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Random Walks on Clifford Algebras as Directed
Hypercubes

René Schott* G. Stacey Staples'

August 3, 2006

Abstract

Given a Clifford algebra of arbitrary signature C¢, 4, p+¢q = n, multiplicative
random walks are induced by sequences of independent, uniformly distributed
random variables taking values in the unit basis paravectors in the algebra.
These walks take values in the positive and negative basis multivectors of the
algebra and can be treated as random walks on directed hypercubes. Methods
of walks on hypercubes are employed to develop limit theorems. These multi-
plicative walks are then used to induce additive walks on the Clifford algebra.

Again, limit theorems are developed.

AMS subject classification: 15A66, 60B99, 60F05, 60G50

1 Introduction

Clifford algebras, also known as geometric algebras, are higher-dimensional general-
izations of complex numbers with numerous applications in physics and engineering.
The n-particle fermion algebra is canonically isomorphic to the Clifford algebra C¢,, ,,.
The n-particle fermionic Fock space is canonically isomorphic to the Clifford algebra
Cl, . The Clifford algebra C¢;; is isomorphic to the field of complex numbers, and

Cly 5 is isomorphic to the quaternions. C/; 3 is isomorphic to the space-time algebra,
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and Cls is the “algebra of physical space,” familiar to physicists as the algebra of
the Pauli spin matrices [4].

Recent applications of Clifford algebras include quantum field theory|6], computer
vision[11], and automated reasoning[13]. Extending Clifford-algebraic methods to
graph theory (cf. [17], [18]) opens the door to applications in theoretical computer
science, symbolic dynamics, and coding theory. In particular, the graph-theoretic
methods developed in [17] are used in the current work to establish limit theorems
for random walks on Clifford algebras.

The group structure underlying the Clifford algebra C/,, of dimension 2" has
Cayley graph resembling the (n 4 1)-cube. Hence, results pertaining to random
walks on hypercubes can be extended (with some modification) to random walks on
Clifford algebras of arbitrary signature. One example of such work includes the paper
by Diaconis, Graham, and Morrison [5].

In the work of Letac and Takdcs [12], random walks on the equivalence classes
of vertex weights in the m-cube are formulated as time-homogeneous Markov chains.
The spectrum of the transition probability matrix is explicitly determined with Kravchuk
polynomials appearing naturally in the computation. Kravchuk matrices and related
identities appearing in [12] can also be found in the work of Feinsilver and Fitzger-
ald [7], and their natural relationship to random walks are discussed in a paper by
Feinsilver and Kocik [8].

Kravchuk polynomials are naturally connected with Clifford algebras as well. For
fixed n = p + ¢, let ¢;(4,n) denote the i Kravchuk polynomial evaluated at j. One
can show by direct computation that in the Clifford algebra C/,,, the sum of the

squares of the f-vectors is given by

D e’ = (=11, (q,n). (1.1)
li|=¢
Historically, stochastic processes on Clifford algebras have mostly been considered
in the context of processes on the fermion field [1], [2], [3]. A central limit converging
to “fermion quasi-free states” was developed by von Waldenfels [20], in which Clifford
algebras are not assumed a priori but whose structure appears in the limit theorem.
R.L. Hudson also developed a central limit for fermions [10].
Other examples of non-commutative central limit theorems include von Waldenfels
[19], Speicher [15], and Schiirmann [14]. A paper closer in approach to the current
work is that of Guillotin-Plantard and Schott [9], who considered dynamic random

walks on Heisenberg groups.



1.1 Notational Preliminaries

Definition 1.1. For fixed n > 0, let V' be an n-dimensional vector space having
orthonormal basis ey, ..., e,. The 2"-dimensional Clifford algebra of signature (p, q),
where p+ g = n, is defined as the associative algebra generated by the collection {e;}

along with the scalar ey = 1 € R, subject to the following multiplication rules:

e;e; +e;e; =0fori#j and (1.2)

1,if1<i<
e’ = ==p (1.3)
-1, ifp+1<i<p+4+qg=n.

The Clifford algebra of signature (p, ¢) is denoted C/, .

Generally the vectors generating the algebra do not have to be orthogonal. When
they are orthogonal as in the definition above, the resulting multivectors are called
blades.

