue at λ0 = 1 is 1 (see e.g. [2]).

With these normalizing assumptions, the transfer
function H(z) takes the form

H(z) =
1

z − 1
+ G(z)

=
1

z − 1
+

r
∑

j=1

nj
∑

i=1

c
(i)
j

(z − λj)i
, (2.1)

where the poles λj of G(z) are of modulus strictly
less than 1, i.e. G(z) is asymptotically stable (note

that λjs and c
(i)
j s are possibly complex).

In the series expansion H(z) =

∞
∑

k=1

tkz−k the co-

efficients tk are called the impulse response of H(z).

If H(z) = cT (zI−A)−1b then tk = cT Ak−1b for
all k ≥ 0. In particular, tks must be non-negative
for H(z) to have a positive realization. We now give
the main ingredients upon which the algorithm is
based. The first is the following simple but powerful
result of Hadjicostis (see [12, Theorem 5]).

Lemma 2.1 (Hadjicostis)

Let H(z) =

∞
∑

j=1

tjz
−j be a rational transfer func-

tion with non-negative impulse response t1, t2, . . . .
For m ≥ 1 let Hm(z) denote the transfer function
corresponding to the shifted sequence tm, tm+1, . . . ,

i.e. Hm(z) =

∞
∑

j=1

tm+j−1z
−j. Assume that Hm(z)

admits a positive realization of some dimension k.
Then H(z) admits a positive realization of dimen-
sion k + m − 1.

We apply Lemma 2.1 to H(z) as given in (2.1).
Note that H1(z) = H(z) by definition, and for each
m ≥ 2 we have Hm(z) = zHm−1(z) − tm−1. Hence,

for each m ≥ 1, Hm(z) = 1
z−1 +

∑r
j=1

∑nj

i=1

c
(i)
j,m

(z−λj)i .

The leading coefficient remains 1, while all other co-

efficients c
(i)
j,m → 0 exponentially as m → ∞ (due to

the asymptotic stability of G(z)). That is, the lead-
ing coefficient becomes large compared to other co-
efficients, and this is exactly the familiar situation
of the positive decomposition problem, which we now
turn to.

The task in the positive decomposition problem
is to decompose an arbitrary transfer function G(z)
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as the difference G(z) = T1(z) − T2(z), with T1(z)
and T2(z) both admitting positive realizations (see
[7,13,19,20]). By rescaling, one may assume that
G(z) is asymptotically stable, and then the usual
approach is to take a one-dimensional positive sys-
tem T2(z) = R

z−w , where 0 < w < 1 is larger than
the modulus of any pole of G(z), and R is a suffi-
ciently large positive number. Then T1(z) = G(z)+
T2(z) can be shown to admit a positive realization
which, in some cases, turns out to be also minimal
[7,13,19,20]. For our purposes, the essence of these
results can be summarized as follows: for any prim-
itive transfer function, as long as the partial fraction
coefficient of the dominant pole is significantly larger
than all other coefficients (as in Hm(z) and T1(z)
above) there exist efficient methods to construct posi-
tive realizations. We shall not list all relevant results
of [7,13,19,20] concerning the positive decomposi-
tion problem; instead, we give as an example The-
orem 8 of [7], which handles all transfer functions
with simple poles.

Theorem 2.2 (Benvenuti, Farina & Anderson)

Let H(z) =
1

z − 1
+ G(z) =

1

z − 1
+

n−1
∑

j=1

cj

z − λj
,

where G(z) is a strictly proper asymptotically sta-
ble rational transfer function of order n, with sim-
ple poles. Let Pj (j ≥ 3) denote the interior of the
regular polygon in the complex plane with j edges
located at the j-th roots of unity. Pj can formally
be defined in polar coordinates as in [7]:

Pj :=
{

(ρ, θ) : ρ cos
( (2k + 1)π

j
− θ
)

< cos
π

j
,

for k = 0, 1, . . . , j − 1
}

.

