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Turbulence modelling of statistically periodic

flows: synthetic jet into quiescent air
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Abstract

Computations of a 2D synthetic jet are performed with usual RANS equations solved
in time-accurate mode (URANS), with the standard k–ε model and the Rotta+IP
second moment closure. The purpose of the present work is to investigate the abil-
ity of these standard turbulence models to close the phase-averaged Navier-Stokes
equations. Results are compared with recent experiments by Yao et al. made avail-
able to the CFD Validation of Synthetic Jets and Turbulent Separation Control
workshop held in Williamsburg in 2004. Comparisons of the performance of the
models with experimental data show that the evolution of the vortex dipole gen-
erated by inviscid mechanisms is not correctly reproduced by the k–ε model. The
Reynolds-stress model gives much more realistic predictions. However, several char-
acteristics are not well predicted, as for instance the convection velocity. A detailed
analysis shows that the vortex dipole dynamics is essentially inviscid during the
early blowing phase, when the flow is more transitional than fully turbulent. Tur-
bulence develops and influences the dynamics of the vortices only at a later stage of
the blowing phase. Consequently, it is of importance that the turbulence models do
not predict erroneously high levels of turbulence. In particular, the present study
shows that the correct prediction of the region of negative production that appears
during the deceleration of the blowing velocity, due to the misalignment of the strain
and anisotropy tensors, is crucial. Therefore, linear eddy-viscosity models must be
discarded for this type of pulsed flows, in particular for flow control using synthetic
jets.
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Nomenclature

. Long-time averaging
operator

<.> Phase averaging opera-
tor

u∗

i Instantaneous velocity

p∗ Instantaneous pressure

Ui = u∗

i Long-time-averaged ve-
locity

Ũi =<u∗

i > Phase-averaged veloc-
ity

u′′

i = u∗

i − Ũi Fluctuation around
phase-averaged veloci-
ties

<u′′

i u
′′

j > Reynolds stresses

k′′ = 1

2
<u′′

i u
′′

i > Turbulent kinetic en-
ergy

ε′′ Dissipation rate of k′′

S̃ Strain-rate tensor

S̃ij=
1

2

(
∂Ũi

∂xj

+
∂Ũj

∂xi

)

ν ′′

T Turbulent viscosity

δij Kronecker symbol

ρ Density of air

f Frequency of the jet

h Width of the slot

Pk′′ Production of turbu-
lent kinetic energy

a′′ Anisotropy tensor

a′′ij =< u′′

i u
′′

j > /k′′
−

2

3
δij

Γ Circulation

ω̃ Phase-averaged vortic-
ity in the z-direction

ω̃ = ∇× Ũ

λi Eigenvalues of a′′

β Positive eigenvalue of S̃
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1 Introduction

Although statistical turbulence modelling (RANS) represents the current indus-
trial standard, there is a considerable interest in the possibility of obtaining informa-
tions on the large-scale unsteadiness. As long as Large Eddy Simulation will remain
too expensive for overnight simulations, some room exists for the development of
less expensive methods able to predict the very large scales of the flow. This type of
approaches has important applications in different domains: among others, aeronau-
tics (Gatski, 2001; Jin and Braza, 1994), control (Getin, 2000; Hassan and Janaki-
ram, 1997), aeroacoustics (Bastin et al., 1997), power generation (Benhamadouche
and Laurence, 2003) and environment (Kenjereš et al., 2005, 2001) can be cited.

In many statistically steady flows, as soon as the time derivatives are included in
the equations, unsteady RANS solutions appear naturally (Johansson et al., 1993;
Bosch and Rodi, 1996; Benhamadouche and Laurence, 2003; Jin and Braza, 1994;
Lasher and Taulbee, 1992; Iaccarino and Durbin, 2000). In such cases, long-time-
averaged solutions are often better than solutions obtained by steady-state com-
putations (Durbin, 1995; Iaccarino and Durbin, 2000). However, there is no clear
consensus on the definition of the mean operator for this type of computations: the
definition of the turbulent scales resolved by the method is not a priori known.
Recent approaches, like Semi-Deterministic Modelling (SDM: Ha Minh and Kourta,
1993; Aubrun et al., 1999; Bastin et al., 1997), Very-Large-Eddy Simulation (VLES:
Speziale, 1998), Detached-Eddy Simulation (DES: Spalart et al., 1997), Limited
Scales simulations (LNS: Batten et al., 2002), Scale-Adaptative Simulation (SAS:
Menter and Egorov, 2005), Partially-averaged Navier–Stokes modelling (PANS: Gir-
imaji et al., 2003) or Partially-integrated Transport modelling (PITM: Chaouat and
Schiestel, 2005; Schiestel and Dejoan, 2005) are designed in order to ensure unsteady
solutions.