Let [n] = {1,,2,...,n} and denote arbitrary, canonically ordered subsets of [n]
by underlined Roman characters. The basis elements of C¢, , can then be indexed by

these finite subsets by writing

kei

Arbitrary elements of C/, , have the form

je2(n]

where u; € R for each ¢ € ol

An arbitrary element u € C¢, , is called a paravector if it has the form
u:u®+2uiei. (1.6)
i=1

In other words, a paravector is the sum of a scalar and a vector.

The inner-product of u,v € Cl, 4 is defined by

(u,v) = <Z u; €, U,-e2-> = Ui ;- (1.7)
ie2(n] 4e2[n]

je2[n]



Observe that for fixed multi-index i € 2" and arbitrary u € Cl,,, (u,e;) = u;, the
coefficient of the multivector e; in the canonical expansion of w. The inner product

induces a Clifford inner-product norm by

lul® = {u,u) = Y u. (1.8)

4e2(n]

2 Random walks on C/,,

Given a random variable &, the notation (£) will denote the expectation of €. Given
a sequence of random variables {{y}, the notation &y A 1) denotes convergence in
distribution to the random variable 1. The notation &y %, w denotes convergence in
probability to u.

For fixed n > 0, let (Xo(k), X1(k), Xa(k),..., X,(k)), 1 < k, be a sequence of
independent random variables taking values in the unit coordinate vectors (e;)o<i<n
of R"™ defined on a probability space (2, F,P). For each j > 1, the distribution of
the random vector M; = (X;(j),..., X, (j)) is

1
1< <n. 2.1
n4+1’ =0 (2.1)

P(M; =e;) =

Let (Sk)1<k be the right random walk on C¢,, induced by the sequence
(Xo(k), X1(k), Xa(k), ..., X,(k)) via

Sp = (Xo(1), ..., Xu(1) - (Xo(2), .., Xn(2)) -+ (Xo(k), ..., Xu(R)) . (2.2)

Hence, the sequence (Si)>1 is a random walk on the blades of C/,, ,.
Walks of this form have a natural connection with classical walks on the n-
dimensional hypercube (cf. [5], [17]). This connection will be exploited to prove

limit theorems.

Lemma 2.1. Fiz i € 2. Then,

2 (50,..]{:. ,zn) - (n;—nl)k (2:3)

[0+m+£n:k
Zj odd when 0#j€4, Z]- even when 0#j¢i

asymptotically as k — oo.

Proof. 1t is not difficult to see that the random sequence (Xg(k), Xa(k),. .., X, (k))
induces a nearest-neighbor walk on the n-dimensional hypercube Q,, in which a parti-

cle moves to one of its nearest neighbors or stays fixed with equal probability. The 2"
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Figure 1: Graph associated with walks on C/ 5 visualized as a directed hypercube on

23 vertices.

vertices of Q,, are in one-to-one correspondence with binary strings of length n, and
assume the walk starts from Sy = vy. Multiplication by the unit vector e; corresponds
to “flipping” the ;" bit.

Let ¢ denote a multi-index corresponding to the length-n binary string
b= (byby---by) via

p L HIE! (2.4)
0 otherwise.

Notice that Sy = vy implies Sy = v; if and only if each element of the multi-index
7 has been “flipped” an odd number of times, while each element of the complement
i’ has been “flipped” an even number of times. There is no restriction on ¢, since
it corresponds to the number of steps in which the particle stays fixed. Because the
steps of the walk are independent and identically distributed, the probability of being

at vertex v; at time step k is then given by

1
P(S, = v;) = ———— |{k-step walks vy — v;}|

(n+ 1)k
1 k
RCESI; 2 (bt e,) @

Lo+l 4 +Hin=k
éj odd when j€i, Zj even when j¢i

The limiting distribution on the vertices of Q,, is known to be uniform[5]. Hence,

ﬁ 2 (60,.%. ,gn) - 2in (2.6)

Lo+ Hn=k
éj odd when j€i, Zj even when j¢i

as k — 00. O



Theorem 2.2. Let (Si)r>1 denote the Clifford random walk defined in (2.2). Let ¢
be the uniformly distributed random variable taking values in {£e;}, the positive and

negative basis multivectors of Cly, 4. Then,

1
khﬁnélolP’ (Sk=ae) = it (2.7)
where o« = 1. Further,
and
. k||
kh_)rgj‘ ~ || = 0. (2.9)
Also, as k — oo
S, 2 . (2.10)
Proof. Observe that the walk S satisfies
1 k 1
P =+de;) = —— — 2.11
(Sk = *ei) (n + 1)k 2 Qm”w@)_*w (2.11)

ZO+"'+£”:I‘:
Zj odd when j€i, Ej even when j¢i

by Lemma 2.1. The sign o = %1 is determined by the order in which the vertices
of the walk are visited, independent of the signature of the algebra. This indepen-
dence is attributable to the fact that negative squares are equally represented among
permutations of paths. Hence, o« = sgn(sx) where ¢, € S,, is the permutation that
canonically orders the indices of the sequence Sy (excluding the 0 index, which cor-
responds to the unit scalar). Exactly half of these permutations lead to a = 1 and
half to a = —1.