Let N1 be the number of non-negative real poles
with positive residue in G(z) and let N2 denote the
number of other real poles in G(z). Let N3 denote
the number of pairs of complex conjugate poles of
G(z) belonging to the region P3, and let Nj (j ≥
4) denote the number of pairs of complex conjugate
poles of G(z) belonging to the region

Pj \
j−1
⋃

m=3

Pm.

If all cjs are sufficiently small then H(z) admits a
positive realization of dimension N = (n−1)+N2 +
∑

j≥3

(j − 2)Nj =
∑

j≥1

jNj.
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Figure 1. The sets Pj .

Remark 2.1
The dimension N appearing in the theorem is not
necessarily minimal but it is a good a priori upper
bound on the order of the realization. Further, by
carefully analysing the proof in [7], the condition on
the residues may be given explicitely to be

∑

|cj | ≤
2−5/2 (where the sum runs only over the j’s for which
λj is counted in Nk, k ≥ 2). In such case it can
be computed that H(z) admits a positive realization

of dimension N =
∑

j≥1

jNj. For the reader’s conve-

nience, we have indicated in the appendix
The proof in [7] is constructive and it gives a so-

called cone-generated positive realization (see Sec-
tion 4).

This theorem was later improved and generalized
in various forms, [13, Corollary 2], [19, Corollary 2],
[20, Theorem 1, Theorem 2]. These papers also pro-
vide a number of examples where minimality of the
arising dimension N can be claimed. Finally, a syn-
thesis of all these results, [20, Theorem4], covers the
case of H(z) = 1

z−1 + G(z) for any asymptotically
stable rational transfer function G(z).

Theorem 2.3 (Matolcsi, Nagy & Szilvási)
If G(z) is any asymptotically stable rational transfer
function with poles λ1, . . . λr of order m1, . . .mr,
and if all the partial fraction coefficients of G
are sufficiently small, then the function H(z) =

1
z−1 +G(z) admits a positive realization, the dimen-
sion of which is given explicitely as a function of
λ1, . . . λr, m1, . . .mr.

We remark that in the case of simple poles the
value of N in Theorem 2.2 is better than in Theo-
rem 2.3. All the results above are constructive (see
[7,13,19,20]).

Theorems 2.2 and 2.3 yield that the following is a
general algorithm which terminates in a finite num-
ber of steps for any given transfer function H(z).

ALGORITHM:
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Assume H(z) is given as in (2.1).
m := 1

WHILE tm ≥ 0 DO

IF assumptions of Theorem 2.2 = TRUE

THEN APPLY Theorem 2.2

APPLY Lemma 2.1

ELSE

IF assumptions of Theorem 2.3 = TRUE

THEN APPLY Theorem 2.3

APPLY Lemma 2.1

ELSE m := m + 1

ELSE there is no positive realization of H(z)

Remark 2.2
At each step, we may apply to Hm(z) other known
constructions from the literature different than The-
orems 2.2 or 2.3. We included only these two theo-
rems to keep the algorithm transparent and because
they guarantee that the algorithm terminates in a
finite number of steps. Other important partial re-
sults which can be incorporated into the algorithm
are given in [8,3,22].

Remark 2.3
We acknowledge that this algorithm is merely an
observation that some earlier results in the litera-
ture can be combined together. Nevertheless, we find
it an important observation as it provides a com-
pletely general algorithm. Previously such a general
algorithm has only been given in [2]. There are good
heuristic arguments to believe that the algorithm
above is efficient in terms of producing small dimen-
sions, and better than the existing algorithm of [2].
First, the partial fraction coefficients decay exponen-
tially, so that only a few iterations are needed before
Theorem 2.2 or 2.3 become applicable, and these the-
orems already provide minimal or close-to-minimal
dimensions (see Section 3 for a numerical exam-
ples). Second, the method of [2] involves the time
development of an n-dimensional ”cube” around the
vector (1, 1, . . . , 1) and, as such, can only produce
dimensions larger than 2n (usually significantly
larger than that). This fact, however, by no means
diminishes the theoretical significance of the results
of [2] which provided the first general solution to the
existence problem for primitive transfer functions.