In the present study, the flow belongs to the class of statistically periodic flows, i.e.,
flows in which the boundary conditions are periodic in time. The use of RANS models
does not raise any theoretical issue in this case, since Reynolds average is equivalent
to phase average. However, obtaining a periodic solution is not guaranteed: some
frequencies can appear that are not harmonics of the forcing frequency.

Moreover, while the relative performance of the numerous turbulence models avail-
able have been investigated extensively in statistically steady flows, their ability
to close successfully the phase-averaged equations in periodic flows have received
much less attention, and generally for modified versions of the models (Tardu and
Da Costa, 2005; Stawiarski and Hanjalić, 2002; Bremhorst et al., 2003; Lardeau and
Leschziner, 2005). Therefore, a workshop dedicated to the evaluation of modelling
strategies in statistically periodic flows was recently organized (Rumsey et al., 2004;
Sellers and Rumsey, 2004). The present study focuses on the comparison of the
performance of first and second moment closures: the standard k–ε model (Laun-
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der and Spalding, 1974) and the Rotta+IP second moment closure (Launder et al.,
1975) are used, without any case-specific modification. Standard wall functions are
applied since near-wall regions do not play a significant role.

The flow studied in the present paper is one of the test cases selected for the
workshop. The flow consists in an oscillatory jet with zero-net-mass flow issuing into
quiescent air. This flow is of high industrial interest, in particular in the frame of
turbulence control, since it is representative of MEMS piezoelectric technology, as
developed by Seifert et al. (1993) and Amitay et al. (2001).

Separation control through the use of suction, blowing and periodic excitation has
lead to a number of studies (see, e.g., the review by Greenblatt and Wygnanski,
2000). The present case was designed in order to evaluate the capabilities of CFD
and modelling techniques in this type of problems, concentrating on the synthetic
jet region, without interaction with an outer flow. The experiments used as reference
were performed at NASA LaRC by Yao et al. (2004) and are available on the web
site of the workshop (Sellers and Rumsey, 2004).

In such a problem, it is convenient to introduce two averaging operators: long-
time averaging, denoted by . and phase (or ensemble) averaging, denoted by <.>.
Instantaneous quantities are denoted by stars (u∗

i , p
∗) and the following definitions

are used:

Long-time-averaged velocity: Ui = u∗

i

Phase-averaged velocity: Ũi =<u∗

i >

In order to avoid confusion with usual notation in RANS modelling, where u′

i stand
for the total fluctuations (around the long-time-averaged velocities), the fluctuations
around phase-averaged velocities are denoted by u′′

i :

u′′

i = u∗

i− <u∗

i > (1)

Thus, in the present periodic case, the transport equations to be solved are those of
the phase-averaged velocity components Ũi:

∂Ũi

∂t
+ Ũj

∂Ũi

∂xj

= −
1

ρ

∂P̃

∂xi

+ ν
∂2Ũi

∂xj∂xj

−
∂ <u′′

i u
′′

j >

∂xj

(2)

and those of the Reynolds stresses <u′′

i u
′′

j > (or of k′′ = 1

2
<u′′

i u
′′

i > in the frame of
the eddy-viscosity model), and of ε′′, the dissipation rate of k′′: all these equations are
formally identical to the standard steady RANS equations, except for the presence
of the time derivative.

In order to close the equations, two different standard turbulence models are used:
the standard k–ε model (Launder and Spalding, 1974), denoted k′′–ε′′ in the present
case, and the Rotta+IP Reynolds-stress model (Launder et al., 1975).
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2 Description of the geometry and available experimental data

The oscillating jet of air emanates from a slot in the floor. The slot is h = 1.27 mm
wide and 28h long, in order to produce a 2-D plane jet. The slot is at the bottom of
a cubic enclosed box 480h = 609.6 mm large, at the centre of the floor and parallel
to the outer walls. The geometry and the coordinate system are shown in Fig. 1.

