Analytical solutions for two-level systems with damping
Christian Brouder

To cite this version:

HAL Id: hal-00115837
https://hal.archives-ouvertes.fr/hal-00115837
Submitted on 23 Nov 2006
Two-level systems have become almost ubiquitous in modern physics. They are found for instance in laser physics, magnetic resonance spectroscopies, quantum computers, quantum teleportation and optoelectronics. The state of a two-level system can be described by the so-called Landau-Lifshitz-Gilbert (LLG) equation

\[\dot{\mathbf{M}} = -\gamma \mathbf{M} \times \mathbf{B} + \frac{\alpha}{M} \mathbf{M} \times \dot{\mathbf{M}}, \]

where \(M = |\mathbf{M}| \), \(\dot{\mathbf{M}} = d\mathbf{M}/dt \) and \(\alpha > 0 \). It was shown that the LLG equation provides a realistic model of ferromagnetic resonance, micromagnetics, spin-valve dynamics, the magnetism of thin films and nanomagnets, the dynamics of domain walls in various geometries. Cheng and coll. recently proved that the LLG equation provides a realistic model of ferromagnetic resonance, micromagnetics, spin-valve dynamics, the magnetism of thin films and nanomagnets, the dynamics of domain walls in various geometries. Cheng and coll. recently proved that the LLG equation provides a realistic model of ferromagnetic resonance, micromagnetics, spin-valve dynamics, the magnetism of thin films and nanomagnets, the dynamics of domain walls in various geometries. Cheng and coll. recently proved that the LLG equation provides a realistic model of ferromagnetic resonance, micromagnetics, spin-valve dynamics, the magnetism of thin films and nanomagnets, the dynamics of domain walls in various geometries. Cheng and coll. recently proved that the LLG equation provides a realistic model of ferromagnetic resonance, micromagnetics, spin-valve dynamics, the magnetism of thin films and nanomagnets, the dynamics of domain walls in various geometries. Cheng and coll. recently proved that the LLG equation provides a realistic model of ferromagnetic resonance, micromagnetics, spin-valve dynamics, the magnetism of thin films and nanomagnets, the dynamics of domain walls in various geometries.

We describe now the transformation from the solution of the Bloch equation to the solution of the LLG equation. Consider a solution of the Bloch equation \(\mathbf{M}(\gamma) = -\gamma \mathbf{M}(\gamma) \times \mathbf{B} \), where the dependence of \(M \) on the gyromagnetic factor was written explicitly and where \(\mathbf{B} \) is a real function of \(t \). Assume now that \(\mathbf{M}(\gamma) \) is an analytic function of \(\gamma \). This allows us to define \(\mathbf{N} = \mathbf{M}(\bar{\gamma}) \), where \(\bar{\gamma} = \gamma/(1-i\alpha) \). This gives us

\[\dot{\mathbf{N}} = \dot{\mathbf{N}}(\bar{\gamma}) = -\gamma \mathbf{M}(\bar{\gamma}) \times \mathbf{B} = -\frac{\gamma}{1-i\alpha} \mathbf{N} \times \mathbf{B}. \]

The equation of motion implies that \(M^2 = \sum_i M_i^2 \) does not depend on \(t \). We define now

\[\xi = \frac{N_x + iN_y}{M + N_z}, \]

If we calculate the derivative of \(\xi \) with respect to \(t \), taking account of the fact that \(M \) does not depend on time, we find

\[\dot{\xi} = \frac{N_x + iN_y}{M + N_z} - \frac{(N_x + iN_y)\bar{N}_z}{(M + N_z)^2} \]