3. Examples

In this section we give two examples. In the first
we compare the arising dimension of realization with
that of the algorithm of [2]. In the second we com-
plement a result of [6] and determine the minimal
dimension of positive realizations for a class of trans-
fer functions.

First, we note that in the case where there are only
simple poles, the number of iterations needed may
be evaluated as follows: write H(z) =

∑n
j=0

cj

z−λj

with λ0 = 1 and |λj | < 1. A simple computation

shows that Hm(z) =
∑n

j=0

cjλm−1
j

z−λj
. It follows that,

if m ≥
∣

∣

∣

log 25/2n max |ci|
log max |λi|

∣

∣

∣, then
∑ |cjλ

m−1
j | ≤ 2−5/2

and Theorem 2.2 applies (cf. Remark 2.1). Moreover,
it is enough to consider those poles that are not non-
negative with non-negative residues.

Example 1. Let

H(z) =
1

z − 1
+ t(z) =

1

z − 1
+

0.3331328522 z2 + 0.1984152016 z + 0.1253986950

z3 − 0.69055619 z2 + 0.80189061 z − 0.38920832
,

where t(z) is a low-pass digital Chebyshev filter of
order 3. The partial fraction decomposition is

H(z) =
1

z − 1
+

3
∑

i=1

ci

z − λi

with

λ1 = 0.07522998673− 0.8455579204 i, λ2 = λ1

c1 =−0.01050864690+ 0.1411896961 i, c2 = c1

λ3 = 0.5400962165 c3 = 0.3541501460.

Let us now apply the algorithm. The above compu-
tation shows that after m = 5 iterations, we may
apply Theorem 2.2 to H5. As N2 = 0 and as λ1, λ2 ∈
P4 \ P3, N4 = 1, Nj = 0 for j 6= 4 we obtain a pos-
itive realization of H5(z) of dimension N = 5 (cf.
Remark 2.1). A repeated application of Lemma 2.1
gives a positive realization of H(z) of dimension 9.
A more careful examination of the proof of Theorem
2.2 would show that H3 already satisfies the require-
ments so that a 7-dimensional positive realization
exists. We spare the reader the numerical values.

While we cannot claim that the arising dimension
is minimal let us compare it with that of the algo-
rithm described previously in [2]. In short, a specific
minimal realization of H(z) is considered and the
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time-evolution of a small 4-dimensional cube around
the vector [1, 1, 1, 1]T needs to be checked to pro-
vide a system-invariant polyhedral cone, which then
leads to a positive realization of H(z). The num-
ber of edges of the cone equals the dimension of the
positive realization. If one carries out this procedure
word-by-word for H(z) above the arising dimension
is 48.

Example 2. Consider the family of transfer func-
tions

HN (z) =
1

z − 1
− 4 · (5/2)N−2

z − 0.4
+

3 · 5N−2

z − 0.2
(3.1)

as in [6, Example 4]. It is proved in [6] that for any
N ≥ 4 the minimal dimension of positive realiza-
tions of HN(z) is at least N . Here we prove that
an N -dimensional minimal positive realization of
HN (z) does indeed exist for every N ≥ 4.

For N = 4 the following 4-dimensional positive
realization of H4(z) is given in [6, Example 3] and
it is shown to be minimal.

b =
(

0 0 0 1
)T

, c =
(

6 0 0 51
)T

and

A =





















0 0 0 1

1
63 + 4

√
26

85
0 0

0
22 − 4

√
26

85

63 − 4
√

26

85
0

0 0
22 + 4

√
26

85
0





















, (3.2)

Consider now HN (z), N ≥ 4. It is not difficult
to see that with the notation of Lemma 2.1 we have
H1(z) = HN (z), H2(z) = HN−1(z), . . . , Hm(z) =
HN+1−m(z). Let us stop at m = N − 3, i.e. at
Hm(z) = H4(z) and make use of the realization
(3.2) of H4(z). Then, the application of Lemma 2.1
produces a positive realization of HN(z) of order
4+(m−1) = N . Note that for producing this mini-
mal positive realization we use (3.2) instead of The-
orem 2.2 (we have, in fact, followed the suggestion
of Remark 2.2).