The jet is produced by a piezo-electric diaphragm on the side of a narrow cav-
ity under the floor, which is driven at 444.7 Hz (Sellers and Rumsey, 2004). The
maximum jet velocity generated could reach 28 m s−1.

Although the actuator operating parameters including diaphragm displacement,
internal cavity pressure, and internal cavity temperature were monitored to provide
boundary conditions for CFD simulations, we chose not to solve the flow in the
cavity: the present work focuses on the performance of turbulence models, rather
than on the other difficult issue of representing a vibrating diaphragm with simple
boundary conditions.

Computational results in the present paper are compared with the PIV measure-
ments performed by Yao et al. (2004). Phase-averaged (every 5 deg) and long-time-
averaged velocities and Reynolds stresses (only components in the x–y plane) are
available in the window −2.15 < x/h < 3.1, 0.1 < y/h < 6.6, z = 0, corresponding,
in actual size, to −2.73 mm < x < 3.94 mm, 0.127 mm < y < 8.38 mm.

3 Numerical method and sensitivity studies

Computations are performed using Code Saturne, a finite volume solver on un-
structured grids developed at EDF (Archambeau et al., 2004), for vectorial and
parallel computing.

The code solves time-dependent RANS or LES equations for Newtonian incom-
pressible flows. Space discretization is based on the collocation of all the variables at
the centre of gravity of the cells. Velocity/pressure coupling is ensured by the SIM-
PLEC algorithm, with the Rhie & Chow interpolation in the pressure-correction
step. The Poisson equation is solved using a conjugate gradient method, with di-
agonal preconditioning. The present study is performed using the usual standard
k–ε model (Launder and Spalding, 1974) and the Rotta+IP second moment clo-
sure (Launder et al., 1975). Central differencing is used for convection. For time-
marching, a second order Crank-Nicholson scheme is used for the k–ε model and, for
stability reasons, a first order Euler implicit scheme for the Reynolds-stress model.
However, as shown below, time-step-independent solutions are reached in all cases.
Computations are performed on 8 processors of a PC cluster.
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3.1 Boundary conditions

Since the flow inside the cavity is not solved, unsteady Dirichlet boundary con-
ditions are specified at the slot exit (Fig. 2), which are functions of x and phase:
profiles at y/h = 0.079 of the available phase-averaged velocities Ũi and Reynolds
stresses <u′′

i u
′′

j > are extracted from PIV data and used as inlet conditions. The

missing component <w′′2> is reconstructed by assuming <w′′2>=<u′′2>.

Concerning the dissipation rate ε′′, prescribing an inlet value is already an issue.
Indeed, ε′′ obviously varies with time, as well as all the other usual turbulent scales
(time scale, length scale, eddy-viscosity). A possible way is to arbitrarily assume that
one of them is constant, e.g., the length scale L. A periodic ε′′ can thus be obtained
from ε′′ = k′′3/2/L. Preliminary computations (not shown here) have indicated that
a value of L of the order of magnitude of what can be expected in a fully developed
turbulent channel flow (typically one-tenth of the half-width of the slot) gives too
much turbulent dissipation. Therefore, the value of the length scale prescribed in
the computations presented here is half the slot width. The necessity of using such
a large value is to be linked to the fact that, despite a turbulence rate of 5%, the
flow issuing from the cavity is far from being a fully developed turbulent flow: the
Reynolds number based on the slot width and the maximum inlet velocity is only
2400, and the geometry of the cavity does not allow the turbulence to reach a spectral
equilibrium before issuing from the slot.

Solid-wall boundary conditions cannot be used at the remaining boundaries of
the domain, since the fluid is considered incompressible: when fluid is blown from
the slot, it is necessary to enable an equivalent volume of fluid to go out of the
calculation domain in order to satisfy incompressibility. Since the experimental box
is huge compared to the size of the slot (480h), a smaller domain was used, as shown
in Fig. 1. Outlet boundary conditions (homogeneous Neuman conditions) are applied
at the open boundaries of the domain: as shown in section 3.3, the results are not
influenced by this restriction of the domain. However, in this type of flows, fluid
enters the domain through the “outlet boundaries” in different regions, at different
periods of the cycle, in particular during suction: everywhere the mass flux enters
the domain, Dirichlet boundary conditions are used for turbulent quantities, using
values identical to those used for the initial conditions described just below.

