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A New Approach for Capacity Analysis of

Large Dimensional Multi-Antenna Channels

W. Hachent), O. Khorunzhiy, Ph. Loubaton, J. Najim and L. Pastur

Abstract

This paper adresses the behaviour of the mutual informafi@orrelated MIMO Rayleigh channels
when the numbers of transmit and receive antennas convergext at the same rate. Using a new
and simple approach based on Poincaré-Nash inequalityoareh integration by parts formula, it is
rigorously established that the mutual information cogesrto a Gaussian random variable whose mean
and variance are evaluated. These results confirm previalsagions based on the powerful but non
rigorous replica method. It is believed that the tools that ased in this paper are simple, robust, and

of interest for the communications engineering community.

Index Terms

Central Limit Theorem, Correlated MIMO Channels, Large &amn Matrix Theory, Mutual Infor-

mation, Poincaré-Nash Inequality.

. INTRODUCTION

It is widely known that high spectral efficiencies are attgirwhen multiple antennas are used at both

the transmitter and the receiver of a wireless communinatigstem. Indeed, due to the mobility and
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to the presence of a large number of reflected and scattegedl ghaths, the elements of thé x n
Multiple Input Multiple Output (MIMO) channel matrix withV antennas at the receiver’'s site and
antennas at the transmitter’s are often modeled as randaables. Assuming a random model for this
matrix, Telatar realized in the mid-nineties that Shansaapacity of such channels increases at the rate
of min(NV,n) for a fixed transmission power [1]. A result of the same nate be found in the work
of Foschini and Gans [2]. The authors of [1] and [2] assumed the elements of the channel matrix
G are centered, independent and identically distributed.fi.elements. In this context, a well known
result in Random Matrix Theory (RMT) [3] says that the eigaoe distribution of the Gram matrix
GG™* whereG* is the Hermitian adjoint ofc converges to a deterministic probability distributionras
goes to infinity andV/n converges to a constant> 0. Denote byI(p) = log det (%GG* + IN) the
capacity of channeG for a Signal to Noise Ratio at a receiver antenna equal/ta One consequence
of [3] is that the capacity per transmit antenh@)/n, being an integral of &g function with respect
to the empirical eigenvalue distribution 6§G*, converges to a constant. This fact already observed in
[1] sustains the assertion of the linear increase of capagih the number of antennas. In addition, this
convergence proves to be sufficiently fast. As a matter of e asymptotic results predicted by the
RMT remain relevant for systems with a moderate number céraras.

The next step was to apply this theory to channel models tidiide a correlation between paths (or
entries of G). One of the main purposes of this generalization is to bettelerstand the impact of
these correlations on Shannon’s mutual information. Letites in this context the contributions [4],
[5], [6], [7] and [8], all devoted to the study of the mutuafammation in the case where the elements
of channel’s matrix are centered and correlated randonmabis. In [9], a deterministic equivalent is
computed under broad conditions for the capacity based oe Bhannels modeled by non-centered
matrices with independent but not identically distributattidom variables. The link between matrices

with correlated entries and matrices with independentesaind a variance profile is studied in [10].

One of the most popular correlated channel models used ésetbapacity evaluations is the so-called
Kronecker modelG = WWW¥ whereW is a N x n matrix with Gaussian centered i.i.d. entries, ald
and¥ are N x N andn xn matrices that capture the path correlations at the recaivéat the transmitter
sides respectively [11], [12]. This model has been studie@buah et. al. in [5]. With some assumptions
on matrices® and ¥, these authors showed thatp)/n converges to a deterministic quantity defined
as the fixed point of an integral equation. Later on, Tulinoaét[8] obtained the limit off (p)/n for a

correlation model more general than the Kronecker modeth Blwese works rely on a result of Girko
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describing the eigenvalue distribution of the Gram matggaxiated with a matrix with independent but
non necessarily identically distributed entries, a closleh as we shall see in a moment.

In [7], Moustakas et. al. studied the mutual information tiee Kronecker model by using the so-called
replica method. They found an approximatitiip) of E [I(p)] accurate to the order/n in the largen
regime. Using this same method, they also showed that thanear of I (p) — V' (p) is of order one and
were able to derive this variance for large

Although the replica technique is powerful and has a widgeaof applications, the rigorous justification
of some of its parts remains to be done. In this paper, we p®pmew method to study the convergence
of EI(p) and the fluctuations of(p). Beside recovering the results in [7], we establish the @éhimit
Theorem (CLT) forl (p)—V (p). The practical interest of such a result is of importanceesthe CLT leads
to an evaluation of the outage probability, i.e. the prolitghthat 7(p) lies beneath a given threshold, by
means of the Gaussian approximation. Many other works haga Hevoted to CLT for random matrices.
Close to our present article are [13], [14], [15].

In this article, we also would like to advocate the methodduseestablish both the approximation of
I(p) in the largen regime and the CLT. Due to the Gaussian character of theesrafi Matrix G, two
simple ingredients are available. The first one is an Integreby parts formula[(36) that provides an
expression for the expectation of certain functionals oti€s&n vectors. This formula has been widely
used in RMT [16]-[18]. The second ingredient is PoincaesiNinequality [(17) that bounds the variance
of functionals of Gaussian vectors. Although well known J[10], its application to RMT is fairly
recent [18]. This inequality enables us to control the deseerate of the approximation errors such as
the orderl/n errorE [I(p)] — V(p). We believe that these tools which prove to be simple andstobu
might be of great interest for the communications engimgecommunity.

The paper is organized as follows. In Sectjign II, we intragdthe main notations; we also state the two
main results of the article. In Sectign]Ill, we recall getereatrix results and the two aforementioned
Gaussian tools. Sectidn ]IV is devoted to the proof of the firsler result, that is the approximation of
E[I(p)]. The CLT, also refered to as the second order result, is lestad in Sectior] V. Proof details

are in an appendix.

[I. NOTATIONS AND STATEMENT OF THE MAIN RESULTS
A. From a Kronecker model to a separable variance model.
Consider a MIMO system represented byax n matrix G wheren is the number of antennas at the

transmitter andV is the number of antennas at the receiver and whéfe) is a sequence of integers

15 December 2006 DRAFT
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such that

lim M

n—oo N

=c>0.

Assuming the transmitted signal is a Gaussian signal witbvargcance matrix equal tgln (and thus, a to-
tal power equal to one), Shannon’s mutual information of tfiannel i, (p) = log det (2GG* +1y),
wherep > 0 is the inverse of the additive white Gaussian noise variaiogach receive antenna. The
general problem we address in this paper concerns the leelmafithe mutual information for large values
of N andn in the case where the channel ma#ix assumed to be random, is described by the Kronecker
model G = YWW. In this model, ¥ and ¥ are respectivelyV x N andn x n deterministic matrices
and W is random with independent entries distributed acccorttntpe complex circular Gaussian law
with mean zero and variance o6&/(0,1).

It is well known that this model can be replaced by a simpleortecker model involving a matrix
with Gaussian independent (but not necessarily idenyichditributed) entries. Indeed, 18 = UD,%V*
(resp.® = UDZ2V*) be a Singular Value Decomposition (SVD) @ (resp.¥), whereD,, (resp.D,,)

is the diagonal matrix of eigenvalues @f¥* (resp.\fﬂfl*), thenZ,(p) writes:
_ P *
1(p) = logdet (2, Y} + Ty ),

whereY,, = D%an)ﬁ is a N x n matrix, D,, and f)n are respectivelyV x N andn x n diagonal

matrices, i.e.
D,, = diag (dE“’, 1<i< N) and D, = diag (CZE.”), 1<j< n) ,

andX,, = V*WU has i.i.d. entries with distributiod\/(0,1) sinceV andU are deterministic unitary
matrices. Since every individual entry &f,, has the foring.") = w/dl(.")cig.")X,-j, we call'Y,, a random

matrix with a separable variance profile.

B. Assumptions and Notations.

The centered random variablé — E[X] will be denoted by)%. Element(i, j) of a matrix A will be
either denotedA];; or A;;. Elementi of vectora will be denotedu; or [a];. Columnj of matrix A will
be denotedh;. The transpose, the Hermitian adjoint (conjugate trarspokA, and the matrix obtained
by conjugating its elements are denoted respectively A*, and A. The spectral norm of a matriA
will be denoted||A||. If A is squarefrA refers to its trace. Let = /—1, then the operator8/9z and

0 0

0/0% wherez = z+iy is a complex number are defined By = 1 (% -~ i%) andZ =1 <% + i%)

15 December 2006 DRAFT
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Wherea% and a% are the standard partial derivatives with respect @ndy.