We have concluded that the minimal dimension
of positive realization of HN (z) is N . Let us now see
what the word-by-word application of the algorithm
of Section 3 gives.

The algorithm terminates when Theorem 2.2 be-
comes applicable, i.e. when Hm(z) = H0(z), that is
m = N + 1. Then a 3-dimensional positive realiza-
tion of H0(z) is constructed, and the application of

Lemma 2.1 produces a positive realization of HN (z)
of order 3 + (m − 1) = N + 3.

This example is reassuring in that the application
of the algorithm of Section 3 produces positive real-
izations of close-to-minimal order.

4. Improved lower-bounds

We saw in Section 3 that the minimal order of
positive realizations of HN(z) is N . Also, it is easy
to calculate (see [6]) that the impulse response se-
quence of HN(z) contains zeros, namely tN−1 =
tN = 0. A general lower-bound presented in [18]
gives that in such case the order M of any positive

realization satisfies M(M+1)
2 −1+M2 ≥ N , i.e. M is

at least ≈
√

2N
3 . In view of the actual minimal value

M = N a lower-bound of the order of magnitude N
is welcome (instead of the order of magnitude

√
N).

In this section we present such an improvement (but
we note that while the lower-bound of [18] is valid
in general, our improvement is restricted to transfer
functions with positive real poles, as is the case of
the example of the previous section).

Throughout this section we assume that H(z) is
a given primitive transfer function of McMillan de-
gree n with positive real poles, and there exists a pos-
itive integer k0, such that for the impulse response
sequence of H(z) we have tk0 = 0 and tk > 0 for all
k > k0. This means that H(z) is of the form

1

z − 1
+

r
∑

j=1

nj
∑

i=1

c
(i)
j

(z − λj)i
(4.1)

where c
(i)
j ∈ R, 0 < λj < 1, and

∑r
j=1 nj = n − 1.

Let the triple (h,F,g) denote an arbitrary mini-
mal (n-dimensional) realization of H(z) (for canon-
ical minimal realizations see e.g. [10]). Assume that
there exists a matrix P of size n × M such that for
some triple (c,A,b) with nonnegative entries:

FP = PA, Pb = g, cT = hTP. (4.2)

There is a well-known geometrical interpretation of
these equalities. Namely, the columns of matrix P
represent the edges of a finitely generated cone P in
R

n, such that P is F-invariant, and P lies between
the reachability cone and the observability cone cor-
responding to the triple (h,F,g). It is known that
the triple (c,A,b) provides a positive realization of
H(z).
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Definition 4.1
A triple (c,A,b) which arises in such a manner is
called a cone-generated realization of H(z).

It is a basic result in the theory of positive realiza-
tions that a transfer function H(z) admits positive
realizations if and only if it admits cone-generated
realizations (see [21]). Here we present a lower bound
on the order of cone-generated realizations of H(z).
For this we shall need the following auxiliary result.

Lemma 4.1
Let f : R → R be defined by

f(x) :=
r
∑

j=1

p(j)(x)λx
j

where λ1 > λ2 > · · · > λr > 0 and p(j) denotes
a polynomial (with real coefficients) of degree nj .

Then f has at most R ≡ Rf :=

r
∑

j=1

(nj + 1) − 1

pairwise distinct real roots.

Lemma 4.1 is proved by induction on R.
We are now ready to give an improvement of the

lower-bound of [18].

Theorem 4.2
Assume that H(z) is a transfer function of McMillan
degree n, with positive real poles, given as in (4.1)
above. Assume also that there exists a positive inte-
ger k0, such that for the impulse response sequence
of H(z) we have tk0 = 0 and tk > 0 for all k > k0.
Then the dimension M of any cone-generated posi-
tive realization of H(z) satisfies M ≥ k0

n−1 .

