Distributions that are convolvable with generalized Poisson kernel of solvable extensions of homogeneous Lie groups

Abstract : In this paper, we characterize the class of distributions on an homogeneous Lie group $\fN$ that can be extended via Poisson integration to a solvable one-dimensional extension $\fS$ of $\fN$. To do so, we introducte the $ß'$-convolution on $\fN$ and show that the set of distributions that are $ß'$-convolvable with Poisson kernels is precisely the set of suitably weighted derivatives of $L^1$-functions. Moreover, we show that the $ß'$-convolution of such a distribution with the Poisson kernel is harmonic and has the expected boundary behaviour. Finally, we show that such distributions satisfy some global weak-$L^1$ estimates.
Type de document :
Article dans une revue
Mathematica Scandinavica, 2009, 105, pp.31-65
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00120271
Contributeur : Philippe Jaming <>
Soumis le : mercredi 13 décembre 2006 - 18:17:15
Dernière modification le : jeudi 3 mai 2018 - 15:32:06
Document(s) archivé(s) le : mardi 6 avril 2010 - 19:27:24

Fichiers

homo61006.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Ewa Damek, Jacek Dziubanski, Philippe Jaming, Salvador Pérez-Esteva. Distributions that are convolvable with generalized Poisson kernel of solvable extensions of homogeneous Lie groups. Mathematica Scandinavica, 2009, 105, pp.31-65. 〈hal-00120271〉

Partager

Métriques

Consultations de la notice

229

Téléchargements de fichiers

77