Note that the symmetry of the flow is not imposed in this study, in order to enable
the appearance of non-symmetrical solutions. However, only symmetrical solutions
have been obtained.
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3.2 Initial conditions

Computations are started from rest state (Ũi = 0), with a low residual turbu-
lent energy (k′′1/2/Ṽmax=0.05%) and a dissipation rate corresponding to the ratio
νt/ν = 10. Computations are directly started with central differencing with large
time steps (∆t corresponding to ∆φ = 2.5 deg), which shows the stability of the
code (for convenience, time steps are given in phase degrees ∆φ throughout the pa-
per, i.e., the value corresponds to ∆φ = 360f∆t, where f is the frequency of the jet,
such that ∆φ = 360 deg corresponds to a cycle). When a satisfactory periodic state
is reached (after about 15 cycles), the time step is reduced and the computation is
run until a new periodic state is obtained. Note that periodicity was only evaluated
in the region where the flow is of interest (basically the region in which the results
can be compared with experiments): indeed, it would take hundreds of cycles to
reach a periodic solution in the entire domain.

3.3 Sensitivity studies

In order to investigate the influence of the size of the domain, the time-step and the
grid, seven different computations were performed with the standard k′′–ε′′ model
and the Rotta+IP second moment closure. Conclusions are given below.

Influence of the domain size

k′′–ε′′ computations were performed using two different domain sizes (small and
large, Fig. 1) with the same grid resolution (i.e., for the larger domain, cells were
added around the grid used for the smaller domain). The grid covering the smaller
domain is shown in Fig. 3a. Computations were carried out with the same time step
corresponding to ∆φ = 2.5 deg, i.e., 144 time steps per cycle. Fig. 4a clearly shows
that the restriction of the domain has no influence on the solution. Therefore, the
smaller domain in used in the following of the paper.

Influence of the time step

The influence of the time-step on the solution has been carefully investigated.
Using the coarse grid in the smaller domain, the time step was progressively reduced:
for the k′′–ε′′ model (second-order time-marching scheme), the solution becomes
independent of the time step below a value of 0.5 deg (see Fig. 4b). This conclusion
was confirmed using the fine grid. For the Reynolds-stress model (first-order time-
marching scheme), the time-step independence is reached at 0.25 deg, i.e., 1440
time steps per cycle. It is worth pointing out that reaching a time-step-independent
solution requires a large number of time steps per cycle. In a recent study, Lardeau
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and Leschziner (2005) showed that the solution obtained by URANS in the case of
a flow around a cylinder is qualitatively modified (from a quasi-steady solution to
a vortex street) when the time step is reduced: at least 125 time steps per cycle are
necessary to properly obtain the vortex shedding. The present study indicates that
a true time-step independence is actually much more demanding.

Grid refinement

Three different grids (coarse grid: 32900 cells, middle grid: 47610 cells, fine grid:
130950 cells), shown in Fig. 3, are used. Fig. 5 shows that the influence of the grid
refinement is small (the discrepancies between the middle grid and the fine grid are
of the order of 1%). Therefore, all the results presented in the following of the article
were obtained using the middle grid.

4 Results and discussion

4.1 Global characteristics of the flow

Figs. 7 and 8 show comparisons of the isocontours of the vertical phase-averaged
velocity Ṽ from PIV measurements, k′′–ε′′ and RSM computations, for both blowing
and suction phases of the cycle (see Fig. 2). It can be seen that the global topology of
the phase-averaged flow is well reproduced by both models. It is first worth pointing
out that the turbulence models play the role that is expected in this type of flow:
the resolved velocity field Ṽi is free from turbulent eddies and Ṽi only represents the
oscillating motion induced by the diaphragm.

The pair of large vortices (Fig. 7) that appears at the beginning of the blowing
phase is directly inherited from inviscid dynamics: it is induced by the vorticity
injected into the domain through the slot (see section 4.4). However, even though
the turbulence models do not play a role in their creation, the turbulence field has
a significant influence on their evolution into the domain, and the Reynolds-stress
model produces a much more realistic picture. The k′′–ε′′ model is much too diffusive
as can be observed in Fig. 6. The vortices are dissipated very rapidly, as seen in the
movies that can be found on a dedicated website (Carpy and Manceau, 2006).