Proof. Let the triple (h,F,g) denote a minimal
(n-dimensional) realization of H(z). Consider any
cone-generated positive realization (c,A,b) of H(z)
arising from a matrix P of size n×M , as in 4.2. Let
ei denote an arbitrary column of the matrix P, and

consider the sequence g
(i)
k := hT Fk−1ei ≥ 0. Let

P1 := [pi,j ] be the nonnegative matrix of size M×∞
defined by pi,j := g

(i)
j for 1 ≤ i ≤ M and 1 ≤ j.

Let K := [ki,j ] denote the infinite Hankel matrix
composed of the impulse response sequence of H(z),
i.e. ki,j := ti+j−1. By assumptions imposed on P
there exists a matrix Q = [qi,j ] of size ∞×M , with
nonnegative entries, such that QP1 = K. This is
true because the kth row of K is given by kk,j =
tk+j−1 = hTFj−1(Fk−1g), and the vector Fk−1g
lies inside the cone P by assumption. Thus, it may
be decomposed as a linear combination of the edges

ei ofP with nonnegative coefficients, and [one choice
of] these coefficients form the kth row of the matrix
Q.

Since (h,F,g) is a minimal realization, for an ar-
bitrary column ei of the matrix P, the transfer func-
tion corresponding to the impulse response sequence

g
(i)
k = hTFk−1ei is of the form

H(ei)(z) =
Ci

z − 1
+

r
∑

j=1

nj
∑

s=1

d
(s)
j,i

(z − λj)s
.

(Note that some coefficients Ci and d
(s)
j,i may be 0.)

The column ei of P is called dominant if Ci 6= 0
in H(ei)(z). Delete the non-dominant rows from the
matrix P1 and the corresponding columns from the
matrix Q. The remaining matrices (of sizes M1×∞
and ∞ × M1 for some M1 ≤ M) are denoted by

P
(dom)
1 and Q(dom). We see that Q(dom)P

(dom)
1 ≤ K

entrywise. Recall that tk0 = 0, by assumption on
the impulse response of H(z). This implies that for

some dominant index i (1 ≤ i ≤ M1), g
(i)
k0

= 0.
Otherwise, k1,k0 = tk0 would be strictly positive in
the first row of K. Considering the second row of K

we see that k2,k0−1 = tk0 = 0, hence g
(i)
k0−1 = 0 for

some dominant index i. By the same argument, for

every 1 ≤ j ≤ k0, g
(i)
j = 0 for some dominant index

i. In other words, each of the first k0 columns of the

matrix P
(dom)
1 contains a zero, and hence there are

at least k0 zero entries in P
(dom)
1 .

On the other hand, g
(i)
k is the impulse response of

H(ei)(z) = Ci

z−1 +
∑r

j=1

∑nj

s=1

d
(s)
j,i

(z−λj)s . Thus, g
(i)
k =

Ci +
∑r−1

j=1 p(j)(k)λk
j , where p(j) are polynomials of

degree not exceeding nj − 1, for 1 ≤ j ≤ r. Hence,
Lemma 4.1 implies that there are at most R = (1 +
∑r

j=1 nj) − 1 = n − 1 zeros in each row of P
(dom)
1 .

This means that the number of zeros in the matrix
P

(dom)
1 is at most M1(n − 1). Therefore,

k0 ≤ # of zeros in P
(dom)
1 ≤ M1(n−1) ≤ M(n−1),

and, hence, M ≥ k0

n−1 . 2

Remark 4.1
If we apply Theorem 4.2 to functions HN(z) of Sec-
tion 3 we obtain M ≥ N/2. This is still far from
the actual minimal value N . However, if there are
more than 3 poles present in H(z) then the geomet-
ric arguments of [6] are difficult to generalize, while
Theorem 4.2 still applies.
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Remark 4.2
As mentioned in the “Open Problems and New Di-
rections” section of [4] it is desirable to have tight
upper and lower bounds on the minimal order of a
positive realization in general. Note, however, that
the results of [6,18] and Theorem 4.2 above are all
based on the assumption that the impulse response
sequence of H(z) contains at least one 0. The only
other lower-bound known to us is that of [12] which,
however, does not give any non-trivial estimates for
transfer functions with nonnegative poles.