Throughout the paper, notatidd will denote a generic constant whose main featureosto depend
on n. In particular, the value oK might change from a line to another as long as it never depends
uponn. ConstantX’ might depend ot € R™ and whenever needed, this dependence will be made more
explicit.
As usual notationv,, = O(f3,) is a flexible shortcut fota,,| < K3, and«,, = o(f,), for a,, = €,,6,
with €, — 0 asn goes to infinity.
In order to study a deterministic approximationigf p) and its fluctuations, the following mild assump-
tions are required over the two triangular arr{yié"), 1<i< N, n> 1) and (cig."), 1<j<n, n> 1>.
(A1) The real numberssign) and Jg.”) are nonnegative and the sequen(dé"’) and (Jé")) are

uniformly bounded, i.e. there exist constafits,, and dmax SUCh that
sup Dyl < dinax  and  sup [|Dy| < dinax.
n n

where||D,,|| and||D,,|| are the spectral norms @,, andD,,.

(A2) The normalized traces dd,, and D,, satisfy

1 1 ~
inf —tr (D,,) >0 and inf —tr (Dn) > 0.

n n n n
In the sequel, we shall frequently omit the subscripand the superscrigtn).

The resolvent associated withY, Y} is the N x N matrix H,(t) = (1Y, Y} +IN)_1. Of prime

importance is the random variablt) = 1trDH(t) and its expectation(t) = trD EH(t).

~n
We furthermore introduce the x n deterministic matrix defined by

R(t) = (I + ta(t)Dn> B )
— diag (fj(t), 1<j<n) where fj(t) = l—l—t;(t)d"
Q J

and the related quantit§(t) = LtrDR(¢). In a symmetric fashion, th& x N matrix R(t) is defined

T n

by

R(t) = (I+ta(t)D,) ",
1

= dlag (Tl(t), 1 < 7 < N) where Tz(t) = W

We finally introduce the solutions of a determinis?ick 2 system.

15 December 2006 DRAFT
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Proposition 1: For everyn, the system of equations i, 5)

(1)

§ = luD,(I+tD,)™"
5 = LuD,(I+tD,)"!

admits a unique solutioéén(t),gn(t)> satisfyingd, (t) > 0,4, (t) > 0. Moreover, there exist nonnegative

measureg:,, and ji,, over R* such that

[ p(dN) < [ [n(dX)
5 (®) _/R+ 1+ tA and (1) _/R+ 14+t @

where i, (R) = LtrD,, and i, (R*) = 1trD,,.

The proof is postponed to Appendix A.

With § andd properly defined, we introduce the followin§ x N andn x n diagonal matrices:
T=(I+tD)"' and T = (I+tD)".

Notice in particular that = %trDT andj = %trf)'f‘ by ({@). We finally introduce the following

quantities which are required to express the fluctuations, 0f):
T (t) = 5 trDETH(t)
o - 3)
ﬁn(t) = 1trD%T%(t)

T n

Proposition 2: Assume that Assumptiong1) and(A2) hold and denote by
o2 (t) = —log (1 — 4, () (t)), t>0 (4)

where~,(t) and¥,(t) are given by [(3). Then2(t) is well-defined, i.el — t2v,,(¢)7,(¢) > 0 for ¢ > 0.

Moreover there exist nonnegative real numbersand M; such that
0 <m? <info2(t) <supo(t) < M} <oco for t>0. (5)
n n

Moreover,o2(t) is upper-bounded uniformly in andt for ¢t € [0, o], i.e. SUp;<, M? < .

Proof of Propositioff]2 is postponed to Appenflix B.

Summary of the main notations.

In order to improve the readability of the paper, we gathethal notations in Tablg TIB. As expressed

there, there are three kinds of quantities:

1) Random quantities,

15 December 2006 DRAFT
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= Deterministic quantities
Random quantities

depending on the law oY Y™ via E | only depending on the variance structure Daand D

H=({YY +1)~"
3= luDH a = LtrD(EH) §=trD(I+tD)"! = LuDT
75 = (1+ tad;) ™!
R = (I + taD)™" T = (I+t6D)"!

a= %trﬁf{ = %trf)(l +taD)™t | 5= %trf)(l +t6D) "t = %trf)’i‘
ri = (1 4+ tad;) ™!
R=(I+taD)™" T=(1+tD)"!

¥ = %trTQDQ7 = %tr’i‘2]52

o?(t) = —log(1 — t*y(t)7(t))

TABLE |

SUMMARY OF THE MAIN NOTATIONS

2) Deterministic quantities depending on the lawYY * via the expectatiort with respect to the
entries ofY,
3) Deterministic quantities which only depend on the masiD and D, sometimes via and 4 (as
defined in Propositiof] 1) which are easily computable.
The main goal of the forthcoming computations will be to apimate elements of the first and second

kind by elements of the third kind.

C. Statement of the main results.

We now state the main results. Theorfm 1 describes the fidgtr @pproximation of the Shannon
capacityI,,(p) while Theoren{ describes its fluctuations when centeret reispect to its first order
approximation.

Theorem 1:Let X be aN x n matrix whose element;; are independent complex Gaussian variables
such that

E(X;) =E(X7) =0, E(X;)=1 1<i<N,1<j<n,

andY = D:XD: where the diagonal matrice® and D satisfy AssumptiongAl) and (A2). Let

15 December 2006 DRAFT
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In(p) = logdet (YY* +1Iy). Then, we have

BI(0)] = Vi) + 0 (1) ©)

asn — oo, Nn~1 — ¢ €]0, o[ where

Va(p) = log det (I + pén(p)f)n> + log det (I + pgn(p)Dn) — 1p0n(p)0n(p) -

and where(é,,(t), 0,,(t)) is the unique positive solution of the system

§ = LluDI+tD)!
5 LtrD(1 4 #6D,,)

Theorem 2:Assume that the setting of Theordin 1 holds andsfgp) = —log (1 — p*v,(p)Fn(p)) -
Then the random variable;, ! (p)(I.(p) — V.(p)) converges in distribution towards(0, 1) where

nw(p) = 2trD2T?2 T I+ poD)~!
Tn(p) = trDE T3 (p) and ~(p) (I+péD)

n(p) = LrD2T2(p) T(p) = (T+ psD)~!

I1l. M ATHEMATICAL TOOLS AND SOME USEFUL RESULTS

In this section, we present the tools we will use extensiadliyalong the paper. In Sectign IlItA, we
recall well known matrix results; in Sectidn 1-B, we prese@wo fundamental properties of Gaussian

models: The Integration by parts formula and PoincaréhNiasquality for Gaussian vectors. Section llI-

[ ]
C is devoted to a cornerstone approximation result whiclghbustates thaR andR. can be replaced by
T andT up to some well-quantified error. In Sectipn T1}-D, variowariance estimates and approximation

rules are stated.

A. General results

1) Some matrix inequalitiestet A andB be two N x N matrices with complex elements. Then

ltr (AB)| < /tr (AA*) /tr (BB¥) . (7)
AssumingA is Hermitian nonnegative, we have
tr (AB)| < [[B]| tr (A) , (8)

where||.|| is the spectral norm (see [21]).

15 December 2006 DRAFT
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2) The ResolventThe Resolvent matri¥l, (t) of matrix Y, Y}, is defined a1, (t) = (Y, Y} + IN)_I.
It is of constant use in this paper and we give here some ofripguties. The following identity, also
known as theResolvent identity
H(t) = Ty — %H(t)YY* ©)

follows from the mere definition aH. Furthermore, the spectral norm of the resolvent is redsilynded
by one:
IH@#)|| <1 for t>0. (10)

3) Bounded character of the mean of some empirical moméetyB,, ) ,cn = diag ([b&"), e b%")] )
n € N, be a sequence of deterministicx n diagonal matrices. Assum@1), and furthermore, that

sup,, || Br|| < co. Then for every integek, we have

1
—E
n

tr (%YBY*)k] <K. (11)

Let us sketch a proof. Expanding the left hand side[of (11)dgie

1 _
W Z bjl bj2 e bjkE [Y;'lﬁ Y;'zjl Ezjz}/;ajz e Y;'kjkY;'ljk .