The expectation of the sequence (Sy) is found by straightforward calculation:

h_)m (Sk) = h_)m Z Z (Sk,=ae)ae;

je2ln] a==1
E E lim P (S, = ae;)ae;
k— - -
ie2ln] a=%1 >
—1 (2.12
=D IDIEYTETEY D DD S EUNCRE)
ie2ln] a==1 ie2ln] ie2ln]

Since (S) is a sequence of unit basis multivectors in Cf,,, the limit of the L2

norm is )

1
= lim — = 0. (2.13)




Finally, the limiting distribution is clearly uniform on the collection {«e;},
a==+1,ie2M, O
2.1 The induced additive walk on C/,,

For each N > 0, assume the collection {51, ..., Sy} is independent. That is, not only
is the collection {(X;(k),..., Xn(k))}x>1 independent, but the collection of products
N

{H(Xl(k:), .o, Xn(k))} N0 is assumed to be independent. Define the Clifford-valued

walk
N
Ex =Y Sk (2.14)
k=1

The goal is to prove a law of large numbers and a central limit theorem for the

walk (ZEn)n=0. To this end, a useful identity is taken from [16].

Lemma 2.3.

o . k/2
) . (Z a? — Z aj?) if k=0 (mod 2)
(Z a ei) =1/ e Lee (2.15)
i=1 (Z a; Z a; ) Zai e, ifk=1 (mod?2).
L

i=1 j=p+1 i=1

The next result shows that the expectation of the walk Zy is paravector-valued.
Proposition 2.4. Let (Zy)n=o be the walk defined in (2.14). For any positive integer

N,
SE s ee0® () (F) ). e

0<t<k
k—{ even

Proof. By linearity of expectation,

Sk> = (Sk). (2.17)



Applying Lemma 2.3, the expectation of S is given by

i=1 /=0 i=1
1 k k=t 1 k‘ k—0—1 n
-— > (€><p—61)2 =D (€>(p—q) I
0<0<k 0<t<k i=1
k—£ even k—{ odd

0<t<k
k—{ even

Corollary 2.5. In the Clifford algebra Ct,, ,,, canonically isomorphic to the n-particle
fermion algebra, (Z5) =0 for all N > 0.

The goal is to prove a law of large numbers and a central limit theorem for the
walk (Zy)n>1. In order to develop these, some additional tools are borrowed from

[17].

Definition 2.6. For fixed n > 0, the algebra C/,™™ is defined as the 2"-dimensional
associative algebra generated by the elements ¢; for 1 < i < n along with the scalar
gg = 1 € R, subject to the following multiplication rules:

5 & if ¢ 7é ]

Ei&€j = (219)
1 otherwise.

sym

Basis elements of C¢,™™" can be indexed by canonically-ordered subsets of [n] so

that arbitrary elements have the form

2'62["]

By the properties of Clifford multiplication, given any i, j € ol
€i€j = €ing s (2.21)

where A = (iU j) \ (N j) is the symmetric difference of i and j.

sym

It is evident that the generators of ¢; of C¢,,”™ generate a multiplicative group %,

isomorphic to the group generated by reflections across orthogonal hyperplanes in the
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real vector space R", for these also satisfy R; R; = R; R; and R? =id. It is equally
evident that ¥, & (2["], A), the group consisting of the power set of [n] = {1,2,...,n}
with the set symmetric difference operator. These groups are also isomorphic to the
additive abelian group Zs + - -+ 4+ Zy. Because of these isomorphisms, it should be

n-times

clear that the Cayley graph of ¥, is the n-dimensional hypercube Q,,.

Vertices of Q,, can be canonically labeled with binary strings of length n. Bit
strings of length n are associated with unit basis multivectors of C¢,*™. The product
of two such multivectors corresponds to the logical “exclusive or” of the associated

bit strings.
Remark 2.7. The algebra C¢,™™ is an abelian subalgebra of C¢,,,,.

The following theorem, proved in [17], will be of use.