Fig. 6 shows profiles in the symmetry plane of the phase-averaged velocity Ṽ .
It appears that the k′′–ε′′ model predicts a much too rapid decrease of the peak
velocity, and, in particular, is unable to reproduce the acceleration above the slot
which is observed in the PIV data: the velocity at the slot exit reaches its max-
imum 28.3 m s−1 at phase 45 (see Fig. 2) and, at phase 90, the peak velocity at
about y = 4 mm (3.15h) is close to 35 m s−1. The “fluid particle” with the max-
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imum velocity at phase 90 has been experiencing an acceleration since it issued
from the slot. Fig. 6 shows that this behaviour is reproduced, but underestimated,
by the Reynolds-stress model. In both cases, the convection velocity of the peak is
underestimated (Figs. 6 and 7). The misprediction of the peak velocity and of the
convection velocity are both due to the overestimation of the turbulence intensity,
which is particularly severe with the k′′–ε′′ model, as will be shown in following
sections.

During the suction phase of the cycle, Fig. 8 shows that the fluid is mainly sucked
from the sides. This is the main explanation (apart from experimental errors) of the
fact that, in Fig. 2, the integral of the curve is not zero: what is plotted is the velocity
at the centre of the slot, at the elevation y = 0.08h. Since fluid is mainly blown at
the centre of the slot and sucked from the sides, a very significant part of the fluid
that enters the cavity during the suction phase is not seen at that point. Therefore,
computations cannot be performed using uniform profiles (independent of x): if the
flow in the internal cavity is not solved, it is necessary to base the inlet conditions
on profiles extracted from the PIV velocity fields, as is done in the present study.

This characteristic behaviour of the flow is confirmed by Fig. 9, in which long-time-
averaged velocity fields are shown. It clearly appears that the fluid tends to issue
from the cavity at the centre of the slot and to enter from the sides. Both models
(eddy-viscosity and Reynolds-stress models) correctly reproduce this behaviour.

4.2 Momentum budget

In order to investigate the discrepancies between the two models, it is convenient
to focus on the material derivative of the velocity in the symmetry plane x = 0:

dṼ

dt
= −

1

ρ

∂P̃

∂y
−

∂ <v′′2>

∂y
−

∂ <u′′v′′>

∂x
+ ν

∂2Ṽ

∂xk∂xk

(3)

The acceleration of the fluid particle described above results from a competition
between the first three terms on the right hand side (pressure gradient and Reynolds
stresses), since the molecular diffusion is negligible. The main difference between
the two models obviously lies in the Reynolds-stress tensor, and in particular in the
prediction of the sign of the contribution of normal stress <v′′2>: the shear stress
<u′′v′′> is globally well reproduced by both models, and always contributes as a
sink in Eq. (3).

Figs. 10 and 14 show that the Reynolds-stress model predicts a region of negative
production right above the slot: in the present 2-D case, using the incompressibility
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condition, the production of k′′ reduces to:

Pk′′ =<u′′2>
∂V

∂y
− <v′′2>

∂V

∂y
− <u′′v′′>

(
∂U

∂y
+

∂V

∂x

)
(4)

In the symmetry plane, the last term is zero because <u′′v′′>= 0. Fig. 10 shows that
the first term is positive and the second term is negative. This is a direct consequence
of the unsteadiness of the boundary conditions. Indeed, since the velocity at the slot
exit decreases rapidly after phase 45 (Fig. 11a→b), the partial derivative ∂V/∂y at
phases >45 deg is positive between the slot exit (y = 0 mm) and the location of
the peak velocity (Fig. 11c→d): for instance, it is seen in Fig. 11 that at phase 90,
∂V/∂y is positive between y = 0 mm and y ≃ 4 mm. Therefore, in or close to the

symmetry plane, the second term in the RHS of Eq. (4) is necessarily negative, and
leads to a decrease of <v′′2>, since this term is actually 1

2
P22. This mechanism, due

to a locally positive streamwise velocity gradient, similarly to the case of the flow in
a convergent nozzle, can be expected in many unsteady flows, in particular in pulsed
jets.

On the contrary, the first term, which is 1

2
P11, is positive. The production of k′′ is

negative because <v′′2> is larger than <u′′2> in the jet.