What can be said if the impulse response does not
contain zeros? Unfortunately, we do not have a gen-
eral approach to this case. As a first step in this di-
rection we examined the modified family HN,ε(z) =

1
z−1 − 4·(5/2)N−2

z−0.4 + 3·5N−2+ε
z−0.2 for small values of ε.

Note that the impulse response sequence no longer
contains zeros. Since the dimension of the system
is 3, we can use elementary (but tedious) geometric
arguments to conclude that for small enough ε the
minimal order M of positive realizations of HN,ε(z)
still satisfies M ≥ N/2. It is not clear, however, how
to generalize these arguments to transfer functions
of higher degree (as in Theorem 4.2) where the geo-
metric intuition is missing. Therefore, finding tight
lower-bounds in the general case remains an open
problem.

5. Conclusion

We have observed that recent results in positive
system theory can be put together to produce an ef-
ficient, general algorithm to the positive realization
problem of transfer functions. We have given two
examples to illustrate the algorithm. In the first we
compared the arising dimension of realization with
that of an earlier general algorithm of [2]. In the
second we examined a family of transfer functions
given in [6], and determined the minimal order of
positive realizations. With respect to the minimal-
ity problem we have proved a new lower-bound on
the order of positive realizations of transfer func-
tions with positive real poles, improving an earlier
general result of [18].

Appendix A. Precisions on the paper [7]

In this section, we will show how to obtain a quan-
titative bound on R in Theorem 2.2 above. This re-
sult is not really new as it can be obtained directly
from the proof of that theorem in [7] and some simple

observations. This appendix is thus only included
here for the reader’s convenience.
Proposition A.1 [7, Proposition 7] Let H(z) =

ηeiϑ

z−ρeiθ + ηe−iϑ

z−ρe−iθ and assume that ρeiθ ∈ Pm. Then

for R ≥ 2η

cos π
m

there exists A+ ∈ R
m×m
+ , b+, c+ ∈

R
m
+ such that

H1(z) = H(z) +
R

z − 1
= cT

+(zI − A+)−1b+

Proof. Let us first consider the Jordan realization of
H1 : H1(z) = cT (zI − A)−1b with

A =











ρ cos θ −ρ sin θ 0

ρ sin θ ρ cos θ 0

0 0 1











,

b =











2η(cosϑ + sin ϑ)

2η(cosϑ − sin ϑ)

R











, c =











1

1

1











.

Next, define K by















1 cos

(

2π

m

)

cos

(

2π

m
2

)

· · · cos

(

2π

m
(m − 1)

)

0 sin

(

2π

m

)

sin

(

2π

m
2

)

· · · sin

(

2π

m
(m − 1)

)

1 1 1 · · · 1















and, for α > 0 define

D(α) =











α 0 0

0 α 0

0 0 1











.

It was proved in [7] that the positive cone Kα gen-
erated by D(α)K is A-invariant. To prove the the-
orem, it is then enough to prove that we can choose
α in such a way that

Kα ⊂ O := {x ∈ R
3 : cT Akx ≥ 0, k = 0, 1, . . .}

and that if R ≥ 2η
cos π

m
then b ∈ Kα.

For the first one, note that if

x = λ(α cosϕ, α sin ϕ, 1)T ∈ R
3

then
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cT Akx

= λ(1, 1, 1)











ρk cos kθ −ρk sinkθ 0

ρk sin kθ ρk cos kθ 0

0 0 1





















α cosϕ

α sin ϕ

1











= λ
[

αρk
(

cos(ϕ + kθ) + sin(ϕ + kθ)
)

+ 1
]

.