Theorem 2.8. Let Y be a random variable taking values in {0,1,2,... ,n} with prob-
abilities p; = Pr{Y =i} for each 0 <i <n, and let {Y}}r>o be the sequence of inde-
pendent random variables obtained from repeated observations of Y. Let & € CL,*™
represent the distribution on the vertices of Q, at time step k > 0 corresponding to

the random walk induced by the sequence {Yy}. Then for k > 0 and real parameter

t#40,

n

& = k! &etto H (cosh(tp;) + sinh(tp;) ;)| - (2.22)

i=1 tk
Here the notation ‘tk on the right-hand side represents the Clifford-valued coefficient

of t* in the formal power series expansion of the product.

Theorem 2.9. Let (Si)k>1 denote the Clifford random walk defined in (2.2). Then
for fixed k and oo = 1, the distribution of Sy is given by the generating function

k! . , t , t
P(S:=ae) = Eem cosh" 14 (n n 1) sinh! (n n 1) .\ (2.23)
1
Proof. In the case p; = ) for 0 <7 < n, one obtains from Theorem 2.8
n
& = k! - & et/ (D) ﬁ cosh t + sinh t € (2.24)
, n+1 n+1 o

i=1

Letting & = eo, and utilizing the correspondence with walks on C¢,, induced by

paravector sequences,
1
P(Sy=ae) = B} (&ksei) (2.25)

9



il) 5i>

so that for o = +£1,

k!
D)

n
tk

!

=1

1) + sinh (n

(s

P(Sy =ae;) =
for all 0 < i <n.

cardinality of the index i, since p; =

Corollary 2.10. For k > 1 and o = %1

n—|—1>

klen+t
P(Sy=a)= €2+ cosh” (
and for1 <1 <n,
flewst
e cosh™ ! sinh t
n—+1 n—+1

(Sk = Oéei) =

Theorem 2.11. Let (En)nso be the walk defined in (2.14) on Cl,,, p+q > 0, and

Then the following limit exists if and only if

let ¥ =e1+---+e,.
(p,q) € {(1,0),(0,1),(2,0)}:
== lim (Zy) = pio + @
where
X1 it [k
po=lim » — > (p—q) () and
N
N
. 1 e [k
po=lm Y =y (p-q) (€+1>
R
Proof. Begin by noting that
) 4
l

an > (v
0<e<k

k—{ even

= lim
Naoo

The theorem is proved in six steps

10

75i> .

Expanding the product, the coefﬁcient of the multivector &; depends only on the

(2.26)

]

(2.27)

(2.28)

tk

(2.29)

(2.30)

(2.31)

k
0+

1) zj;e> . (2.32)

so that when the limit exists, o and p; are the stated limits



(i.) The series converges when p = ¢ > 1.
When p = ¢, = = 0 by Corollary 2.5.
To handle all other cases, consider the series

L J

i o —q)* @) (2.33)

k=1 €:0

[NIE

(ii.) The series converges absolutely when p + ¢ > 4.

First, to see that the series converges absolutely when p 4+ ¢ > 4, consider the

following;:

This series converges provided +/p + q > 2.

b

(iii.) The series converges absolutely when n
q

Consider the series comparison:

kol

L5)

i (ij)’“ 2 |p_Q|€<2k€) : iﬁ'p‘q'g (2]2)

k=1 =0 =0
<> Gtz
—~ (p+q)*
= 2\/|p—q|p+q), 2.35)
,; 2(p+q kz



2¢/Ip — ¢

which converges provided
P+q

C€3’1, 661’2, and C£2,1'

< 1. This proves convergence in C/ s,

(iv.) The series converges in Cly 3, Cls ¢, Clo4, and Clyy.

Next, convergence of the series in C/3 will imply absolute convergence in C/j 3.

Yoo (a) - ()

1 =0

= 1 k = 1 k
> (p—-®€< ) => 4‘( )
= P9t g 2) TSI
ol N R A
o 2 ‘ _
Sy (y) < w2 () - (5) - e
k=1 =0 k=1 =0 k=1

(v.) The series converges in Cfj».

Convergence in Cl o requires a different approach. In particular, consider




(vi.)

which implies
5] I
(Z-\/E)QE (

%) ~ Re [(1 +i\/§)k] . (2.40)

=0

Convergence of the series Z Re [(1 + 2\/5)’“} is now guaranteed by the inequal-

k=1
1+iv2 V3

5 =5 < 1. An identical argument shows convergence of the

imaginary part, which is necessary for the paravector coefficient of the expec-

ity

tation.

