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Moléculaire, 25030 Besancon
cedex - France

Abstract

A quantum kinetic equation is established for describing the vibrational dynamics
of a nonlinear quantum dimer coupled to a phonon bath. It is shown that a critical
value of the number of quanta discriminates between two dynamical regimes for
the population difference of quanta between the two sites of the dimer. Below the
critical value, the population difference shows low-frequency damped oscillations
revealing a coherent energy transfer associated to the delocalization of a V-quanta
bound state. Nevertheless, these oscillations decay due to the coupling with the
phonon bath so that the dimer reaches an equilibrium configuration in which the
population is uniformly distributed over the two sites. In addition, its exponential
decay supports a small amplitude high frequency modulation in the short time limit.
Above the critical value, the population difference is almost constant in the short
time limit although it still supports a small amplitude high-frequency modulation.
Then, in the long time limit, the coherent energy transfer has disappeared and
the population difference exhibits a purely incoherent exponential decay to finally
converge to the equilibrium.

Key words: Nonlinear quantum dimer; Vibrons; Polarons; Bound states;
Quantum breathers; Relaxation

1 Introduction

Although the energy released by the hydrolysis of adenosine triphophate (ATP)
is a universal source allowing many biological processes, the fundamental ques-
tion arises whether it can be transported from the active sites of a cell to
other regions without being dispersed or dissipated. This feature was first
pointed out by Davydov and co-workers to explain the vibrational energy flow
in a-helices [1]. The main idea is that the released energy, stored in the high-
frequency amide-I vibration of a peptide group, delocalizes along the helix
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leading to the formation of vibrational excitons called vibrons. Their interac-
tion with the phonons of the helix induces a nonlinear dynamics which coun-
terbalances the dispersion. It yields the creation of the so called Davydov’s
soliton which is the solution of the Nonlinear Schrodinger (NLS) equation
within the continuum approximation [2,3]. Moreover, the discrete version of
NLS yields the occurrence of discrete breathers which correspond to time-
periodic and spatially localized solutions [4-6]. Contrary to solitons, they do
not require integrability for their existence and stability and they correspond
to quite general and robust solutions [7].

Unfortunately, no clear evidence has yet been found for the existence of these
nonlinear objects in real proteins and it has been suggested that the solu-
tion is rather a small polaron than a soliton [8-12]. Indeed, the vibron band-
width in proteins is smaller than the phonon cutoff frequency. Therefore, the
non-adiabatic limit is reached and the quantum behavior of the phonons is
fundamental. A vibron is thus dressed by a virtual cloud of phonons which
yields a lattice distortion essentially located on a single site and which follows
instantaneously the vibron. The dressed vibron forms the small polaron.

Recently, the polaron approach has been improved to include the anharmonic-
ity of each amide-I mode [13-17]. When two quanta are excited, the intramolec-
ular anharmonicity and the dressing effect favor an attractive interaction be-
tween them leading to the occurrence of two-polaron bound states (TPBS).
A bound state corresponds to the trapping of the two quanta over only a few
neighboring sites with a resulting energy which is lesser than the energy of
two quanta lying far apart. The separating distance between the two quanta is
localized so that they behave as a single particle delocalized along the lattice
with a well-defined momentum. Since TPBS are the first quantum states which
experience the nonlinearity, they can be viewed as the quantum counterpart
of breathers or solitons [13,14,18-28]. Note that a recent experiment devoted
to the femtosecond infrared pump-probe spectroscopy of the N-H mode in a
stable a-helix [29] was successfully interpreted within this approach.

Within the polaron formalism, the strong vibron-phonon interaction is par-
tially removed so that a polaron-phonon coupling remains. This coupling,
assumed to be small enough to be treated using standard perturbation the-
ory, has been disregarded in most of the previous works. Therefore, the aim
of this paper is to address a comprehensive theory to describe the influence
of this coupling onto the dynamics of bound states involving a large number
of polarons. For that purpose, we consider a simple system formed by two
nearest neighbor amide-I modes embedded in an extended perfect lattice, i.e.
a nonlinear quantum dimer coupled to a phonon bath.

Within the semi-classical approximation, the dimer is described by two cou-
pled NLS equations which give rise to a transition between a delocalized and a



self-trapped dynamics [30]. Kenkre and Campbell [31] demonstrated the tran-
sition by using a closed nonlinear equation for the site-occupation probability
difference in terms of Jacobian elliptic functions. Then, this model was ex-
tended to include dissipation effects [32-34], asymmetry [35-39], and several
other aspects [40-45]. By contrast, the self-trapping transition does not occur
in the quantum regime since the eigenstates of the dimer share the symme-
try of the reflection operator which commutes with the dimer Hamiltonian
[46,47]. As a consequence, they cannot localize the energy. Nevertheless, both
the nonlinearity and the number of quanta control the timescale in the course
of which the energy is exchanged coherently between the two sites. When sev-
eral quanta are initially localized on a given site, the population difference
between the two sites exhibits a rich behavior on different timescales rang-
ing from small amplitude oscillations and collapses and revivals, to coherent
tunneling [48-50].

At present, because the nature of a quantum nonlinear dimer is relatively well
understood, we investigate the influence of a coupling with a phonon bath
which is of fundamental importance to describe the energy transport at finite
temperature [28]. The paper is organized as follows. In Section 2, the two-
site realization of the Davydov model is described and the key observables
required to study the transport properties are introduced. In Section 3, we
first establish the small polaron point of view and summarize the nature of
the polaron quantum eigenstates. Then, the observables are redefined in this
new point of view in terms of the polaron reduced density matrix. In Section 4,
the polaron-phonon coupling is treated and a quantum kinetic equation for the
reduced density matrix is established. This equation is solved numerically in
Section 5 where a detailed analysis of the multi-quanta energy redistribution
is performed. Finally, these results are discussed and interpreted in Section 6.

