Metastability in Interacting Nonlinear Stochastic Differential Equations I: From Weak Coupling to Synchronisation

Abstract : We consider the dynamics of a periodic chain of N coupled overdamped particles under the influence of noise. Each particle is subjected to a bistable local potential, to a linear coupling with its nearest neighbours, and to an independent source of white noise. We show that as the coupling strength increases, the number of equilibrium points of the system changes from 3^N to 3. While for weak coupling, the system behaves like an Ising model with spin-flip dynamics, for strong coupling (of the order N^2), it synchronises, in the sense that all oscillators assume almost the same position in their respective local potential most of the time. We derive the exponential asymptotics for the transition times, and describe the most probable transition paths between synchronised states, in particular for coupling intensities below the synchronisation threshold. Our techniques involve a centre-manifold analysis of the desynchronisation bifurcation, with a precise control of the stability of bifurcating solutions, allowing us to give a detailed description of the system's potential landscape, in which the metastable behaviour is encoded.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00115416
Contributeur : Nils Berglund <>
Soumis le : vendredi 6 juillet 2007 - 12:26:08
Dernière modification le : jeudi 7 février 2019 - 16:12:07
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 15:48:12

Fichiers

synchro1_preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nils Berglund, Bastien Fernandez, Barbara Gentz. Metastability in Interacting Nonlinear Stochastic Differential Equations I: From Weak Coupling to Synchronisation. Nonlinearity, IOP Publishing, 2007, 20 (11), pp.2551-2581. 〈10.1088/0951-7715/20/11/006〉. 〈hal-00115416v3〉

Partager

Métriques

Consultations de la notice

1073

Téléchargements de fichiers

159