1,0, i =1:N
Glseees Jjp=1n

A close look at the argument of tiie operator implies that due to the independence oftfhewe only
havek + 1 degrees of freedom in the choice of the indiéggsand j,. As all moments of the Gaussian

law exist and moreovelfB,, |, |D,]||, and||D,|| are bounded, this sum is of ordersn — cc.

4) Differentiation formulas:Let A be aN x N complex matrix and leQ(A) = (Iy + A)~'. Let
dA be a perturbation oAA. Then

Q(A+6A)=Q(A) - Q(A) A Q(A) +o([|6A]), (12)

whereo (][0 A||) is negligible with respect tdd A || in a neighborhood df. Writing H(t) = [Hpq(t)];\f(ﬁl,

we need the expression of the partial derivatvé,,/0Y;;. Using (12), we have:

0Hp, t oYY"™ 3 N
oY, n |: ay*” :|pq n |: |:5( Z) é]] k=1 :|pq
t . L *
— _ﬁsz‘ [Y*H];, = _ﬁHpi[yJ‘H]q ’ ~

whered is the Kronecker function. Similarly, we can establish

OH,p, t t
aﬁ = _E [HY]pj Hiq = _E[HYj]pHiq . (14)

15 December 2006 DRAFT
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The differential ofg(A) = log det(A) is given byg(A + 6A) = g(A) + tr (A~ §A) + o (||[6A])) .

We use this equation to derive the expressiodbft)/dY;; also needed below:

0 t IYY™ t ) N t t
v Etr <H oV > = Etr (H [5(5 —])ij] k,é:l) = [HY],; = - [Hyj]z‘ ) (15)
B. Gaussian tools
1) An Integration by parts formula for Gaussian functionalset & = [¢1,...,&y]7 be a complex

Gaussian random vector whose law is determine®g] = 0, E[£¢7] = 0, andE[¢€*] = E. Let T =

(&1, 60,61, -+, &) be aCt complex function polynomially bounded together with itsidatives,
then: u
or
BeNE) = 3 (S B | T2 9)
m=1 m

This formula relies on an integration by parts and thus isrretl to as the Integration by parts formula
for Gaussian vectors. It is widely used in Mathematical Risy22] and has been used in Random Matrix

Theory in [16], [17].

2) Poincag-Nash inequality:Let & andT' be as previously and 167" = [0T'/0z1,...,0T /0z] "
and VI = [0I'/07,...,01'/0z3;]T . Then the following inequality holds true:

var ([(€)) < E|V.I(¢)" & V.I(€)| +E[(V:I(€)" E V=L(¢)] - (17)

This inequality is well-known (see e.g. [19], [20]) and hastfbeen applied to Random Matrix Theory
in [18].
When ¢ is the vector of the stacked columns of matix i.e. £ = [Yi1,...,Yn,]T, formula (IB)

becomes:
~ 8F(Y)]
EY;;I'(Y)| = d;d,;E —| 18
VoY) = d | a®)
while inequality [IJ7) writes:
N n 2 2
- or(yY) or(yY)
var (I'(Y)) < E E d;d;E ' +‘ — (19)
i=1 j=1 a}/;vj aY;'J

Poincaré-Nash inequality turns out to be extremely usefdeal with variances of various quantities
of interest related with random matrices. For the readas/enience, we provide a proof in Appendix

and in order to give right away the flavour of such results,state and prove the following:

15 December 2006 DRAFT
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Proposition 3: Assume that the setting of Theoreiln 1 holds andAgt be aN x N real diagonal

matrix which spectral norm is uniformly boundedsin Then

var (%trAH) =0 (n_z) .
Proof: We apply inequality[(19) to the functioR(Y) = %trAH. Using (IB8), we have

N

8HPP _ *

aY,j

Therefore, denoting byl the upper boundi = sup, [|A,|| and noticing tha{oI'/dY; ;| = |0T /dY; |,

we have:
2t2 N n
var[(Y) < > did; E( [ysHAH] ‘
i=1 j=1
22 .
= d,E (y;HAHDHAHYy)
7j=1
22 YDY*
= SEtr (HAHDHAH )
n n

—
=

a) 2 YDY* ) 2A4%dpat? YDY*\ © K

< ZSEJ [H[YAPID] tr g 2l g 9 K
n3 n n3 n n?

where inequality(a) follows from (@), (b) follows from (1) and from the bounded character||df,, ||

and||D,||, and(c) follows from (I11). [

C. Approximation rules

The following theorem is crucial in order to prove Theordihanti[2. Roughly speaking it allows to
replace matriceR andR by T andT up to a well-quantified small error.
Theorem 3:Let (A,) and (B,,) be two sequences of respectively x N and n x n diagonal

deterministic matrices whose spectral norm are unifornadyriged inn, then the following hold true:

loar = loar+o <i2> , (20)
n n n
LuBR = luBT+o0 <i2> : (21)
n n n
Proof of Theoren{]3 is postponed to Appenfix D.

D. More variance estimates and more approximations rules

We collect here a few results which proofs rely on the Intégnaby parts formula[(18), on Poincaré-

Nash inequality, and on Theorefh 3. The proofs of these msalthough systematic, are somewhat

15 December 2006 DRAFT
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lengthy and are therefore postponed to the Appendix. Thesdts will be used extensively in Section

M

Proposition 4: In the setting of Theoreifj 1, lét,, andB,, be uniformly bounded real diagonal matrices
of size N x N andn x n. Consider the following functions:

1 YBY* 1 YBY*
O(Y) = —tr (AH > . U(Y) = —tr (AHDH > .
n n

n n

Then,

1) The following inequalities hold true:
var (®(Y)) = O(n™?), var (U(Y)) = O(n™?) .

2) The following approximations hold true:

E[®(Y) — %tr (BTB) %tr (ADT) + O (n"2) |, 22)
E[(Y) — ﬁ (%tr (DTB) tr (AD*T?) - Z—Ztr (B*T°B) r (ADT)> +0 (%(}3)

The variance inequalities are proved in Apper{dix E; the axipration rules, in Appendik|F.

IV. FIRST ORDERMOMENT APPROXIMATION: PROOF OFTHEOREM

This section is devoted to the proof of the following approation:
E[In(p)] = Vn(p) + 0O (n_l) ’ (24)
where
Va(p) = log det (I + pén(p)f)n> + log det (I + pSn(p)Dn) — 1p0n(p)0n(p) - (25)

This result already appears in [7] and is proved under gregeerality in [9]. The proof presented here

is new and relies on gaussian tools.

Outline of the proof

The proof is divided into three steps. We first make some mieéiry remarks. Notice that the mutual

information can be expressed &g) = [ tr (n"'H(t)YY™) dt. In particular,

E[I(p)] = /0 " <IE [H(t)YY*D dt . (26)

n

15 December 2006 DRAFT
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In order to study the asymptotic behaviour BfI(p)], it is thus enough to studyr (H(¢)XX-) for

n

n — —+oo up to an integration. The Resolvent identify (9) yields

G <H(t>YY*> - <ﬂ> .

n t

We are therefore led to the study Bfitr(H(¢))]. We now describe the three steps of the proof.

A. In the first part of the proof, we exparilH (¢) with the help of the Integration by parts formula
(L8). This derivations will bring to the fore the determtiisdiagonal matrixR,, and Poincaré-Nash
inequality will then allow us to obtain the following appimation:

EtrAH = trtAR+ O (n™') |
for every diagonal matrixA bounded in the spectral norm. Here are the main steps, gallier
an informal way. Differentiating the terf ([Hyj]p Y_m> we obtain:

B (Hy.], Vs) = 2 ] - 08 (L (DH) [Hy,], 7, )

from which we will extractE[H,,| later on. At this point, Poincaré-Nash inequality yieldsne

decorrelation up t@ (n~!) and we obtain:
1 — 1 — —
B | Lu(DH) (3y,), ¥ | ~ & | Lu(DE)| £ [[Hy,], ] = o2 11y, 7]
This approximation allows us to isoIaE([Hyj]p %):
(1+td;0)E ([Hy,), V) = o E[Hy] < E([Hy), V) = dpdisE [Hy,) |

Now summing overj and using the Resolvent identif§,, = 1 — & >°7_, E[Hy;] Y,; in the
previous equation yields:

1—-EH .
— P ~ ad,EH,,, thatis EH,,~r, .