2 Description of the system

2.1 Model and Hamiltonians

Within the two-site realization of the Davydov model, we consider a dimer
formed by two amide-I modes located at the sites n = 0 and n =1 of a 1D
lattice involving N sites which contain the peptide groups. The nth amide-I
mode behaves as a high-frequency oscillator described by the standard vibron
operators b and b,. The intramolecular anharmonicity is accounted through
the model of Kimball et al. [20] so that the resulting vibron Hamiltonian H,
is expressed as (using the convention i = 1),



H,= 5" [woblb, — AbLbLb,b,] + B (b1 + H.c.) (1)

n=0,1

where H.c. denotes the Hermitian conjugate, wy is the internal frequency of
each amide-I mode, A is the positive anharmonicity parameter and ® repre-
sents the vibron hopping constant between the two sites.

The dimer interacts with the phonons of the lattice which characterize the
external motions of the peptide groups. They correspond to a set of N acoustic
modes, labeled {¢}, which the Hamiltonian is defined as

H, =3 Qala, (2)
g

where a}; and a, are the phonon operators of the gth mode with frequency
Q, = Q. | sin(g/2) |, Q. denoting the phonon cutoff frequency.

Finally, the vibron-phonon interaction Hamiltonian characterizes a random
modulation of the internal frequency of each amide-I mode as

*

A . A*
AH,, = Z(\/—]ive_“q"a}; + \/—%ezq"aq)b}:bn (3)

an

where the coupling constant A, = —2iA,/| sin(g/2) | cos(g/2) is expressed in
terms of the strength of the vibron-phonon coupling A.

2.2 Transport properties

Without any perturbation, the system is in thermal equilibrium at a temper-
ature T at least equal to the room temperature. Therefore, since the relation
fug >> kgT is fulfilled whatever T' (kp denotes the Boltzmann constant),
only the ground state | ®,) with zero vibron is significantly populated. This
is no longer the case for the acoustic phonons (2. << wyp) for which the true
eigenstates are not well defined. As a result, a statistical average is required
by using the phonon density matrix p, defined as

e—Hp/kpT

Pr= Try(e=He/ksT) (4)

In that context, the energy transfer between the two amide-I results from the
excitation of the dimer in a state out of equilibrium. To study this mechanism,
we assume that under the coupling with an external source, V' vibrons are
initially created on the site n = 0. Consequently, the initial density matrix for



the whole system can be written as the tensorial product p = p, ® p, where
Py is defined as

1

Pv = V!bgv | (I)g)<q)g | b(‘)/ (5)

To characterize the vibrational energy flow, we introduce the vibron popula-
tion g,(t) =< bf (t)b,(t) > which represents the average value of the number
of quanta on the nth site at time ¢. Since the full Hamiltonian conserves the
vibron number, i.e. go(t)+g1(t) = V whatever ¢, only the population difference
Ag(t) = go(t) — g1(t) is required. It is written as

Ag(t) = Trlpe™ (bbo — blby)e ] (6)

where the Trace defines an average over the initial condition specified by the
density matrix p and the time evolution corresponds to an Heisenberg repre-
sentation with respect to the full Hamiltonian H = H, + H, + AH,,.

The purpose of the present work is to study the time evolution of the popula-
tion difference Ag(t) depending on the number V' of vibrons initially localized
on the site 0. This evolution is governed by the full Hamiltonian H which can-
not be solved exactly due to the anharmonicities. Therefore, the next section
is devoted to its simplification through the introduction of the small polaron
point of view.

3 Polaron point of view
3.1 Transformation and Hamiltonians

To describe the vibron dynamics in a-helices, the small polaron point of view
has been used in several previous works. Here, we give a brief summary of
the procedure and a detailed analysis can be found in Refs [11-17]. Therefore,
to partially remove the vibron-phonon coupling Hamiltonian, a Lang-Firsov
transformation [51] is applied so that the transformed Hamiltonian is written
as

H =" [@obl by, — AbI2b2] + Egblboblby + ®(0©10,biby + H.c.) + H, (7)

where wy = wy — Ep and A=A+ Ep are expressed in terms of the small
polaron binding energy Ep = 2A2/Q, and where ©,, stands for the dressing



operator defined as

_ 1 Aq —ign T AZ iqn
0, = eXP[—ﬁ an(Q—qe Qg — Q_qe ag)] (8)

The next step of the procedure consists in expressing H as the sum of three
separated contributions as H= H,, + H, + AH. The polaron Hamiltonian
H,,, obtained after performing a thermal average over the phonon degrees of
freedom, is written as

Hyo = [iobf by, — AbfbEb,b,] + Epblboblby + ®(blb, + H.c.) (9)

n

where the effective hopping constant & = ® exp(—S(T)) is expressed in terms
of the coupling constant S(7) defined as

4Fp

5= g | sin(?) | cos’(%) coth(w?gT) (10)

Finally, the remaining part of the polaron-phonon interaction AH is defined
as

AH = Vyblb, + H.c. (11)

where Vp; = ®[0)0;— < ©{6; >

In this new point of view, the operators b/ and b, define small polarons cor-
responding to vibrons dressed by a lattice distortion. The dressing prevents
the delocalization of the polarons for which the effective hopping constant &
is smaller than the bare constant ®. It yields a redshift of the vibrational
frequency of each mode and produces additional anharmonicities characteriz-
ing the interaction between polarons due to the overlap between their virtual
cloud of phonons. Finally, the polaron-phonon coupling remains through the
modulation of the lateral term by the dressing operator fluctuations. Although
these operators depend on the phonon coordinates in a highly nonlinear way,
the interaction has been strongly reduced and a standard perturbation theory
can be applied. This procedure requires the knowledge of the properties of the
unperturbed dimer which are summarized in the next section.