This phenomenon was observed in the far field of a transient axisymmetric tur-
bulent jet submitted to a large and sudden decrease in its ejection velocity (Borée
et al., 1997). During the velocity decrease, analysis of the transient turbulent field
shows a reduction of the Reynolds-stress tensor anisotropy. It is thus clear that in
this two different flows, the combination of anisotropy in the jet and decrease of the
velocity at the slot exit after the maximum necessarily implies negative production.
Kinetic energy is thus transfered from turbulence to the oscillating motion through
the component <v′′2>. The other components <u′′2> and <w′′2> also lose their
energy via redistribution to <v′′2>.

The acceleration of the fluid particle observed on Fig. 6 is thus due to the fact that
the third term in the RHS of Eq. (3), the shear stress, is not sufficient to balance
the first two terms, in which the pressure gradient is dominant.

With the standard k′′–ε′′ model, which is unable to predict negative production,
the picture is reversed: instead of providing energy to the oscillating motion, <v′′2>
increases rapidly and this misprediction is sufficient to changes the sign of the mo-
mentum budget (Eq. 3). The previously quoted increase of the peak velocity between
phases 45 and 90 is then missed: the peak velocity is much too weak, as seen in Fig. 6,
which leads to too short a penetration of the jet into the quiescent air.

Fig. 12 shows profiles of long-time averaged velocity V . Surprisingly, despite the
strong overestimation of k′′, shown in Fig. 15, the k′′–ε′′ model reproduces the spread-
ing of the jet better than the RSM. This is a good example of the beneficial effect
of the compensation of errors: basing the comparison of the relative performance of

10



the models on long-time-averaged velocity profiles is clearly misleading.

The RSM also predicts regions of negative production at the periphery of the large
eddies (Fig. 14a). A detailed analysis (not shown here) indicates that production in
these regions are dominated by the first two terms in Eq. (4): <u′′2> − <v′′2> is
negative and ∂V/∂y is positive.

4.3 Misalignment of the strain and anisotropy tensors

It is well known that negative production results from a misalignment of the proper
axes of the strain and anisotropy tensors: in particular, in flows subjected to periodic
irrotational strains, a time lag is observed between these two tensors, which is at the
origin of a turbulence decay (see, e.g., Hadžić et al., 2001). The strain and anisotropy
tensors are both 3× 3 symmetrical tensors: the eigenvectors form orthogonal bases.
Since the flow field is 2 dimensional, the third eigenvector is the same for both
tensors and aligned with the z-axis. Let θ be the angle between the eigenvectors of
the anisotropy tensor a′′ and those of the strain tensor S̃ in the x–y-plane, as shown
in Fig. 16.

The anisotropy tensor a′′, defined by a′′ij =< u′′

i u
′′

j > /k′′
−

2

3
δij , can be written:

a′′ =




λ1 0 0

0 λ2 0

0 0 λ3




(5)

in its own eigenaxes, where λi’s are the three eigenvalues (with, arbitrarily, λ1 >
λ2 > λ3). In the same basis, the strain tensor reads:

S̃ =




S̃11 S̃12 0

S̃12 S̃22 0

0 0 0



=




−β cos 2θ −2β cos θ sin θ 0

−2β cos θ sin θ β cos 2θ 0

0 0 0




(6)

where β is the positive eigenvalue of S̃. Unlike eddy-viscosity models, the production
term in RSM does not need modelling, and reads:

Pk′′ = −ka′′ : S̃ = kβ(λ1 − λ2) cos 2θ (7)

For instance, in the symmetry plane, just above the slot exit, at phase 60 (Fig. 14),
the eigenvalues of the anisotropy tensor are λ1 = a22 and λ2 = a11, and the eigen-
vectors are aligned with the y- and the x-axes, respectively. The positive eigenvalue
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of S̃ is β = ∂V/∂y, and its eigenvectors are aligned with x- and the y-axes, respec-
tively, such that θ = 90 deg, and the production is negative. Fig. 17 illustrates the
correspondence between θ and the regions of negative production at phase 60.

The k′′–ε′′ model is of course unable to capture such a mechanism because the
anisotropy and strain tensors are forced to be directly in phase, leading to an over-
estimation of turbulent kinetic energy, as shown in Fig. 15, which is in turn at
the origin of the wrong prediction of the peak velocities, as shown in section 4.2.
Therefore, the stress-strain lag, whose role was emphasized by Hadžić et al. (2001)
in the case of homogeneous turbulence subjected to periodic compression-dilatation
strains, also plays a fundamental role in the present flow.