All the technical details are provided in Section T\/-A.

B. The second step follows from the approximation r{il¢ (28)esl in Sectiof IM-IC, which immediatly
yields
EtrAH = trAT + O (n™') .

This in turn will imply that
Etr <H(t)Y: > = tr <I — EH) = tr <ﬂ> +en(t) L ns(0)3(t) + en(t).

t t
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where (a) follows from the fact thal — T = tdD(I + t0D)!

C. In the third step, we integrate the previous equality:

/Op Etr (H(t) Y:) dt = n/opa(t)S(t)dt + /Op en(t)dt.

We identify n [ 6(t)0(t)dt with V,,(p) as given by[(25), and check th§f e, (t)dt = O(n™1).

A. Development of (trAH(t)) and Approximation byrAR(t)
In order to studyE (trAH(t)), we first consider the diagonal entriés,,(¢) of H(¢). For each index
4, we have

E<[Hy3] ) ZE HPZYZJYEDJ) :

We now apply the Integration by parts formu@(lB) to the samdof the right hand side for function
I defined ad'(Y) = H,;Y,;. This yields:

- - ‘ -t -
E (HpiYiYpj) = didE [Hz] 6(i — p) — did;—E ([HYj]p H,-,-ij> : (27)

Therefore,

e ([Hy,], %) = dyd B ] — 13 ( Lus(DH) [Hy,], ¥y ) 29)

from which we sahh extradE[H,,] later on. Recall at this point thatr (n~'trDH(t)) = O (n™?)
by Proposition[]3. Recall also the following notations:= n~'tr(DH), a = E[4], and% =3 - a.
Plugging the relatiord = « +% into (28), we get

E |[Hy;], V5| = dyd;ElH,,)] — td;aF |[Hy;], V5] — tdE [ﬁ Hy;],Y, ] . (29)
Solving this equation w.r.f€ [[Hy;],Y, ;] provides:
E [Hy;]pYp,;] = dp d;7 ;B[ Hpp) —td;F; [% [Hyj]pﬁj] where 7;(t) = % for1<j<n.
1+ tOé(t)dj
(30)
Summing [3P) ovey yields:
e L I @)
n pp n
pp

~ 1 .
whereR is the diagonal matrixiag (7;(t)) = (I +atD) anda = 1trDR. In order to obtain an
expression foif[H,,|, we plug the identity[(31) into the Resolvent identity:

] |
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and obtain:

E[Hyp) = rp +t*r,E | (32)

o [H YDRY ]
n

pp
with r,(t) = (1 + tddp)_l . Let A be aN x N diagonal matrix with bounded spectral norm. Multiplying
(B2) by A’s components and summing overyields:

Etr(AH) = tr(AR) + nt’E [ﬁ @(Y)} :

whered(Y) = %tr(ARH@). As s zero—mean]E[fi P = E[B c:%]. In particular, Cauchy-Schwarz
inequality yields:

E3®| < \Avar(B)y/var(®).

Recall thatvar(3) = O (n~2) by Prop[B. Sinc¢R,, || and||D,,R.,|| are both bounded by Assumption
(A1) and by the definitions oR,, and R,,, one can directly apply the result of Propositign 4dtan
order to getvar(®) = O (n™2).

We have therefore proved the following:

Proposition 5: In the setting of Theorerf] 1, leA be a uniformly bounded diagon& x N matrix.
Then for everyt € RT,
E(trAH(t)) = trtAR(t) + O (n™1) . (33)

B. The Deterministic Approximatidi'(¢).

Propositior] b provides a deterministic equivalentt@ir AH) since matrixR. is deterministic; however
its elements still depend af = n~'tr(DR), which itself depends on = E (n~'trDH), an unknown
parameter. The next step is therefore to apply Thedjem 3 peoapnate matrixR by T, which only
depends oD andD and and ons and 4, the solutions of[{1). Theoreff 3 together with Equation (33)
imply that:

E(trAH) = tr(AT) + O (') . (34)

SinceT only depends o@ ands, (B4) provides a deterministic equivalent®ftr AH) in terms ofs and
5. Note that takingA = D yields in particulare = § + O(n~2) while a direct application of Theorem
B for A =D vyieldsa =6 + O(n2).
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We are now in a position to describe the behaviouEeof (H(t)XX") by using the Resolvent identity.
From (9) and[(34), taking\ = I, we immediately obtain:

YY*) = %tr I-T@)+0((n") .

Etr <H(t)
AsI—T(t) = (T(t)~' —I)T(t) = t6(t)DT(t), we eventually get that

B |or (1) ¥

n
where the erroe,(t) is aO(n~1) term.

n

)} = nd(t)d(t) + en(t), (35)

C. Recovering the Deterministic Approximatidip) of E[(p)].
As mentionned previously;,(t) is aO(n™1!) term, i.e.|e,(t)] < K;n~!. One can easily keep track
of K; in the derivations that lead t¢ (35) and prove ttigtis bounded on the compact intenjal p).
In particular, |e,,(t)| < Kn~! on the compact intervdD, p] for someK > 0. The proof of this fact is
omitted.
As &, (t) is uniformly bounded on0, p], we have| [/ e, (t)dt| = O(n™"). Therefore,
E[I(p)] = /p né(t)o(t) + O (n7t) .

0
Consider now

Vo) =W (p.0(0).6(p))
where functioni¥ (p, 8,4) is defined by
1% <p, 0, 5) = log det <I + p5f)> + log det <I + p5D> — npds .

One can easily check that:
8W o g g —1 = aW _ = -1
=P <tr (D(I + poD) ) - n5) and  “o=p (tr (D(I + poD) ) - n5> .
As the pair(6(p),d(p)) satisfies [[1), the above partial derivatives evaluated attgp, 5(p),d(p)) are

zero. Therefore,

W (aW — n3(0)5(p) (36)

o\ Op ><p,é<p>75<p>>
which in turn implies [(6). Theoreri 1 is proved.

Remark 1 (On the deterministic approximati@): The deterministic approximatidli can be used to

approximate functionals of the eigenvalue6Y * other that the mutual informatidng det(pn =YY *+
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I) (see for instance [9]). This relies on a specific represemtatf T: The spectral theorem for Hermitian

matrices yields the integral representation:

1 * N,
Etan(Z) = / (dY) ze C\R_,
0

1+ Az’
where N,, represents the empirical distribution of the eigenvalde¥ ¥ *. It can be shown that~'tr'T

admits a similar representation:

1 [ w(dN)
EtrT"(Z)_/O T ze€ C\R_,

wherer is a probability measure. Finally, one can prove tfiat f (A) Ny, (dX)— [ f(A)mn(d)) converges

to zero almost surely for every continuous bounded functiae [9] for details).

V. SECOND ORDERANALYSIS: PROOF OFTHEOREMP

This section is devoted to the proof of the Central Limit Tiezo:

o (p) (In(p) — Vi(p)) —=— N(0, 1),

n—oo

where £ stands for the convergence in distribution.

Outline of the proof

Denote by, (u, p) = E [elul»()=V=(e))] the characteristic function of,(p) — V,,(p). The proof is
based on the fact that in order to establish the converganceigtribution) of o, *(p) (I(p) — V(p))

towardsN (0, 1), it is sufficient to prove that:

hn(u) = Yn(u,p) — e 02 —— 0, VueR.

In fact, recall by Propositiof] 2 that the sequenge,(p) belongs to a compact interval, sinceo,(p)
is bounded away from zero. If noiy, (u) — 0 for everyu, it converges uniformly to zero on the compact
set/C, due to the continuity oh,,. Therefore,
In(p) =V, 2
h,, <L> = Eexp (mM) _emw/2 0,
on(p) on(p)
which proves the CLT. The proof of the convergence:pfu) towards zero is divided into two steps.
A. We first differentiatey, (u,t) with respect tot in order to obtain a differential equation of the
form:
Oy (u,t) u?

ot 777n (t)¢n (’L% t) + en (’LL, t) . (37)
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In order to obtain the differential equatiop {37), we firstvelep 9v)/dt with the help of the
Integration by parts formula[ (18). We then use PoincaréiNimequality to prove that relevant
variances are of ord&?(n~?2). This will enable us to decorrelate various expectatiapsto express
them as products of expectations up to negligible terms. Nsd then use the approximation rules

stated in Propositiof] 4 in Secti¢n T}D to deal with the abeal expectations.