3.2 Polaron eigenstates

As shown in Eq.(9), the Hamiltonian H,, commutes with the operator Y, b:b,,
which counts the total number of polarons. Therefore, the corresponding
Hilbert space £ is written as the tensor product £ = &R & ® ... ® Ey...,
where &y is the subspace which describes V' polarons. A useful basis set to
generate the entire &, subspace, whose dimension V' + 1, is defined as

b;r)pr{(V—P)
| Py = —— ®y) (12)
pi(V = p)!

The vector | p)y, with p = 0,1,...,V, describes the localization of p and
V' — p polarons on the sites 0 and 1, respectively. Note that we shall study
the polaron dynamics after the initial creation of V' quanta. Since the full
Hamiltonian conserves the number of polarons, this dynamics is confined in
the subspace €y. Therefore, the index V' which is implied, will be omitted and
the basis vectors will be simply labeled | p) =| p)v.

Within this basis set, the restriction of the polaron Hamiltonian to the sub-
space &y is expressed as

Hyo(P'p) = €0y + <i>\/(p + )V = p)oppi1 + ci)\/ZD(V —p+1)0pp—1 (13)

where the diagonal part is ¢, = Vg — V(V = 1)A + p(V — p)(24 + Ep). Tt
represents the vibrational energy of the dimer when p and V — p quanta are
localized on the site 0 and 1, respectively. It is the sum of the energies of the pth
and (V —p)th vibrational levels of the modes 0 and 1. Moreover, it accounts for
the additional energy which results from the overlap between the virtual cloud
of phonons dressing polarons located onto different sites. The off-diagonal part
of the Hamiltonian couples nearest neighbor basis vectors. It characterizes
processes in the course of which a single polaron is exchanged between the
two sites of the dimer. Note that Eq.(13) clearly shows the invariance of the
Hamiltonian under the reflection symmetry which transforms the state | p)
into the state | V — p).

When a single polaron is excited, i.e. when V = 1, the anharmonicity does
not affect the quantum properties of the dimer. A resonance takes place be-
tween the basis vectors | 0) and | 1) which have the same energy ¢y = .
The polaron is thus delocalized between these two states so that the resulting
eigenstates correspond to their symmetric and antisymmetric superimposi-
tions. The energy splitting between the two eigenstates is equal to 2&. For
greater V' values, a similar situation is recovered in the harmonic situation,
i.,e. A=0and Ep = 0. Since ¢, = Vwy whatever p, a resonance occurs between
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the different basis vectors. The eigenstates are delocalized over the entire basis
set and the corresponding energy levels, centered around V&, form a set of
equidistant levels separated by 2®.

By contrast, excepted for the simple case V = 2, Eq.(13) cannot be solved
analytically in the anharmonic situation and a numerical diagonalization is
required. In Fig. 1, the nature of both the energy levels and the corresponding
wave functions is illustrated for V =5, ® =78 cm™!, A =8 cm™!, E = 3
cm !, Q. =92 cm ! and T = 100K. The anharmonicity breaks the resonance
between nearest neighbor | p) vectors and it produces localized states which
basically keep the memory of the local basis set. More precisely, due to the
reflection symmetry a resonance between the states | p) and | V — p) remains
so that these two vectors tend to hybridize preferentially to create a symmetric
and an antisymmetric superimpositions. The two lower levels clearly show a
strong hybridization between | 0) and | V') which results in a very small energy
splitting approximately expressed as (see for instance [46-50])

2V Y

A= DAt By )

These two states refer to V-polaron bound states delocalized between the two
sites of the dimer. From a dynamical point of view, these bound states allow



for a coherent energy transfer between the two sites of the dimer which results
in oscillations of the energy flow with a period of about AE~!. The increase
of this period with both anharmonicities and the number of quanta yields the
quantum picture of the classical self-trapping. For greater p values, although
the resonance €, = ey _, favors the coupling between | p) and | V —p), nearest
neighbor states | p +£ 1) and | V — p &+ 1) participate in the hybridization
mechanism and they make easier the extension of the eigenstates over the
entire local basis.

3.8 Reduced density matriz

Since the vibron number is conserved under the Lang-Firsov transformation,
the vibron population is equal to the polaron population. As a consequence,
in the new point of view, the time evolution is given by the Heisenberg repre-
sentation with respect to the full Hamiltonian H (Eq.(7)) and the population
difference between the two sites of the dimer is expressed as

Ag(t) = Tr[pe* (bibo — blby)e ) (15)

where p = pUG)ngp@(‘)/ is the transformed initial density matrix. The polaron
density matrix is equivalent to the vibron density matrix, i.e. p, =| V)(V |,
whereas the phonon density matrix has been modified. Indeed, since a polaron
in the new point of view corresponds to a vibron dressed by a lattice distortion,
a vibron in the old point of view thus describes a polaron dressed by a local
modification of the phonon field. As a consequence, the creation of V' vibrons
on the site 0 yields V polarons accompanied by a local disturbance of the
phonon state. Therefore, the resulting phonon density matrix differs from the
equilibrium distribution (Eq.(4)) and accounts for this local modification.