4.4 Vortex generation

Using standard vortex generation analysis, it can be shown that the vortex dipole
created during a cycle is mainly driven by inviscid dynamics. Indeed, let Σ be the
part of the x–y-plane delimited by a the line ∂Σ = ABCDE, as shown in Fig. 13.
The time-derivative of the circulation Γ along ∂Σ is given by:

∂Γ

∂t
=
∮

∂Σ

∂Ũ

∂t
· dℓ =

∫∫

Σ

∂ω̃

∂t
dS (8)

where the vorticity ω̃ is the component in the z–direction of the curl of the velocity
vector ∇× Ũ . In an inviscid 2D flow, the material derivative of vorticity is zero,
such that:

∂Γ

∂t
= −

∫∫

Σ

∂ ω̃ Ũk

∂xk

dS = −

∮

∂Σ
ω̃ Ũknkdℓ = −

∫ h/2

0

ω̃ Ṽ dx (9)

where the third equation holds because BC is a wall, CD and DE are supposed
sufficiently far from the blob of vorticity (ω̃ ≃ 0), and ω̃ = 0 on the symmetry line
EA. Just at the outlet of the slot, ∂U/∂y is small compared to ∂V/∂x, such that
Eq. (9) reduces to:

∂Γ

∂t
= −

Ṽ 2

0

2
(10)

where Ṽ0 is the velocity at the centre of the slot (x = 0).

The circulation along ∂Σ predicted by a purely inviscid dynamics can thus be
estimated at every time using Eq. (10), from the experimental value of Ṽ0. Now,
using the Lamb–Oseen (Lamb, 1945) model for a vortex:

Ṽθ(r) =
Γ

2πr

(
1− e−r2/R2

)
(11)
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an estimation of the velocity field is obtained (r and θ are the cylindrical coordinates
with respect to the vortex centre). In Eq. (11), the only parameters that cannot be
predicted by the inviscid theory are the location of the vortex centre and the radius
of the vortex core R. In Fig. 18, the locations (x0, y0) and (−x0, y0) of the centres of
the vortices were determined from the PIV velocity field, and the velocity profiles
were extracted at y = y0. The radius of the vortex core R is then obtained from the
velocity gradient ∂V/∂x at the centre of the vortices.

The velocity induced by the vortex dipole is the vectorial sum of the velocities
induced by each vortex:

Ṽ tot
θ = Ṽθ(r) + Ṽθ(r

∗) (12)

where r∗2 = (x+ x0)
2 + (y − y0)

2. Taking the x–derivative of Eq. (12) at (x = x0, y = y0),
shows that R can be evaluated by:

1

R2
=

2π

Γ



∂Ṽ tot

θ

∂x

∣∣∣∣∣∣
x0,y0

+
Γ

8πx2

0


 (13)

The excellent agreement in Fig. 18a of the Lamb–Oseen model with the experi-
mental profile shows that, up to this phase, the vortices are mainly driven by an
inviscid dynamics: despite a significant level of velocity fluctuations (above 5 %),
the flow is more transitional than fully turbulent when it issues from the slot. It is
moreover difficult to estimate the relative contribution in the velocity fluctuations
of the deviation from periodicity in the diaphragm motion. In Fig. 18b, it can be
seen that the vorticity injected through the slot has partly been dissipated at phase
135. Since the radius of the vortex cores is not given by the inviscid theory but
rather chosen to fit the profile, the Lamb-Oseen vortices still reproduce accurately
the experiment in the region −0.002 m < x < 0.002 m. However, outside this region,
it is observed that the inviscid theory predicts too strong a backflow, which shows
that the circulation Γ is overestimated, since in this region, Eq. (11) goes asymptoti-
cally to Ṽθ(r) = Γ/(2πr). This conclusion is completly independant of the particular
choice of R.

In such a transitional region, what is expected from turbulence models is to influ-
ence the flow as little as possible. As shown in section 4.2, the k′′–ε′′ model strongly
overestimates the turbulent energy. Therefore, a strong viscous term is artificially
added to the vorticity equation, and, in turn, introduced in Eq. (9). The circula-
tion is then dissipated, which explains at the same time why the acceleration of the
fluid particle on the centreline is missed and why the convection velocity is under-
estimated (Fig. 18 shows that the convection velocity is a consequence of mutual
induction of the vortex dipole).