If we substitute the equation of motion for \(\dot{\mathbf{N}} \), we can check that \(\xi \) satisfies

\[\dot{\xi} = \frac{i\gamma}{2(1-i\alpha)} (B^{-} \xi^{2} + 2B_z \xi - B^{+}), \]

where \(B^{\pm} = B_x \pm iB_y \). The complex function \(\xi \) is used to define a real vector \(\mathbf{M}' \) by

\[M'_x = \frac{\xi + \xi^*}{|\xi|^2 + 1} M, \]

\[M'_y = -\frac{i\xi - \xi^*}{|\xi|^2 + 1} M, \]

\[M'_z = \frac{1 - |\xi|^2}{|\xi|^2 + 1} M, \]

so that we still have

\[\xi = \frac{M'_x + iM'_y}{M + M'_z}. \]
but M'_t are now real. The question is: what is the equation satisfied by M'? Let us calculate the derivative of M' with respect to t. We have

$$
M'_x = \frac{\dot{\xi} - \dot{\xi}(\xi^2) + \dot{\xi}^*\xi^2}{(\xi^2 + 1)^2} M,
$$

$$
M'_y = -\frac{\dot{\xi} + \dot{\xi}(\xi^2) - \dot{\xi}^*\xi^2}{(\xi^2 + 1)^2} M,
$$

$$
M'_z = -2\frac{\dot{\xi}^* + \dot{\xi}^*\xi}{(\xi^2 + 1)^2} M.
$$

If we express $\dot{\xi}$ and $\dot{\xi}^*$ through equation (4) and its conjugate, we obtain M' in terms of ξ and ξ^*. If we replace them by equation (4) and its conjugate, we obtain, after a lengthy but straightforward calculation,

$$
M'_x = -\frac{\gamma}{1 + \alpha^2} (B_x M'_y - B_y M'_x) - \frac{\alpha \gamma}{(1 + \alpha^2) M} \times (B_x M'_y B_y M'_x - B_x M'_y B_y M'_x - B_x M'_y B_y M'_x - B_x M'_y B_y M'_x)
$$

$$
M'_y = -\frac{\gamma}{1 + \alpha^2} (B_y M'_x - B_x M'_y) - \frac{\alpha \gamma}{(1 + \alpha^2) M} \times (B_x M'_y B_y M'_x - B_y M'_y B_y M'_x - B_x M'_y B_y M'_x - B_x M'_y B_y M'_x)
$$

$$
M'_z = -\frac{\gamma}{1 + \alpha^2} (B_z M'_x - B_x M'_y) - \frac{\alpha \gamma}{(1 + \alpha^2) M} \times (B_x M'_y B_y M'_x - B_y M'_y B_y M'_x - B_x M'_y B_y M'_x - B_x M'_y B_y M'_x).
$$

This can be rewritten

$$
M' = -\frac{\gamma}{1 + \alpha^2} M' \times B - \frac{\alpha \gamma}{(1 + \alpha^2) M} M' \times (M' \times B).
$$

We recognize the Landau-Lifshitz equation, in a form equivalent to the LLG equation. To show the equivalence, use the LLG equation to derive $M' \times M' = -\gamma M' \times (M' \times B) - \alpha M M'$; introduce this expression in the LLG equation and solve for M'. Thus, we have transformed a solution M of the Bloch equation into a solution M' of the LLG equation (4).

We discuss now the simplest example of this transformation, to show how the works in practice. We consider a constant external magnetic field along the z axis, i.e. $B(t) = (0, 0, B_0)$. The solution of the Bloch equation is:

$$
M_x = M \sin \theta_0 \cos(\Omega t + \phi_0),
$$

$$
M_y = M \sin \theta_0 \sin(\Omega t + \phi_0),
$$

$$
M_z = M \cos \theta_0,
$$

where M, θ_0 and ϕ_0 are constants and $\Omega = \gamma B_0$. M is obviously an analytic function of γ and we can substitute $\gamma/(1 - i \alpha)$ for γ in M to define the vector N. This gives us

$$
\xi = \frac{\theta_0}{2} e^{i(\Omega t + \phi_0)} e^{-\alpha \Omega t},
$$

with $\Omega' = \Omega/(1 + \alpha^2)$ and we recover the well-known solution of the LLG equation

$$
M'_x = M \frac{\sin \theta_0 \cos(\Omega t + \phi_0)}{\cosh(\alpha \Omega t) + \cos \theta_0 \sinh(\alpha \Omega t)},
$$

$$
M'_y = M \frac{\sin \theta_0 \sin(\Omega t + \phi_0)}{\cosh(\alpha \Omega t) + \cos \theta_0 \sinh(\alpha \Omega t)},
$$

$$
M'_z = M \frac{\cos \theta_0 (\cosh(\alpha \Omega t) + \sinh(\alpha \Omega t)}{\cosh(\alpha \Omega t) + \cos \theta_0 \sinh(\alpha \Omega t)}.
$$