By introducing the local basis set { | p) }, the population difference is rewritten
as

Ag(t) = i@p —V)o(p,p,t) (16)

p=0

where o(p1, pe, t) is the reduced polaron density matrix at time ¢. It is defined
as

o (p1,pa, t) = Tr| VIV | O 0,0V e | po)(py | e 1] (17)

and it satisfies the initial condition o(p1, p2,0) = 0p, v0p,.v-



The reduced density matrix is the central object of the present study. It de-
scribes the polaron states at time t after performing the average over the
phonon degrees of freedom. A diagonal element o(p,p,t) characterizes the
population of the state | p). A non diagonal element o(p;, p2,t) measures the
coherence between the two states | p;) and | po) when the quantum state of
the dimer is a superimposition of such states. The knowledge of the reduced
density matrix allows us to compute in principle all the required observables
to describe the energy flow in the dimer. Therefore, the following section is
devoted to the derivation of a quantum kinetic equation to study its time
evolution.

4 Quantum kinetic equation

In the polaron point of view, the initial density matrix for the whole system can
be expressed as p, ppp. where p. = p; IGSV,OPGX denotes the correlation density
matrix which depends on the phonon degrees of freedom only. It accounts for
the difference between the initial phonon density matrix in the polaron point
of view and the equilibrium distribution p, (Eq.(4)). Therefore, in Eq.(17), the
total trace can be splitted into partial traces T'r,, and T'r, over the polaron
and phonon degrees of freedom, respectively. As a consequence, within the
Liouville space formalism [52], the reduced density matrix is rewritten as

o (p1, 02, t) = Trool| VIV | Trylpppee’] | po)ipn |] (18)

where £ = [H, ...] is the Liouvillian associated to the full Hamiltonian.

To determine the time evolution of the reduced density matrix, we use the
Zwanzig-Mori’s projector technique [52-54] which has demonstrated its use-
fulness in eliminating irrelevant information from a system, i.e. the phonon
dynamics in our case, and extracting only the information that is desired.
Therefore, by performing a second order perturbation theory with respect to
the polaron-phonon coupling AH (Eq. (11)), it is straightforward to show that
the reduced density matrix satisfies the kinetic equation

0 .
aa(plap%t) = _ZZ[Hpo(plap)O-(p:pQ;t) - 0-(p13p’ t)Hpo(paPQ)]
D

t
-y /dTJ(pl,pz;p'l,p’z,T)U(p’l,p’g,t— 7) + F(p1, P2, t) (19)
PPy 0

where J (p1, po; P, ph, t) is the kernel memory defined as
1, D2
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T (p1,p2; P, Py, t) =
+ > (AH (p1,p, ) AH(p', ', 0))pGpo (P, P2, —t) Gpo(p, P, t)

pp’

+ Z(AH(pIQa b, O)AH(p’aPQ: t)>pGp0(pa p’a _t)Gpo(pla plla t)

pp’

- Z<AH(pap27 t)AH(plapr 0)>pGp0(pl2apa _t)Gpo(plaplla t)

pp’

— > (AH((ph, p,0)AH (p1, 7', 1)) pGpo(p, 2, —t)Gpo(P', D1, 1) (20)

pp’

and where F(py, po,t) denotes an initial force expressed as

f(plap% t) =
+1 Y p{pAH (p,p2,1))pGpo(V, D, —t) Gpo(p1, V, 1)
— 1Y p(pAH (p1,0,1))pGpo(V, P2, =) Gpo(p, V, 1) (21)

In Egs.(20) and (21), AH(p1, p2) is the representation of the coupling Hamil-
tonian AH in the basis set | p). It is an operator in the space of the phonon de-
grees of freedom, only, and its time dependence is obtained through an Heisen-
berg representation with respect to the phonon Hamiltonian H,,. The propa-
gator G, (p1, P2, t) is the representation of the evolution operator exp(—iHp,t)
which describes the free evolution of the unperturbed dimer.

In Eq.(19), the first term in the right-hand-side characterizes the coherent dy-
namics of the unperturbed polarons which corresponds to the free evolution
of the reduced density matrix under the influence of the polaron Hamiltonian
H,,. By contrast, the two other terms in the right-hand-side of Eq.(19) de-
scribe the influence of the coupling with the phonon bath. The kernel memory
Eq.(20) represents the relaxation mechanisms. It accounts for the modification
of the dynamics of the reduced density matrix at time ¢ due to the history of
the polaron-phonon coupling between ¢ = 0 and ¢. The initial force Eq.(21),
which vanishes when p. = 1, originates in the initial statistical correlations
between the polarons and the phonons.

In Egs. (20) and (21), both the kernel memory and the initial force are ex-
pressed in terms of the correlation functions of the polaron-phonon coupling
Hamiltonian. These correlation functions are characterized by the correlation
time 7, of the phonon bath which measures the time for which the correla-
tions vanish. In a general way, 7. is very short for low-dimensional molecular
lattices and we have verified that it is about 0.5 ps in the present situation.
Therefore, we assume that 7. is shorter than the typical time governing the
free evolution of the reduced density matrix, about the invert of the effective
hopping constant, which is typically greater than 5 ps. As a consequence, this
assumption allows us to invoke two simplifying approximations. First, we as-

11



sume that over a timescale of about 7., a polaron does not have enough time
to realize a transition between the two sites of the dimer. The non diagonal
elements of the free propagator G, (p1, pe, t) can thus be neglected in Eqgs.(20)
and (21). Then, the Markovian limit of the kinetic equation is assumed to be
reached. Finally, the initial force will be disregarded because it produces only
small perturbations in the evolution of the reduced density matrix in the very
short time limit.