13



5 Conclusions

The turbulence rate of the synthetic jet studied in the present work is above 5%
at the slot exit and can reach 20% around the vortex core, which could question
the use of turbulence models. Indeed, despite this significant level of fluctuations,
the analysis of the dynamics of the vortex dipole shows that the flow is more tran-
sitional than fully turbulent. Nevertheless, in industrial applications (Getin, 2000;
Ben Chiekh et al., 2003; Amitay et al., 2001) synthetic jets interact with the de-
veloped turbulence of the flow to be controlled: therefore, a turbulence model must
be able to reproduce the dynamics of the synthetic jet region as well as the fully
turbulent region. This is very challenging for statistical modelling.

The present work was dedicated to the investigation of the relative performance
of two closure levels: eddy-viscosity and Reynolds-stress models. The solutions are
free from turbulent eddies (i.e., represent only the oscillating motion), which shows
that the standard models derived for statistically steady flows can also be suitable
for flows treated in phase-averaging.

However, the results clearly demonstrate the superiority of the Reynolds-stress
model. Indeed, the k′′–ε′′ model severely alters the evolution of the vortex dipole: the
generation of the large-scale periodic contra-rotating vortices are directly inherited
from the inviscid dynamics, but their dissipation and their convection velocity are
driven by the level of viscosity (molecular and turbulent). The k′′–ε′′ model predicts
a much too high turbulence energy, a rapid decrease of the peak velocity, and,
consequently, too short a penetration of the jet into quiescent air. The Reynolds-
stress model gives a much more realistic solution, but slightly underestimates the
peak velocities, the convection velocity and the spreading rate of the jet.

The analysis of the turbulence production mechanisms shows that the discrepan-
cies between the two models can be traced to the presence, during the deceleration
phase, of a region of negative production that plays a crucial role in the global dy-
namics of the flow. Such a negative-production region is due to the combination of
the anisotropy of turbulence in the jet and the positive gradient of velocity in the
streamwise direction, which are both present in every pulsed jet. Since the k′′–ε′′

model is not able to account for the stress-strain lag at the origin of the negative
production, it predicts an erroneous, intense increase of turbulent energy, which is
sufficient to change the sign of the momentum budget.

The present study clearly pleads against the use of linear eddy-viscosity models
for this type of flows. Rumsey et al. (2004) arrived at the opposite conclusion by
synthetizing the results of the 2004 CFD validation workshop on synthetic jets and

turbulent separation control : they concluded that linear eddy-viscosity models pro-
duce the best results among URANS models, whatever the formulation used (SA,
standard k–ε, SST).
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Indeed comparisons of long-time-averaged quantities are misleading, because of
compensation of errors. When phase-averaged quantities are compared in details,
the deficiencies of linear eddy-viscosity models clearly appear. In order to evaluate
the ability of the models to reproduce the unsteady dynamics of the flow, it is much
more relevant to focus on the behaviour of the vortex dipole, in terms of location,
intensity, convection velocity and penetration into the ambient fluid: the Reynolds
Stress Model is able to reproduce the correct dynamics, contrary to the k′′–ε′′ model.

However, since the turbulence is far from equilibrium in the region close to the
slot exit, it is also difficult for a Reynolds-stress model to reproduce accurately the
interaction between the turbulence and the vortex dipole. Bremhorst et al. (2003)
showed the beneficial effect of multiscale k′′–ε′′ modelling in an axisymmetric pulsed
jet. Their study, together with the present study, suggests to investigate the per-
formance of multiscale Reynolds-stress models (e.g., Schiestel, 1987; Cadiou et al.,
2004).
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Ṽ
(m

s−
1
)

+ PIV

−30

−20

−10

 0

 10

 20

 30

 0  50  100  150  200  250  300  350

Phase (deg)

Fig. 2. Measured vertical velocity over the centre of the slot as a function of phase (x=0,
y=0.1mm).



(a) coarse grid (b) middle grid (c) fine grid

Fig. 3. Computational grids.



Ṽ
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Fig. 17. Links between Pk′′ (Dashed lines = negative contours) and regions where θ >45 deg
(in grey).
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Fig. 18. Velocity profiles Ṽ (x) at (a): phase 90, y = 3.6 mm; (b): phase 135, y = 6.6 mm.

◦ PIV data; Velocity induced by each vortex; Velocity induced by the vortex
dipole.