B. The second step is devoted to identify the variance, th&b prove the identity
p 2
[ mtey it = o3,

whereo? is given by ), i.eo?(p) = —log(1 — p*v(p)¥(p)).

C. The third step is devoted to the integration|of (37). ladtef directly integrating[(37), we introduce
Ko (u, p) = ¥ (u, p)e’s7%#) which satisfies the following differential equation:

Taking into account the obvious facts that(u, 0) = 1, 02(0) = 0 and therefore thak’, (u,0) = 1,

we shall obtain that

’ 2
Knlwp) =1+ [ en(u =0 dr.
0
and prove thatf?’ =, (u, t)e s (®) dt = O(n1). This will yield in turn that:
Un(u,p) = (1+0(n™) k) W 2o (p) + oMY .

where (a) follows from Propositior{]2.

The theorem will then be proved.

A. The differential equatiod;),, = —%znnwn +en

Recall thatiy, (u, p) = pn(u, p)e V() wherep(u,t) = E (/®)). As V/(t) = nd(t)o(t) by [B8),

we obtain:

(9 ’I,L,t —iu a U,t . N
% —e Vﬁ)% — fund(t)5 () (u, t) . (39)
SinceI’(t) = n~1rH(t)YY* by (£8), we have:
a(p(uvt) e YY* iul(t)| _ iu al g N iul
S = E [tr <H(t)T> 0| = = lelﬂz i Hy Vet | (40)
pi=1j=
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Applying the Integration by parts formul@ {18) B[Y;; H,;Y,,e™!| (which can be writterE (Y;;I'(Y))
for T(Y) = H,;Y,e*) and using the differentiation formulag[14) arfd](15) yseld

_ ~ a .
E }/inpiY;)jelul] = dld]E [8? (Hpi}/pjelul):| ,
v

= - %didjE [[HYj]pHiiﬁjeiul] +d;d;5(i — p)E [Hpiei“I]

iut

+ R ddE | HyY; [Hy,] ] (41)

n
We now sum over index and obtain:
E [[Hyj]py_meiuf} — — tC’Z]E |:/8 [Hy]]py_meiu-[} _|_ dpd]E [preiuf]

iut ~ T iu

+ —d;E |[HDHy,] V'] .

where 3 = n~'trDH. Writing 3 = E3+ a yields:
(1 + tad;)E “Hyj]pmeiul} = — td;E {5 [Hy,] %gul] + dyd;E [preiul]
iut -~ > iu
+ ~-d;E | [HDHy,] V| . (42)
We now take into account thaf(t) = (1 + tad;)~" and sum ovey:
E|[HYY],, "] = —E [5 [HYDRY*| o/ } + néd,E | Hype' |
pp

iut

+ —EHHDHY]S?{Y*} eiuf} : (43)
n pp

By the Resolvent identity[9)E [H,pe™!] = E [¢"/] — LE [[HYY*]pp ei“I]. Replace now in[(43),

recall thatr,(t) = (1 + t@(t)d,) " and sum ovep to obtain:

E [tr <HYTY*> ei“I] = tr(DR)GE [eiul}

bt | St (RHDHE> ei“I]
n n
o YDRY*) ,
—tE|Btr (RH7R> emI]
n
A
= X1tX2tXx3- (44)
Thanks to Theorerfi 3,
vi = tr(DR)GE || = tr(DT)GE "] +O(m™") = nddE || +0(n™"). (45)
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In order to deal withy,, we apply the results of Propositi¢h 4 relatedit¢Y) in the particular case
where A = R and B = DR. In this case,ys Writes yo = iutE (\I/(Y)ei“I), and Cauchy-Schwarz
inequality yields:

T(Y)| | =0(®r™) .

(E (wei!) — & () E(m)‘ - 'E[ei“I \i]' <.|E

Therefore,
E (xyeiuf) —E (ei“1> E(¥)+OnY) .

We now use the approximation f@W¥(Y) given in Propositior{]4. By Theorefh 3, we can repldte

(resp.f{ by T (resp.’f‘) in the obtained expression. We therefore obtain:

E((Y)e) = EO(Y)E[e]+0(n)
_ 1 -1 2m3y _ oL (s L 2 iul ~1
= T2 <fyntr (D*T?) ty—tr (D T ) ~tr (DT?) | E [e } + O (n~")46)
The termys can be handled similarly: We apply the results of Propasiflorelated to®(Y) in the
particular case wherd = R and B = DR. In this case,s writes xo = —tnE (B(I)(Y)e“”) , and

Cauchy-Schwarz inequality yields:

E <Ec1>ei“1> _E <Eei“1> E(@)' - ‘E[Eﬁ eiul é]‘ < \/IE [51 \/IE [%1 —0(n?) .

We therefore obtain

E létr (RH%) ei“I] = E [ ei“ﬂ tr (D*TR) %tr (DTR) + O (n™")

—

a

@ E[Beﬂ 5t (DT?) + 0 (n)) | (47)

=

where (a) follows from Theoren(]3. It remains to deal with the tefin 3 ¢*/|. To this end, we shall

rely on (48) and develop the terfa[H,,e™/]. The Resolvent identity yields:
* iwl] _ 1 iul n iul
E [[HYY J,p €™ ] = E [em } —<E [pre‘“ ] .

Plugging this equality into[(43) and using = (1 + tddp)‘l, we obtain after some computations

o . o, 1 Y]SNY*
E [ﬁ emf} = t’E [[3 el Zr (RDH7R>]
n n
s 42 NV
_ e Ftr <RDHDHm> vl |+ Ly @R -EH)E [e"ﬂ}
n n n n
@ o o [% qur| 1 iut? 1 33 2l (=3m3 -
Y 25K = (Aot (DPTS) — 42— tr (DT 8
” [ﬂe } n (1 — t2y7) ’an( ) Vnr< > )
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where (a) follows from Theoren]3, Propositidj 4 and Propositipn 5. \Weréfore obtain:
© ] 1 iut? -1 33\ 21, (533 1
E[ﬂe } (11— 297)? ’Yntr(D %)~ ty ntr(D T ) p+0 n2)
Plugging {4B) into [(47), and the result together wifh] (45§ #48) into (44), and getting back t {40)
and [3p), we obtain:

O (u, t -
O0nD) (1) + O )
where
(1) = 1 t%%tr <D3T3) %tr (DT2) - lt (D2T3) . t312%tr (D3T3) %tr (DT2)
m(t) =125 1— 2775 Tt 1— 275
(49)
Equation [3]7) is established, and the first step of the pabimpleted.
B. Identification of the variance
In order to finish the proof, it remains to prove that:
2
molt) = 37720 where o2(1) =~ log (1~ 17 ()3 (1) (50)
To this end, we first begin by computing the derivativesypft) and4,(t). We shall prove that
i %tr (f)S’iv‘g) %tr (DT2) and dy 2%tr (D3T3) %tr (f)’iv‘2) (51)
dt 1 — 1297 at 1— 1294 '

We only derive%, the computations being similar in the other case. We firpag the expression of

4, and obtain:

n n 2
— == T = — — | —— | =—-2—(t —tr (D°T") . 52
dt n st d; dt 77 n st d; dt \ 1+ t5(t)d; dt (ta(t)) ntr < > (52)

Let us now compute’(¢):

N !
) — I G S RO T
§(t) = ;d’<1+t5(t)di> = —0(t) — o' (t) . (53)

Sl

A similar computation yield$§’(t) = —44(t) — 4td'(t). Combining both equations yields:

5y 38—
1— 29y
We now plug this into[(52) and obtain:
5 b (D) (5 0d)
L= ) 54
dt 1 —t2v%y 4
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Recall now that the mere definition @, T, § and 4 yields

t6DT =1—T
. (55)
téDT=1-T
Using (5%), we obtain:
nltr (DT?) = n'tr <DT (I - tSDT)) =5 toy , (56)
n~ttr <I~)’T‘2> = n lr <f)’i‘ (I — téf)T)) =56—t67 . (57)

It remains to plug[(86) in[(54) to conclude the proof pf](51).