Therefore, these assumptions yield an approximated quantum kinetic equation
for the reduced density matrix as

2 o(t) = ~i(Lyo — iR)a (1) (22)

where L£,, = [Hpo, -..] is the Liouvillian associated to the unperturbed dimer
Hamiltonian and R is the relaxation operator which corresponds to the in-
tegration of the kernel memory. From the expression of the polaron-phonon
coupling Hamiltonian (Eq.(11)), its representation in the basis set | p) is de-
fined as

R(p1, p2; 0y, 1) =
+ [Fpl-l—l,m (pl + 1)(V pl) + Fpl Lpzpl( )] P} ,p1 102,172
+ [F;2+1,;D1 (p2 + 1)(V p2) + sz 1,p2p2( )] P1:P1 pzap2

)

)

t Yp1+1,p2 \/(pl + D)V =p)1 +2)(V —p1 — 1)511’ p1+20p} p2

+ Y10V (P2 + DV = p2) (02 + 2)(V = P2 — 1)y u Gty o2
+’7p1—1,p2\/p1(v —-p+ 1) =)V -p1+ 2)51)’1,1)1 25;0’2,102

+7;2_1,p1\/p2 + (V =p2+1)(p2 = 1)(V = p2 + 2)dp, . g}, p—2

— [Cppot1 + F;Z,p1+1]\/(p1 + 1DV =p1)(p2 + 1)(V - p2)5p’1,p1+15p’2,p2+1
—[Cpipo—1+ F;Z,pl_l]\/pl(v — 1+ 1)p2(V = p2 4 1)0p, p1-10p} pr—1

— prpot1 + 7;2,],1_1]\/191(‘/ —pi+ D)(p2 + 1)V = p2)dp, p1 10, pat1

— [Vp1,pr—1 T+ 7;2,p1+1]\/(p1 + DV =p1)p2(V = pa + 1)0p, 11100, 9,1 (23)

where the parameters I'y, ,, and 7,, ,, are defined in terms of the integral of
the correlation functions of the dressing operator fluctuations as (see Eq.(11))

o
P1=P2 / %1 ‘/10 Gpo(plaplat)G;o(anp% t)
0

12



o

Yorgn = [ (Vo1 (0)Vor 0))yGro(1, 1, )G (2, o, ) (24)
0

The relaxation operator accounts for the mixing between the different ele-
ments of the reduced density matrix mediated by the polaron-phonon cou-
pling. It conserves the norm of the density matrix and it satisfies the sum
rule 3>, R(pp, p1,p2) = 0. It contains all the physical information involved in
the phase relaxation responsible for the return to a quasi-equilibrium. Indeed,
since the coupling with the phonon bath conserves the vibron number, it ac-
counts for dephasing mechanism only and does not allow for energy relaxation.
Therefore, the quasi-equilibrium corresponds to a stationary solution for which
the vibron number is equal to V. This solution differs from the thermal equi-
librium which is assumed to occur over a timescale of about several orders of
magnitude greater than the dephasing time. In fact, the quasi-equilibrium de-
scribes a situation in which the random fluctuations of the phonon bath have
destroyed the quantum coherences in the dimer so that the density matrix
becomes diagonal.

Therefore, Eq.(22) shows that the dynamics of the dimer is governed by the
effective Liouvillian L. ;s = £,,— R which describes both the coherent energy
transfer and the relaxation mechanisms. In the subspace &y, it is a tetradic
operator represented by a ((V+1)?x (V' +1)?) matrix which the diagonalization
leads to (V + 1)? complex eigenvalues ), and eigenvectors ¥, (p1,ps) labeled
by the index 7. Form Eq.(22), the reduced density matrix is thus expressed in
terms of the characteristics of the effective Liouvillian as

o(p1,p2,t) =Y Wy(p1, p2) V5 (V, V)e " (25)
n

Finally, by inserting Eq.(25) in Eq.(16), the population difference between the
two site of the dimer can be expanded in terms of the effective Liouvillian
eigenvectors. Due to the reflection symmetry of the dimer, the population
difference is thus written as

M|<}

=3 > (V =2p)[oy(V = p,V = p) — oy(p,p)]e " (26)

n p=0

where o, (p1,p2) = ¥y (p1,p2)¥;(V; V) and where the sum over p extends to
the integer value of the ratio V/2.
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5 Numerical results

In this section, the previous formalism is applied to study the time evolution
of the population difference Ag(t). To proceed, the parameters I', ,, and
Ypu,ps» Tequired to build the relaxation operator (Eq.(23)), are first evaluated
using a numerical integration. Then, the effective Liouvillian is calculated
and its numerical diagonalization is performed. From the knowledge of the
corresponding eigenvalues and eigenvectors, the population difference is finally
computed by using Eq.(26). These calculations are carried out using typical
values for the relevant parameters involved in the theory. The vibron hopping
constant is fixed to the well admitted value ® = 7.8 cm ™! [22,11] and the
intramolecular anharmonicity is A = 8.0 cm™! [13,29]. The phonon cutoff
frequency is equal to €, = 92 cm~! and the small polaron binding energy is
fixed to Eg =3 cm™ L.