If $\Omega > 0$, the equilibrium magnetization is $M' = (0, 0, M)$; if $\Omega < 0$, it is $M' = (0, 0, -M)$. As expected, damping transforms a precession dynamics into a motion towards an equilibrium state.

It is convenient to determine directly the influence of damping on the dynamics of the two-level system described in the Schrödinger or Heisenberg picture. For a two-level system, the Schrödinger equation is

$$
\frac{d\psi}{dt} = H(t)\psi,
$$

where ψ has two components ψ_1 and ψ_2. The Hamiltonian can be written $H(t) = (\hbar/2)(B_0(t) + \sum_j B_j(t)\sigma_j)$, where the constant γ has been added for later convenience and where σ_j are the Pauli matrices, so that $\sigma_1\sigma_2 = \delta_{ab} + i\epsilon_{abc}\sigma_c$. Defining $f(t) = \exp(-i/\hbar \int_0^t B_0(t)\sigma_j)\psi_1$ and $\psi(t) = f(t)\psi'(t)$ turn the Schrödinger equation for ψ into a Schrödinger equation for ψ' with the Hamiltonian $H = (\hbar/2)\sum_j B_j\sigma_j$. Thus, without loss of generality, we use the latter Hamiltonian.

Following Feynman and coll. [14], the relation between the density matrix ρ (with matrix elements $\rho_{ij} = \psi_i\psi^*_j$) and the magnetic moment M is $M_x = \rho_{12} + \rho_{21}$, $M_y = i(\rho_{12} - \rho_{21})$ and $M_z = \rho_{11} - \rho_{22}$. Thus, we obtain $\rho = (1/2)(1 + \sum_j M_j\sigma_j)$ and $|M| = 1$. We see that $\xi = \langle M_x + i M_y
angle/(1 + M_z) = \psi_2/\psi_1$. If we diagonalize ρ we recover the states ψ_1 and ψ_2 up to a phase that cannot be specified easily. Therefore, we shall work with the density matrix. The equation of motion for ρ is

$$
\frac{d\rho}{dt} = -\frac{i}{\hbar}[H, \rho].
$$

The commutation relations for the Pauli matrices turn this equation into the Bloch equation

$$
\dot{M} = -\gamma M \times B.
$$

To turn the Bloch equation into the LLG equation, we just replace M by M' and B by $B - (\alpha M')$. If we denote by ρ' the density matrix corresponding to M', we find the equation of motion in the presence of damping

$$
\dot{\rho}' = -\frac{i}{\hbar}[H, \rho'] + \alpha [\rho', \rho'].
$$

In other words, the damping term of the LLG equation is transformed into a nonlinear term $\alpha [\rho', \rho']$ in the equation of motion of the density matrix.
If we replace \mathbf{B} by $\mathbf{B} - (\alpha/\gamma)\dot{\mathbf{M}}$ in the Schrödinger equation itself, we obtain the nonlinear Schrödinger equation

$$\frac{d\psi'_t}{dt} = \left((1 + 2i\alpha|\psi'_2|^2)B_3 - i\alpha\psi'_1(\psi'_2)^*B_+\right)\psi'_1 + (1 + i\alpha)|\psi'_2|^2B_+\psi'_2,$$

$$\frac{d\psi'_t}{dt} = -\left((1 + 2i\alpha|\psi'_1|^2)B_3 + i\alpha(\psi'_1)^*\psi'_2B_-\right)\psi'_2 + (1 + i\alpha)|\psi'_1|^2B_+\psi'_1.$$

Therefore, our method transforms the analytic solution of a Bloch equation into the analytic solution of a nonlinear Schrödinger equation. We also reach the surprising conclusion that the nonlinear terms in the nonlinear Schrödinger equation can describe the influence of damping. However, this damping does not create decoherence: it transforms \mathbf{M} into \mathbf{M}', which is real and satisfies $|\mathbf{M}'| = 1$. As a consequence, $(\rho')^2 = \rho'$ and ρ' is the density matrix of a pure state.