The series diverges in Ct o, Cly 1, and Clay.

In C¢; o, one has the divergent series

[SIE

k
—~ (p+q)F 4

1

(r— Q)Z<2k€) - i (2}2) = i 2kt (2.41)

=0

In Cly 1, one has the series

15)
k
which diverges because the sequence of partial sums S, = Z(—l)g ( ) di-

=0
verges as k — 00.

In Clyp, one has the series

15

= 1 k = 1 k
> (p—Q)E< )—Z— QZ( )
k k
k=1 (p+a) =0 2 il 2
~ 1 15 1 © 4
> — = =, (24
=Y 53 () =25 s
k=1 " =0 k=1
which clearly diverges.
O
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Example 2.12. Because (Zy) is paravector-valued for all N > 0, an easy visu-

alization is given by plotting points in R2. The z-coordinate represents the scalar

coeflicient, and the y-coordinate represents the coefficient of ¥ = 3" | e;. See Figure

2.
-0. 525

-0. 53;

-0. 535

-0. 54

- 0. 545;

-0. 155 -0.145 -0.14 -0.135
Figure 2: Expectation of Zy in Cly3, 1 < N < 32.

Example 2.13. By direct Mathematica computation, the expectation (Zy) in Cf 2

is seen to converge to = = —% — %f (see Figure 3).
-0.8 -0.6 -0.4  -0.2

-0.2¢
-0. 4}
. -0. 6!

-}',:
-0. 8}
-1r
-1.2¢

Figure 3: Expectation of Zy in Clyo, 1 < N < 32.

Theorem 2.14. Let (Enx)n>o be the walk defined in (2.14) on Cl,,, p +q > 0,
(p,q) ¢ {(1,0),(0,1),(2,0)}. Let = = g+ p1 & as in Theorem 2.11. Then there exists
a mean-zero Clifford-valued random variable ¥ of variance 1 such that as N — oo,

[1]:

D

SNTE Dy, (2.44)

ON
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where the standard deviation oy 1s determined by

N n
= E — |entl E h"™~ inh
— otk [e €08 (n + 1) i ( )

n+1

t=0

Ay’
+ (1o + 1) E 8—{n+lcosh ( +1)}
A
2 £ n—1
+n(p”+1) ,;:1% [ewr cosh < )smh(

Proof. By Theorem 2.11, the mean value = exists. Clearly,

Jlim. <_N - > —0. (2.46)

The variance on? of Zy — = is computed using Theorem 2.9 and Corollary 2.10

)} (2.45)

T~
m
=

|
juil
~~——"
I

)=

s
<A

|
o)
]

Eod
I
L
[1]x
&P

el

Z P (S, = ae)||Skl® + Z P(Sy = ae;)

- 2
‘Sk — <.: el->
k=1 Ji]>1 0<i<n
a==+1 a=%+1
N ~ 2
E P(Sk = ae;) —i—E E (Sk = a) Ha—<:,e@>‘
k=1 li| k=1 a==+1
a::tl

+Y Y P(Sk=

k=1 1<i<n
a==+1

oz

15



=3

2<e<
a==+

N
1 t t
E ~klew T cosh™* ( > sinh? < >
— 5 2 n-+1 n+1

+ Z Z k:'en+1 cosh™

()l

+Z Z k'en+1 cosh™ ! (

tk

2

[1]:

)
tk
t -
1) sinh (n—i— 1) Ha — <E7ei>
N n
¢ t t
= Z klen+t cosh™™* (—1> sinh? < >
k=1 (=2 n+
N

1 t t
—klen+t cosh™ | —— —1)?
—1—;2 en+1 cos (n—{—l) (o
+ i i 1/~c!en%1 cosh™ 1 t sinh L
— = 2 n+1

o) (= 7 G 1)

= klemt Zcosh"_Z <L> sinh? ( t >
-1 =2 n+1

N
+ (o® + 1) Z klew+T cosh” ( ! )

P n+1

k=1 1<i<n

a==+1

tk

NE

N
+ (p® + 1) an!eﬁl cosh™ ™ (

t . t
1) smh( 1)
— n + n 4+

Example 2.15. Assuming = = —1

3 — 37 € Cly as indicated by Mathematica output
in Example 2.13, Mathematica calculations reveal the following values of oy

16



N= 1 opn?= 1.33333 on= 1. 1547
N= 9 on?= 11.3264 o= 3. 36547
N= 17 on?= 21.3264 on= 4. 61805
N= 25 on?= 31.3264 on= 5.597
N= 33 on?= 41.3264 on= 6.42856
N= 41 on?= 51.3264 on= 7.16424
N= 49 on?= 61.3264 on= 7.83112
N= 57 on?= 71.3264 on= 8. 4455
N= 65 on?= 81.3264 opn= 9.01811
8,
6,
4}
10 20 30 40 50

Figure 4: Standard deviation of =y — = in Cly o for selected values of V.