The time evolution of the population difference is illustrated in Fig. 2 for 7' =
100 K and V =1,2,...,10. When V = 1, Ag(t) exhibits damped oscillations
revealing a coherent energy transfer between the two sites of the dimer. The
frequency of these oscillations, about 14.04 cm™!, is very close to 20. They
are exponentially damped with a damping time equal to 11 ps. As a result,
the population difference tends to zero so that the equilibrium corresponds
to a uniform energy distribution over the two sites of the dimer. When V =
2, a coherent energy transfer remains and the population difference shows
low-frequency damped oscillations which converge to the equilibrium. This

14
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behavior is characterized by a frequency equal to 7.02 cm ! and a damping

time of about 5 ps. However, Ag(t) exhibits a small amplitude modulation
which the frequency is about 26.5 cm™!. When V = 3, Ag(t) behaves as
previously and the coherent energy transfer is characterized by a frequency and
a damping time equal to 1.96 cm~! and 5.2 ps, respectively. The population
difference supports a high-frequency modulation with a frequency about 29
cm ! and which disappears over a timescale of about 2.8 ps. Finally, when V =
4 and 5, Ag(t) still exhibits a damped coherent energy transfer with a damping
time equal to 5.2 ps and 6.6 ps, respectively. However, the corresponding
low frequencies are to small to be observed whereas the high-frequency small
amplitude modulations in the short time limit appear clearly.

In a marked contrast, a fully different behavior occurs when V' > 6. The
population difference is always positive and it does not exhibit low-frequency
oscillations. In the short time limit, the exponential damping has disappeared
so that Ag(t) slightly decreases from its initial value over a timescale which in-
creases with V. It supports a small amplitude modulation which the frequency
increases with V. For instance, this frequency is equal to 90 cm ! when V = 6
and it reaches 169 cm ' when V' = 10. In the long time limit, Ag(t) returns to
the equilibrium according to a purely exponential decay which the damping
time increases with V. When V' = 6, this damping time is equal to 15.6 ps
whereas it reaches 36.4 ps when V' = 10, i.e. about one order of magnitude
greater than the damping time observed for V' < 6. This feature indicates that
the larger is the number of polaron, the slower is the energy transfer between
the two sites of the dimer.
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As shown in Fig. 3, the same features occur when 7" = 300 K and a transi-
tion which discriminates between two dynamical regimes still remains when V'
ranges between 5 and 6. However, the increase of the temperature is respon-
sible for a decrease of the different damping times. Therefore, both the return
to the equilibrium and the damping of the small amplitude high-frequency
modulation occur over a shorter timescale. In addition, the frequency of the
coherent energy transfer is reduced.

To understand these features, a detailed analysis of the eigenvalues of the
effective Liouvillian is displayed in Fig. 4. For each V value, the spectrum
shows (V +1)* complex eigenvalues A, = A; —i\] represented by a point which
the coordinates are ()\;7, )\Z) Several general properties are observed. First, the
imaginary part of each eigenvalue is always negative (\; > 0 whatever 7). This
feature ensures the convergence of the population difference in the long time
limit. Then, each spectrum exhibits a set Sy containing the eigenvalues which
the real part vanishes, i.e. Sp = {A,|\;, = 0} . Its dimension is at least equal
to (V 4 1), i.e. the number of eigenstates of the unperturbed dimer. Among
the eigenvalues belonging to Sy, a single one vanishes exactly. It characterizes
the equilibrium distribution. Finally, the eigenvalues which do not belong to
So can be grouped into pairs connected to two eigenvalues with the same
imaginary part but with opposite real part.

From the comparison with the results displayed in Fig. 2, Fig. 4 clearly shows
that when V' < 6 the low-frequency damped coherent energy transfer is de-
scribed by the two complementary eigenvalues with the smallest non vanishing
real part in absolute value. Indeed, in a perfect agreement with the measure-
ment obtained form Fig. 2, the spectrum yields frequencies equal to 14.06
cm !, 7.20 cm ! and 2.01 cm ™! when V = 1,2 and 3, respectively. For V = 4
and 5, the spectrum gives the frequencies 0.18 cm™* and 0.07 cm ™! which were
not measured in Fig. 2 due to their small values. Note that the imaginary
part of the corresponding eigenvalues defines the damping rate in a perfect
agreement with those observed in Fig. 2. These results show that as when V
increases, the smallest non vanishing real part in absolute value decreases to
finally vanishes when V' > 6. In other words, when V' < 6, the dimension of
So is equal to (V + 1) whereas it becomes greater than (V' + 1) when V > 6.
This process explains the disappearance of the coherent energy transfer since,
when V' > 6, the dynamics is governed by the eigenstates belonging to the set
So which do not produce oscillations.

At this step, the knowledge of the eigenvalues of the effective Liouvillian is
insufficient to clearly understand the dynamics and a detailed analysis of the
corresponding eigenstates must be performed. However, since a complete pre-
sentation cannot be done in the present paper, we shall restrict our attention
to the specific eigenvectors o, (p1, p2) which govern the short time and the long
time limit of Ag(t) (see Eq.(26)).

16



-Im(%)

0.12

0.08 4

0.04

0.00

V=

1

0.4
0.3 1
0.2 1
0.1 1
0.0

V=

2

0.8

0.6
0.4 -
0.2 1
0.0

.
A
'

N
elOC e o
N
IS

3

12"

0.8

0.4 4

0.0

'
©
'
o
'
N
'
N

o | O e
N
N
(o2}
©

4

1.6
1.2
0.8
0.4 1
0.0

o O see

V=

5

-30
24

O e o0

1.8 4
1.2
0.6
0.0

V=

6

o ®ed

32"
24 4
16 -
0.8 1
0.0

V=

7

N

8

9

O AN W A O =2 N W

w B
I

-80

17

Fig. 4. Spectrum of the

effective Liouvillian for
® = 78 cm™', A = 8
cm !, Eg = 3 cm !,

Q=92 cm™!, T = 100K
and for V. =1,2,...,10.