We investigate now the effect of damping on two famous nonperturbative effects in two-level systems: self-induced transparency and dynamical localization.

McCall and Hahn [12] discovered a solution for the hyperbolic secant pulse $\mathbf{B} = (a/\cosh(t/\tau), 0, 0)$. We recall that $\int_{-\infty}^{\infty} dt/\cosh(t/\tau) = \tau \pi$. We consider more generally a spin system submitted to a time-varying magnetic field linearly polarized along Ox: $\mathbf{B} = (b(t), 0, 0)$, where $b(t)$ is only required to be integrable. At time $t = 0$ the spin has the spherical coordinates θ_0 and ϕ_0. Let $f(t) = \int_0^t d\tau b(\tau)$ and $a = (1 - \xi_0)/(1 + \xi_0)$ with $\xi_0 = \tan(\theta_0/2)e^{i\phi_0}$. The solution of the Bloch equation is

$$M_x(t) = M_t \frac{1 - \rho^2}{1 + \rho^2},$$

$$M_y(t) = -2M_t \frac{\sin(x(t) + u)}{1 + \rho^2},$$

$$M_z(t) = 2M_t \frac{\cos(x(t) + u)}{1 + \rho^2},$$

with $\rho = |a|$, $a = \rho e^{iu}$ and $x(t) = \gamma f(t)$. Self-induced transparency occurs when $x(\infty) = 2n\pi$ because, after a long interaction with the external field, the system finds itself in its state at t_0. In the case of the McCall and Hahn pulse, we find $f(t) = 2\sigma(\pi/2)\tanh((t - t_0)/2\tau)$), which tends to $a\pi/2$ for large t. Therefore, self-induced transparency occurs when $a\pi = 4n$ for some integer n.

To determine the effect of damping on this phenomenon, we calculate

$$\xi = \frac{1 - ae^{\gamma t}/f(t)}{1 + ae^{\gamma t}/f(t)}.$$
Therefore,
\[
\langle q^2 \rangle = -i \chi J_1(\chi) \alpha - (\chi/2) J_2(\chi) \alpha^2 + O(\alpha^3).
\]
The off-resonance secular frequency is \[17\] \[\Omega = \epsilon \gamma \langle q^2 \rangle,\] so that
\[
\Omega = -i\epsilon \gamma \alpha J_1(\chi) - \epsilon \gamma \alpha^2 (\chi/2) J_2(\chi) + O(\alpha^3).
\]
The factor \(J_1(\chi)\) is not zero because the Bessel functions \(J_0\) and \(J_1\) have no common zeros \[18\]. In other words, the secular frequency acquires an imaginary part. Barata analyzed the influence of an imaginary part in detail \[20\] and showed that the Floquet structure of the wavefunction generates exponentially increasing terms that destroy the unitarity of the quantum evolution. We have shown that the norm of the wavefunction is conserved by the damped dynamics. Thus, the quantum evolution is still unitary and damping destroys the Floquet structure of the wavefunction. In this last example, damping has a dramatic effect on the dynamics of the system. Indeed, experiments confirm that dynamical localization is very sensitive to external perturbations \[21\].

It was shown in this paper that analytic solutions of the Bloch equations can be transformed into analytic solutions of the LLG equation. The influence of damping leads to interesting results for two-level systems, in particular the transformation of the linear into the non linear Schrödinger equation. The effect of damping was shown to be quite different for self-induced transparency, where it is moderate, and for dynamical localization, where it destroys the structure of the dynamics.

Acknowledgments

I am very grateful to J. Goulon for discussions on the LLG equation.