It follows that, for α = 1/2, λ ≥ 0, ρ ≤ 1, we always
have cT Akx ≥ 0, in particular, K1/2 ⊂ O.

Finaly, note that the cone Kα contains the cone
{λ(r, α) : r < cos π

m , λ > 0}, in particular b ∈ Kα

if
23/2η

Rα
< cos

π

m
. (A.1)

By taking α = 1/2 we can see that this is the case

as soon as R ≥ 25/2η
cos π

m
. 2

If the filter is given and that one seeks for more
precise estimates, one can slightly improve the result
by taking α = 1/2ρ and still a bit further if θ = rπ
for some r (necessarily rational) for which one may
have cos(j 2π

m + kθ) + sin(j 2π
m + kθ) ≤ κ < 1 for all

integers k ≥ 0 and 0 ≤ j ≤ m. In this case one may
take α = 1

2ρκ and then check for the smallest R for

which 2η
Rα (cosϑ + sin ϑ, cosϑ − sin ϑ) ∈ Pm.

In the opposit direction, note that R = 27/2η
works for all m ≥ 3.

Let us now show how the estimate on R in Theo-
rem 2.2 results from this. We will take the notations
from [7]. Let q be the smallest integer so that all
complex poles of H are in Pq and let us write

H(z) =

N1
∑

j=1

c
(1)
j

z − λ
(1)
j

+

q
∑

i=2

Ni
∑

j=1

(

H
(i)
j (z) +

R
(i)
j

z − 1

)

where c
(1)
j ≥ 0 and λ

(1)
j ≥ 0, H

(2)
j =

c
(2)
j

z−λ
(2)

j

corre-

sponds to the other real poles and, for i ≥ 3

H
(i)
j =

η
(i)
j eiϑ

(i)

j

z − ρ
(i)
j eiθ

(i)

j

+
η
(i)
j e−iϑj(i)

z − ρ
(i)
j e−iθ

(i)

j

where ρ
(i)
j e−iθ

(i)
j ∈ Pi \

⋃

k ≤ iPk.

Now, each
c
(1)
j

z−λ
(1)

j

has a one dimensional one-

dimensional positive realization A
(1)
j , b

(1)
j , c

(1)
j .

According to [7, Proposition 5], if R
(2)
j ≥ |c(2)

j |,

H
(2)
j +

R
(2)
j

z−1 has a two-dimensional positive realiza-

tion A
(2)
j , b

(2)
j , c

(2)
j (the estimate is clear from the

end of the proof of that proposition in [7] and the

restriction Λ < 1 is irrelevant). According to the
improvement of [7, Proposition 7] given above, if

R
(i)
j ≥ 4η

(2)
j , then H

(i)
j +

R
(i)

j

z−1 has a i-dimensional

positive realization A
(i)
j , b

(i)
j , c

(i)
j . A positive realiza-

tion dimension N (defined in Theorem 2.2) of H is
then given by

b+ =
(

b
(1)
1 , . . . , b

(1)
N1

, b
(2)
1 , . . . , b

(2)
N2

, . . .

. . . , b
(q)
1 , . . . , b

(q)
Nq

)T
,

c+ =
(

c
(1)
1 , . . . , c

(1)
N1

, c
(2)
1 , . . . , c

(2)
N2

, . . .

. . . , c
(q)
1 , . . . , c

(q)
Nq

)T

and A+ is given in block-diagonal notation by

A+ = diag
(

A
(1)
1 , . . . , A

(1)
N1

, A
(2)
1 , . . . , A

(2)
N2

, . . .

. . . , A
(q)
1 , . . . , A

(q)
Nq

)T
,

A condition in the theorem is thus that R :=
∑

R
(i)
j

satisfies e.g. R ≥∑N2

j=1 |c
(2)
j |+27/2

∑q
i=3

∑Ni

j=1 η
(i)
j .

This bound may be improved slightly with the above
remark.

Note also that this realization has dimension N1+
2N2 + 3N3 · · · + qNq.
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