(@)

Fig. 5. Specific eigenstates
of the effective Liouvillian
responsible for the return
the equilibrium for (a)
V =5, A= 40.07 —0.72
em ! and (b) V = 6,
A= —40.32 cm™ L.

(b)

In the long time limit, the return to the equilibrium is characterized by an
exponential decreases of Ag(t), with or without oscillations, depending on the
value of the number of quanta. Eq.(26) shows that this dynamics is governed
by the eigenstates with the smallest non vanishing damping rate \; and with
the largest o,(V — p,V — p) — o,(p,p) value. However, since the most im-
portant contribution to Ag(?) is carried by ¢,(V,V) — 0,(0,0) and since the
eigenstates are symmetric or antisymmetric due to the reflection symmetry
of the dimer, we conclude that the return to the equilibrium is governed by
the antisymmetric eigenstates which maximize o, (V, V). Therefore, our anal-
ysis has reveled the existence of a transition between two kind of eigenstates
depending on the V value. When V < 6 (Fig. 5a), the long time behavior is
governed by two antisymmetric eigenstates with complementary eigenvalues
), —iA;. Their most important components involve the populations o, (V, V)
and 0,(0,0) as well as the coherences 0,(0,V) and o, (V, 0). Since A, # 0, they
yield coherent oscillations with a damping rate equal to /\Inl . By contrast, when
V' > 6 (Fig. 5b), the return to the equilibrium is governed by a single anti-
symmetric eigenstate associated to a purely imaginary eigenvalue —i)\;;. This
state involves mainly the two populations o, (V, V') and 0,(0, 0) and, to a lesser
extent, the other populations o,(V — 1,V — 1), 0,(V — 2,V — 2) ... as well
as the coherences o, (V,V — 1), 0,,(V — 1,V —2) ... Since A}, = 0, it yields an
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(a)

Fig. 6. Specific eigenstates
of the effective Liouvil-
lian which govern the short
time behavior of the pop-
ulation difference for (a)
V=5 A= 46794 —i1.97
em™! and (b) V = 6,
A =492.19 —i2.18 cm L.

exponential damping without oscillation and with a damping rate equal to A;.

Since V' quanta are initially created onto the site 0, the short time behavior
of Ag(t) is governed by the population o(V,V,t). Therefore, the eigenstates
which participate in the short time evolution maximize o,(V, V). Among the
required eigenvectors, we recover the eigenstates responsible for the long time
dynamics as well as the eigenstate which describes the equilibrium. However,
other specific eigenstates associated to eigenvalues with a large real part seem
to play a key role. As illustrated in Figs. 6, these states involve mainly the
coherence o, (V,V —1) although ¢,(0, 1), 0,,(V, 1), and o,(0, V —1) participate
due to the reflection symmetry. As a consequence, whatever the value of V, the
short time dynamics results from the coherent superimposition of the states
| V) and | V — 1) which yields oscillations with a high-frequency of about
€y_1 — €y, in a perfect agreement with the observations shown in Fig. 2.

In Fig. 7, the behavior of the long time decay rate is displayed for different V'
values and for "= 100 K (Fig. 7a) and 7' = 300 K (Fig. 7b). This decay rate
is the imaginary part of the eigenvalue of the effective Liouvillian associated
to the eigenstate responsible for the return to the equilibrium. Open circles
correspond to numerical results whereas full circles describe theoretical calcu-
lations which will be introduced in the next section. The situation V =1 is
rather specific and it is characterized by a small rate equal to 0.48 cm™! and
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1.30 cm™ !, when T = 100 K and T = 300 K, respectively. When V ranges
between 2 and 5, the decay rate varies slowly around 0.87 cm™! when T=100
K and around 2.37 cm~! when T=300 K. Then, a transition takes place since
the decay rate is clearly reduced of about one order of magnitude when V' > 6.
It decreases with the number of quanta and it reaches 0.15 cm~! at 7" = 100
K and 0.29 cm™! at T'= 300 K when V = 10. These results corroborate the
observations made in Figs. 2 and 3 and they clearly show the occurrence of a
transition in the way the dimer returns to the equilibrium.

The behavior of Ag(t) for A = 2,4,...,20 cm ™! is illustrated in Fig. 8 for
T = 100 K and V = 5. The transition between the two dynamical regimes
is observed depending on the value of the anharmonicity for a fixed V' value.
This transition takes place when A typically ranges between 10 and 11 cm ™.
Indeed, when A = 2,4,...,10 cm !, a detailed analysis of Fig. 8 reveals that
Ag(t) exhibits low-frequency damped oscillations to finally converges to the
equilibrium. In addition, in the short time limit, the exponential decreases
of Ag(t) supports a high-frequency small amplitude modulation which both
the amplitude and the damping time decreases with the anharmonicity. By
contrast, when A = 12,14, ...,10 cm™*, a purely incoherent motion takes place
without any low-frequency oscillations. In the long time limit, the return to
the equilibrium is ensured by an exponential decay which the damping rate
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decreases with A. In the short time limit, Ag(¢) decreases very slowly over
a timescale which increases with A and it supports a high-frequency small
amplitude modulation which the frequency increases with A.

Finally, Fig. 9 shows the behavior of the long time decay rate for different A
values and for V = 5 and T' = 100 K. Open circles correspond to numerical
results whereas full circles describe theoretical calculations. A transition takes
place for A about 11 cm™!, in a perfect correspondence with the results ob-
tained in Fig. 8. When A < 11 cm™!, the decay rate exhibits important value
but it decreases rapidly with the anharmonicity to reach a second regime when
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A > 11 cm L. In this latter case, the decay rate varies rather slowly although
it still decreases with the anharmonicity.