We are now in position to prové¢ (50). The main idea in the feiteg computations is to expreds [49)
as a symmetric quantity with respect doand T on the one hand andl and T on the other hand. To
this end, we splity, (t) in ([#9) asna(t) = === (V) + 1 +n®). We first work onp®:

o @ P97 (DUTY) 4155t (DT)

—

1 — 2y 1 — 295
ke (0T b (D)
® . - + 35— tr (D’T?) .
1 —toyy n

where (a) follows from (&8), and(b) from (E7). We now look ay(®:
0 4 2562t (DTP) = 15 (ltr <D2T3 +1ln <D2T2 (tSDT))>> = th7
n n n

where the last equality followg (b5) again. We thereforeehav

1 t2yler (f)S’iv‘g) ~tr (DT?)  *j=tr (DPT?) +tr <f)T2)
t) = - - by
nn( ) 1— tZ,Y:Y 1— tz"y:y 1-— t2fyf~y o ’

@ 18397 + 295 + 2tv7
2 1 — 297

1d
= ———log(1—t*j

5T og ( )

where (a) follows from (51). This concludes the identification of thariance.

C. Integration of the differential equatio87)

Let us introducek,, (u, p) = wn(u,p)e%ai(p). Due to (3}),K,(u, p) readily satisfies the following

differential equation:
0K, (u,t)

Er = en(u, t)e%"i(t) . (58)
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As in Section[IV-C, one can easily prove tHaj,(t)| < £ for everyt € [0, p]. As K,(u,0) = 1, we get
p u? 2
Ky(u,p) =1 +/ en(u, t)e M gt .
0

Due to Propositiorf]4¢2(t) is bounded from above uniformly in andt € [0, p]. This fact, together

with |e,(t)] < £ implies that:

Kofup) =140 (1)
n
This in turn yields
Up(u,p) = (140 (n_l)) =5 0)

2

= TP L oMY,

where the last equality follows from the fact tha}(p) is uniformly bounded by. by Proposition[]2.

APPENDIX
A. Proof of Propositior{]1

Let us first establish the existence and uniqueness of thai@olof (). To this end, we plug the
expression ob in (@). The system of two equations reduces to the singletegua = f(¢,5) where
f(t,0) is defined by

£(t,6) = %tr <D (1 + t%tr <f) (I + téf))_1> D) _1> (59)

which is itself equivalent tg(d,¢) = 1 where

g(t,8) = @ - %tr (D <51 + t%tr <5f) (I + téf))_l> D>_1> :

The functiond — g¢(¢,6) is continuous, decreasing and satisfigs,0) = +oo and g(t, +o00) = 0.

Therefore, the equation(t,d) = 1 has a unique solutiofi(t) > 0.

The integral representatiofi (2) 6fands is related to the Stieltjes representation of a class ofyéinal
functions. One can indeed prove that functions 4(t) andt — §(t) defined onR*™*, extend toC\ R_,
are analytic over this set and satisfy the systfm (1) foryever C \ R_. Relying on specific properties

of 4(z) and4(z), we can prove that the following integral representatioft$io

(N e
0(2) —/0 T and  4(2) —/0 T (60)

where ;. and i are nonnegative measures uniquely definedRon satisfying u(R*) = %tr(D) and

a(RT) = %tr(f)). We refer to [9] where a more general result is proven and gilepdetails.
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B. Proof of Propositior{]2
In order to prove Propositiof} 2, it is sufficient to first prawat 1 — t247 is bounded away from zero
and then to prove that the same quantity is strictly lowenthauniformly inn. We shall proceed into

four steps.

1) A priori estimates fow, 4, v and4: The mere definition of andJ yields:

N n 5
1 ) N max I 1 j 1
F==>" d < 4 and §==>" 4 < diay - (61)
N 1+1td;d n neD 1+ td;o
Using these upper estimates, one gets the following lowimates:
lirD ~ gD
0>—"—— and §> - = . (62)
1+ tdmaxdmax 1+ tﬁdmaxdmax

One can notice that due to Assumpti@l), these lower bound are eventually bounded away from zero.

Finally a straightforward application of Jensen’s inegyafields:

2
9 1Y N~y . n o o .
i=1

2) An estimate ove;l#‘f: The following equalities are straightforward (see for amste [53)):
8'(t) = —vo(t) —~td'(t) and 0'(t) = —30(t) — At (t) . (64)

In particular, |§(0)| = 7(0)6(0) < Nn~'d?, dmax Which is eventually bounded. Recall thatadmits

the following representation:

- * fi(d))
i) =
*) o 14+t\
where i is a nonnegative mesure satisfyipgR*) = %tr D. In particular, one obtains:
.  Aa(dN) < 15
0< =) = S < 5(0) € NnTld?, dimax - 65
<=5 = [ FESE < T < Nald, (65)

3) The quantityl — t2~7 is bounded away from zero, uniformly inand fort < [0, p]: Eliminating
&' between the two equations ip[64) yields:
dg 2~ o~ _ 5/ IS _ 5/ 2
E(l t*vy) = A(toy—9) = EtrDT (téDT I) = EtrDT ,
where the last equality follows from the identi = (I + t6D)~' which yields (t6DT — I) = —T.

Otherwise stated:
AtrDT?2

n(=d'(1))

1—t?~yy =
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This immediatly implies thal — ¢t2~7 is positive. In order to check that it is bounded away fromozer
uniformly in n, notice first thatn~'trDT? > d_!

1.y- Collecting now the previous estimatds](63) and
(63), we obtain:

|2 %57
N2 Ea m

max-"max

Using (62) and AssumptiofA1), we obtain thatl — t2474 is bounded away from zero, uniformly im

and fort € [0, p].

4) The quantityl — t?~7 is strictly bounded above from 1, uniformly im The inequalities[(§3)
together with [6R) yield:
_2,5) < 2T o5
Slyllp(l tyy) < Slrllp(l t N55> < 1.

This completes the proof of Propositifh 2.

C. Proof of Poincae-Nash inequality

The proof is borrowed from [18]. Recall thgt= [&1, ..., &7 is a complex Gaussian random vector

which law is determined by
E¢]=0. E[¢']=0 and E[(€'] =E.

Let ' = I'(&,- -+, €, &1, - ,€0) be aCt complex function polynomially bounded together with its

derivatives. We shall prove here Poincaré-Nash inequalit
var (D(€)) < E|V.I'(€)" & V.T(€)| +E[(V=T(€))" E VI(€)] .

whereV.I' = [01'/0z1,...,00' /0zy]" and VI = [0T /97, ..., 0T /0zar)T .

Let y andz be twoC?*M-valued jointly Gaussian vectors (which parameters willspecified below).
Consider the Gaussian vecteft) = v/ty + /1 — tz and letY : C2» — C be a given smooth function
YT =7Y(z,...,2M,21,---,2201)- Then

d

1
EY (y) — EY (z) = /O ZEY(x(t)) dt .

Let V.Y = [0Y/0z,...,07 /0200 and V=Y = [0Y /07, ..., 07 /0zz1)T. Then

d Z z

3 y r y *
CET(x(1) =E [(2—\@ - ﬁ) VLT (x() + (2—\/% - ﬁ) -VgT(X(t))] . (66)
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At this point, assume that = [u”,u”]” andz = [v’,w’]” whereu, v andw are independent -
valued Gaussian vectors having the same lav¢.alsloreover, putY (x(t)) = I'(x1(¢))I'(x2(t)) where

x(t) is partitioned asc(t) = [xI (¢),x2 (¢)]¥. Then
varT(u)) = ET (y) — ET (2)

which leads us to consider the right hand side of Equafiofy. (B6e first term there (call ik;) writes

y z_\"
a = E[(m—z ) vzr<x<t>>]

TGe®) u”V.I(xa () + T(xa (1) u! VTG (0) |

1
—FE
2/t

. 11_ E TG vV.I(x1 (1) + Tt (1) W V-Txa(0)] - (67)

Let us process the terf [F(xz(t)) u’'v,I'(x; (t))] ~Writingu = [Uy,...,Uy|T andx;(t) = [ X1, ..., Xim]?
for i = 1,2, we have by the Integration by Parts Formula] (16)

o [T 6,200~ Y (a,e L (Tram )]

8X17p me1 aUm 8X1,p
M -

— OT(x1(t)) O (x2(t)) =——< O’T'(x1(t))

= Vi) [ElpmE [ ow eI o oo

m=1 ’ T P ,m

where we usea; (t) = vtu++/1 — tv andxs(t) = vVtu+ /1 — tw in the second equality. By treating
similarly the other terms of the right hand side f]|(67) arkirtg the sum, the terms with the second

order derivative$)? /0X; ,0X; ., disappear and we end up with

X1 = 3B (V-0 ()T & VaTGe) + (V=D((0))" & Vra (0) (©8)

where we used the identiyf /02 = 0 f /0% which proof is straightforward.