2.2 The distribution of ¥

The distribution of the random variable ¥ is defined by

P(WE <) =P > (e <a

ie2(n]

Letting ¢ range over the subsets of [n], {(V,e;)} forms a collection of dependent

random variables. Discussion will be restricted to the distribution of an arbitrary

component (U, e;).

Because the limiting distribution of Sy is uniform on the positive and negative
basis multivectors of Cf,, ,, it follows that for each i € 2" ((S,e;))

17

is a sequence



of random variables having values in {—1,0, 1} with limiting distribution

2=t if =1
Jim P((Sg,e) = 0) =41 -2 if =0 (2.49)
2=+l if B = —1.

It also follows that

1
lim var (Si, e;) = —, (2.50)
k—o0 - on
and that
klim ((Sk,e;)) = 0. (2.51)

Convergence in distribution of the sequence ({Sk, €;)), ., implies that for any € > 0,
there exists V. such that N > N, implies

N
Fyn.(z) —e<P <Z (Sk,ei) < :c) < Fy_n.() +¢, (2.52)
k=N,
where writing M = N — N, yields
|z
Fu(z) = Y fu(k). (2.53)
r=—M

Here fy(z) is the M mass function defined by

M—|x|

e 5 )R () e

M—|z|=z (mod 2)

which has support {—M, ..., M} and gives the probability that the sum of M random

variables taking values in {—1,0, 1} with respective probabilities {inﬂ, 2;;1, 2,11“} is

equal to x. The sum is over the mutually exclusive events that z of the M terms are
equal to zero.

A more descriptive expression for the mass function is

LJWE‘I‘J

o= (5) () 3 (e ) (08) 7 ()

(2.55)

18



Fix x € Rand N. > 0. As N — oo, |Fy(z) — Fn_n.(z)] — 0. Observing that

Z (S, e;) = (En,€;) and replacing Zy. by Z, one finds
1

‘IP’ <<EN _g, e> < x) - FN(x)’ =0 (2.56)

as N — oo. Hence, the result of the following lemma:

Lemma 2.16. Given arbitrary multi-index i € 2I" | the random variable ¥ of Theorem

2.14 has coordinate probability distribution function

[1]:

N—oo

P((U,e) < z) = lim ]P)<<EN_

,ei> < :1:) = lim Fy(zoy), (2.57)
i A o i
where Fy is the distribution function of (2.2) and oy = \/on? as defined in (2.14).

Example 2.17. The distribution functions Fy(zoy) are computed in Cly o and plot-
ted for N = 4,16, 128,256 in Figure 5.

1 — 1
0.8 0.8
0.6 0.6
0.4
0.2 .2
-1 -0.5 0.5 1 -1 -0.5 0.5 1
1
0.8 0.8
0.6 0.6
0 0
0.2 0.2
1 0.5 0.5 1 1 0.5 0.5 1

Figure 5: Distribution functions Fy(zoy), Fig(xoig), Flas(zo12s), and Fose(z0256) com-

puted in Cl .
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1
Example 2.18. The density function of the normal distribution N (O, —)

\/%UN]CN(O)

is UNfN(O)e_”fN(O)%Q. In Figure 6, the discrete points of a5 fase () computed in Cy o
are displayed in black. The smooth curve y = f256(0)02566_”f256(0)2”256%2 is displayed
in red.

In Figure 7, the distribution functions for 32 and 64 steps of the random walk on

1
Cly are overlaid with the normal distributions N (0, —) and
V21o3s f32(0)

1
N <O, —), respectively.
V27064 fea(0)

Figure 6: Discrete probability mass function oasefose(x0oase) (discrete points) and

Y= 0256f256(0)6_”f32(0)2”2562“”2 (smooth curve) computed in Cly .

2.3 Concluding remarks

This work represents one step toward a comprehensive theory of stochastic processes

on Clifford algebras of arbitrary signature.
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