By using twice the Cauchy-Schwarz inequality we obtain:

E|V.D(x: ()" = vzr(X2(t))( < E [(sz(xl(t))T = VZI‘(xl(t))> :

(VT = TrGam)’|

D=

< {E[V.rea()” 2 V@) }

{E[V.T(xe()” 2 VToe0)] } -
The second term of the right hand side pf|(68) can be boundedsimilar manner. Noticing that; (¢)

andx,(t) have the same law as, which does not depend anit results that

bl < 3B [V.r(w)" & VoT(w)] + gE[(V=T(w)" & V=T(u)]
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The second term of the right hand side of Equation (66) isteceaimilarly, which leads to the desired

result.

D. Proof of Theorenh]3

We first give a sketch of the proof to emphasize the main ideasthbe technical aspects of the proof.
1) We first prove that the asymptotic behaviour of!tr (A (R — T)) is directly related to the
behaviour ofa(t) — 4(t). Similarly, n~*trA (f{ - ’f‘) is related tod(t) — 6(t).

2) We extend the definition af from ¢ € R™ to 2 € C\ R_ and establish an integral representation:

alt) = / v(d\)

R L+ AL

As a consequence of the integral representations’far and o, we prove thats, 6 and « are
bounded analytic functions on every compact subset 9fR _.
3) As a consequence of this detour in the complex plane, weepitee following weaker result. For
every uniformly bounded diagonal matriX, the following holds true:
n~ltr(AR) =n"ltr(AT) + o(1)
{ n~'tr(AR) =n"'tr(AT)+o(1)
4) We then refine the previous result in order the get the snagte of convergeno®(n—?2) instead
of o(1).
The theorem will then be proved.
1) The asymptotic behaviour af 'tr (A (R — T)) and its relation witha(t) — 6(¢): The standard
matrix identity

R-T=R(T!'-RHT
immediatly yields
Rl (AR -T)) = t(5(t) - d(t))%tr (ARDT) and
n~ltr (ﬁ(T - ﬁ)) = 5(t) — alt) = talt) — 8(t)~tr (DRDT) .
Therefore,

nlir (AR —T)) = (a(t) - 5(1))~tr (DRDT) %tr (ARDT) . (69)

n
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2) An integral representation far, and bounds over, § andd: Recall thata(t) = E[n~'tr(D(I +

tn=1YY*)™1)]. This function readily extends from € Rt to 2 € C \ R~. Moreover, the following

[T w(dN)

representation holds true:

wherev is a uniquely defined positive measure Bri such thatv(R*) = %trD. To prove this, we
introduce the eigenvalue/eigenvector decomposition dfima~—'YY* = Zf\il Aig;ul where()\;, 1<
i < N)and(u;, 1 <i < N)represent its eigenvalues and eigenvectors respectiieyrandom variable

B(z) = LxD(I+ 2XX5)~! can be written as

T n

N
1 uDu; +oo
R ,
n Ai — 2 o 14Xz

wherew is the nonnegative random measure defined by

1 N
w = E;uiDuié(A—Ai) :

Consider now the measuredefined byr = E[w], that isv(B) = E|w(B)] for every Borel seB C R+,
It is clear thata(z) = E[3(z)] is given by [7D), and that(R™) = E[w(R™)] is given by

N
1 1
v(RT) =E [E ; u;Du; EtrD(ZZ: uiu;k)] .
As > uul =1 v(RT) = %trD as expected and representatipr (70) implies tf{a} is analytic over
C\R".

Let dis{w, R™) stand for the distance from elemente C to R*. Then the following holds true for

=E

everyz € C\R™:

1 1 1 N 1 1
<gD)——oon <y 71
lel2)] =< -t )\zy dis—L,R") ~ n "l dis—L R") (1)
Similarly, (60) yields that
Ndmax 1
0(2)] < (72)

n|z| diSt(—%,RJF) ’
A similar result holds fors,(z). These upper bounds imply in particular thatz), (=) andé(z) are

uniformly bounded on each compact subseCofR_.
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3) A weaker result as a consequence of Montel's theoréfa:first establish that for every diagonal
matrix A uniformly bounded,

. - (73)
n~ltr(AR) =n"'tr(AT)+ o(1)

{ n~ltr(AR) =n"ltr(AT) + o(1)
We take [6P) as a starting point. Matric®s R, T, and T have their spectral norms bounded by one
for t € R and matricesA, D, andD are also uniformly bounded by assumption. Therefore, thagde
n~ltr (f&fif)’f‘) andn~'tr (ARDT) are also bounded. In order to proye](73), it is sufficient tovpr
thata(t) — 6(t) = o(1). To this end, we make use of Propositign 5 and weif¢) — 5(¢) as

alt) ~ (1) = Lr (DR —T)) + & (t)
wheree, (t) = O(n=2) . Using relation [[§9) forA = D, we immediately get that:

at) — 6(t) = (alt) — 6(t))t2%tr (BRDT) %tr (DRDT) + &, (t) . (74)
As sup,, (IRl |Rall, I Ta ] | T} <1, we have:

max'max — max-"max

Lty (DRDT) ~tr (DRDT) < 0 2 < 2yl
n n n

as soon as%f < 2¢. Therefore, ift < tg := (2dmaxdmaX\/E)—1, then

1 (e~~~ 1 1
2_ J— p—
2=t <DRDT> —tr (DRDT) <
for n large enough. Eq[(}4) thus implies that
lon (t) — 8, (1) < 2len(t)|, de. alt)—6(1)=0m™2) for t<tg. (75)

This in particular implies thatv,(t) — 6,(t) = o(1) for ¢t < to; however, it remains to establish this
convergence for > t,. To this end, observe that,(z) — d,,(z) is analytic inC \ R_ and bounded on
each compact subset @f\ R_. Montel's theorem asserts that the sequence of functgiis) — d,(z)

is compact and therefore that there exists a convergingesjulesice which converges towards an analytic
function. Since this limiting function is zero i, ¢y[ by (7), it must be zero everywhere due to the
analycity. Therefore from every subsequence, one canadraubsequence that converges toward zero.
Necessarilyo, (z) — d,(z) converges to zero for every € C \ R~ and in particular fort > 0. This
establishes[(T3).

Even if the convergence rate of,(t) — 6,(t) is O(n~2) for t < to, Montel's theorem does not imply
that the convergence rate of,(z) — 6,(z) remainsO(n~2) elsewhere. Therefore, there remains some

work to be done in order to prove that,(t) — d,(t) = O(n~2) for eacht > 0.
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4) End of the proof:We take [74) as a starting point. Equatiopd (73) imply thatefacht > 0,

n~ltr (DR(H)DT(t) —v(t) = o(1) (76)
n~ltr (f)ft(t)f)’i‘(t)) A =o(1)

where~,, = n~'trD2T? and4, = n~'trD?T2. Thanks to Propositiofi 5[ (76) implies that

inf <1 - t%tr (DoRoy (D, To(t) %tr (f)nf{n(t)f)n'f‘n(t))> >0,

Equation [[7}) thus clearly implies tha{t) — é(¢) is of the same order of magnitude ag(t), i.e. that
a(t) — 6(t) = O(n~2). TheorenB is proved.

E. Proof of Propositior{]4f]) - Variance controls

Consider firstb(Y) = L1tr (AHYBY ). We use Poincaré-Nash inequalify](19) to control the vemda
n n q

of ®. It writes

(77)

—I-ZdeE

=1 j=1

E[ ] ZdeE

i=1 j=1

We haved(Y) = (1/n?) Zévrzl > =1 apbgHpYrqYpg. From the differentiation formuld (L3) we have

0

v (HprYrqVpq) = ——Hyily H}:YoqVog + HppYogd(r = i)0(q — j) -
iJ

Therefore, after a straightforward computation we obtdrydY;; = qﬁz(-jl») + ¢§?) with

t 1

¢ = —— [yyHYBY'AH], and ¢ = —b; [y;AH], .

The first term of the right hand side of inequalify](77) can feated as follows:
912
Sfurl] 5 S5 eler =)

i=1 j=1 i=1 j=1
— i—ﬁE [tr (HYBY*AHDHAYBY*HY]SY*)]

‘aYh?

+%E [tr (AHDHAYBZ]SY*)] . (78)
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Let A = sup ||A,|. Using inequalities[{7),[]8)[(10) and Cauchy-Schwarz iraity, we have

%621@ [‘Gr (H YBY* AHDHA YBY* H Y15Y*>]
\/tr ((HYBY*AHDHAYBY'H)’) \/tr <(YﬁY*)2>]
AP e (YBY)Y) ¢ t <(Y’5Y*>2>]

<[ ()]

K
n?

22
< Ik

22
~E
nﬁ

IN

IN

< ) (79)

where the last inequality is due tp [11). Turning to the selcemm of the right hand side of (78), we
have

2 ~ 2A%dax . [ 1 1 ~ K
) [tr (AHDHAYBQDY*)] < 20 fmaxp | 2 (ZYB2DY* ) | < = (80)
n4 n2 n n n2

The second term of the right hand side of Inequality (77)ésted similarly. This proves thatr(®) =
O(n=2).

Consider now?(Y) = Ltr (AHDHYEY"). The proof being quite similar to the previous one, we just
give its main steps. By[ (19) we haﬂm\%(Y)z] <3N S0y did; (B[|0W/0Y; ;%] + E[|0W/0Y; ;1))
A computation similar to above yield3V /0Y;; = ¢§;) + %(?) + ¢S’) where

vy = —% [yHDHYBY*AH]
ve = _% [y;HYBY*AHDH]
%(?) = %bj [Y;AHDHL‘
We have
iﬁ;didjﬂz '%2 < 3§;§;didj (E{wﬁ)ﬂ+E{w§f)ﬂ+lﬁl[¢§?ﬂ>
i1 = 7 P

32 ~
- =ZE [tr (HDH YBY* AHDHA YBY* HDH YDY*)]
n

g [tr (H YBY* A (HD)*HA YBY* H Y]SY*)]

i

+%E [tr (A (HD)? HA YB%SY*)} .
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The first two terms of the right hand side can be bounded byiassef inequalities similar to inequalities

(79). The third term can be bounded as[ir (80). This ends thefpof the variance controls in Proposition

/
4.

F. Proof of Propositior] 4B) - Approximation rules
Consider firstb(Y) = Ltr (AHYEY") we write &(Y) = (1/n2) Y0, S0 a,b/E [Yi; Hp, Y]
and apply the Integration by parts formu[a](18) to the sunumérsing identity [I4), we have

_ - 19 - b e
E [YijHpYp;| = didjE [—87 (sz‘Ym)} = —did;E [[Hyj]pHiinvj] +did;o(i — p)E [Hp] -
ij

By taking the sum over the index we obtainE [[Hyj]pﬁj] = —td;E [ﬁ [Hyj]pﬁy} + dpd,E [Hyyp).

Writing now 3 = % + « and then grouping together the terms V\IEl{ [Hyj]pﬁy}, we obtain:
E [[Hy]']pﬁj] = _tdjij [ﬁ [HYj]pKJ} + dpdjij [Hpp) -
We now sum ovelj andp, and obtain:

1 YBY* 1 /=y 1
E|—tr (AH )} — —tr (DRB) ~tr (AD E[H]) + <,

n n

with

o

n

5:_HE51U<AHXEEEXJ
n

_ 51U<AHEIEE§L>
n n

Applying Cauchy-Schwarz inequality, Propositigh 3 and #aeiance controls in Propositidi 4, we get
le| = O(n~2).

By Theorem[Bn'tr (f)f{B) = n~ltr (f)’f‘B) + O(n~2). By Theorem[3 and Propositidh 5, we
obtainn~!tr (AD E [H]) = n~'tr (ADT) + O(n~2). This ends the proof of (22).

Consider now?(Y) = Ltr (AHDHYEY") | In order to comput&¥(Y), we shall need the following

n

intermediate result:

Lemma 1:In the setting of Theoref 1, I&f(Y) = 2tr (DHDH). Then

1) The following estimate holds true:

2) moreover,
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Proof: In order to prove Lemm§ 1{(1), we use the Resolvent iderfijyahd write:
DHDH = DHD — tn 'DHDHYY" .
Sincevar(X +Y) < 2var(X) + 2var(Y’), we only need to deal with each term of the right handside.
By Proposition[B,var(n~'tr DHD) = O(n~2) and by Propositiofi] 4f(1)var(tn~2tr DHDHYY™) =

O(n~2%) and the proof of Lemm§ 1{(1) is completed.
Let us now prove Lemmp 1}(2). The Resolvent identfiy (9)dsel

E[[HDH]pp] = d,E [pr]—tIEHHDHY:*] ] ' (81)

We then writeE [[HDHYE]
pp

formula (1) to the summand. After derivations similar fd-§42), we obtain:

} = n Y S diHyw HyiYy;Y,,;, and apply the differentiation

1 - to 1
EIE[[HDHyj]]D}q,,j] - ——djrjE[[Hyj]pypjﬁtr(DHDH)}

3

——d;T;E [E [HDHYJ'],,%]

3

+=dyd;7jE [HDH],, | . (82)

S|

Taking the sum ovej and combining with[(§1) yields:

E [[HDH]M] = r,E ~¢r (DHDH)

YDRY*| 1
n
pp

o YDRY*
+t*r,E | B [HDH7] }
n
pp

+rpdpE [Hpp] (83)

Taking now the sum ovep, we obtain:

N
1 1
E [Etr (DHDH)} = p;dpE [[HDH]pp] = X1+ X2+ X3 (84)
where
1 YDRY*\ 1
x1i = tE|=tr (DRH7> “tr (DHDH)] )
n n n
o1 YﬁﬁY*
yo = £E [5 —tr (DRHDH7>] ,
n n
1 2
xs = —tr (D’RE H)) .
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Let us first deal with the termg, and y;. Cauchy-Schwarz inequality together with Proposiipn @ an
Proposition[4H{{L) yieldys = O(n~2). Proposition[b together with Theore 3 yield = v + O(n2).
We now look aty;. Due to Propositiori]41) and to Lemmfja[1-(1), we have:

YDRY* )

xi = t°E Ftr (DRH E [ltr (DHDH)] +0 (%) :
n n n

—

a

= 243K [ltr (DHDH)} +0 <i2> ,
n n

=

where (a) follows from (22) in Propositiori]4. It remains to plug the was obtained for;, x2 andys
into (84) to obtain:
(1—t*47)E [%tr (DHDH)} =y+0(n7?).

Recalling Propositiof] 2, we can divide §y — t>y5) and obtain the desired result. |
We can now go back to the computation B¥(Y). Let us give the main steps of the derivation.
ExpandingE¥ (Y) yields:

1 YBY* 1 L& —
E[;tr (AHDH — )}:ﬁ;;apbjE[[HDHyj]me].

We replace the summand 'E [[HDHyj]p%} by the expression given bf (82). We then replace the
termE [[HDH]pp] in (B3) by the expression given bl {83). We sum oyend j and notice afterwards

that the terms wheré is involved are of orde®(n~2). We therefore end up with:

E[ltr <AHDHYBY >] = —tEFtr(DHDH) Lir (AH
n n n n n

1 1 YDRY*
—tr (DHDH) —tr (ARDH7R>]
n n n

YDRBY* )

+gtr (ﬁf{B) E

1 e N1 1
+—tr (DRB) —tr (AD’REH) + O <P> .

We first decorrelate by using the variance estimates in Ritipo[4-(1) and Lemm 1[{(1) and obtain:

1 YBY* 1 1 YDRBY*
E[—tr (AHDH ﬂ - —tE[—tr(DHDH)}E[—tr (AHL>
n n n n n
+2 1 <I~)f{B) E [ltr (DHDH)} E|ltr (ARDHm>]
n n n n

1o (DRB) Lir (AD?REH) + 0 (%) .
n n n
It remains to apply Theoreif] 3, Propositifin 4 and Lenjinf] 1-¢2he terms in the right hand side of

the previous equality to conclude.
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