6 Interpretation and discussion

In the previous section, our numerical results have revealed the existence of a
transition between two dynamical regimes for the population difference. This
transition occurs depending on the value of either the number of quanta V'
or the anharmoncity A. In fact, as it will be shown in this section, the tran-
sition mainly depends on the structure of the energy spectrum of the dimer
when compared with that of the phonon bath. Therefore, below the critical
value V* (or A*), the population difference exhibits low-frequency oscillations
revealing a coherent energy transfer between the two sites of the dimer. These
oscillations are exponentially damped so that they converge to an equilibrium
configuration in which the vibrational energy is uniformly distributed over the
two sites. In addition, excepted for V' = 1, the population difference supports
a high-frequency small amplitude contribution which modulates its exponen-
tial decay in the short time limit. Our analysis has revealed that the energy
transfer originates in a strong coherence between the states | V') and | 0) which
participate in the formation of the quantum state involving their superimpo-
sition. However, the short time behavior results from the superimposition of
the states | V) and | V — 1) which produces a high-frequency coherence re-
sponsible for the modulation of the population difference. By contrast, above
the critical value V* (or A*), a purely incoherent motion takes place without
any low-frequency oscillations. The return to the equilibrium is ensured by
an exponential decrease characterized by a very small decay rate. However,
in the short time limit, the population difference decreases very slowly over
a few picoseconds and exhibits a high-frequency small amplitude modulation
which, as previously, results from the superimposition of the states | V') and

|V —1).
6.1 General formulation

To interpret the numerical results, a projection technique is introduced to
evaluate the behavior of the population difference. This method, which is
exact when V' = 1, allows us to realize relevant approximations to understand
the general situation occurring when V' > 2. To proceed, let us introduce the
Liouville space formalism described in details in Ref. [52]. When V polarons are
excited, the Liouville space is defined as the tensorial product Ly = &y ® E‘T/.
Therefore, the basis set { | p) } allows to build the operators | p;)(ps | which
can be viewed as a set of (V +1)2 vectors, denoted | py, pb)), and which form a
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useful basis to generate Ly (see Fig. 10). In this context, the reduced density
matrix o(p1, p2,t) is the projection of a vector | o(t))). Its time evolution is
governed by the effective Liouvillian as

0(p17p23t) = <<p1]:ap2 | eiiEEfft | V’ VT)) (27)

where the initial condition | o(0))) =| V,VT)) has been used. By first per-
forming the Laplace transform of Eq.(27), and then by inserting the obtained

result into the expression of the population difference, the Laplace transform
of Ag(t) is defined as

Ag(z)= > 2p = V)| G(2) [ V.VT) (28)

p=0,V

where z is the Laplace variable and G(z) is the Green operator defined as

G(2) = (2 +iLesp)”" (29)

Because of the complex nature of the effective Liouvillian, Eq.(28) cannot be
solved exactly when V > 2. However, as it will be shown in the following
of the text, a full description of the population difference is not required to
understand the observed features. Therefore, we restrict our attention to the
main contribution of Eq.(28), still exact when V =1 and defined as

Ag(z) = VIVEV | G(2) |V, V) = (01,0 | G(2) [ V.VT))] (30)

Eq.(30) shows that Ag(z) only depends on the restriction of the Green op-
erator to the subspace containing the populations | 0,0%)) and | V,V1)). To
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determine this restriction, a two step projection technique is used in which
we first focus our attention onto the subspace containing all the populations
and then perform a projection onto the two required populations. To proceed,
let P denotes the projector onto the set of the populations. Since a single
index is required to describe the subset {| p,p’))}, the restriction PG(z)P is
represented by a ((V + 1) x (V + 1)) matrix as

P
PGP = 2+ W+ AW (z) (31)

where W = iPL.s;P. Since Ly, couples populations to coherences, only, its
restriction vanishes, i.e. PL,,P = 0. Therefore, W reduces to the projection
PRP of the relaxation operator. The diagonal element W,, = R(pp, pp) de-
scribes the full transition rate to leave incoherently the state | p) due to the
coupling with the phonon bath. In the same way, the non diagonal element
Wy = R(pp,p'p’) is the opposite of the rate for the transition between | p)
and | p') (see Fig. 10). The elements of W are written as

Wpr = 5p’p(Wp—>p+1 + Wp—>p—1) — Opps 1 Wp1op — Oprp 1 W15 (32)

where the rate Wy,_,, is defined as (see Eq.(23))

Wiy =2Re[lppii(p+ 1) (V = p)Sp pr1 + Lpp1p(V — 0+ 1)8pr 1] (33)

In Eq.(31), the operator AW (z) is expressed in terms of the projector Q) =
1 — P onto the coherences | pi, ps)) (p1 # ps) as

AW(Z) = Pﬁefo(Z + iQEefo)_lQ,CeffP (34)

It describes transitions between the different states | p) which result from
the ability of the effective Liouvillian to produce quantum states as coher-
ent superimpositions of the local basis vectors. In such a superimposition,
coherences occur between the different basis vectors so that, in the Liouville
space picture, population-population interaction takes place mediated by the
population-coherence coupling. As for W, the diagonal elements of AW (z)
characterize the rates to leave a given state whereas non diagonal elements
define the opposite of the transition rates connecting two basis vectors (see
Fig. 10).

The next step of our procedure consists in defining the projector P onto the
populations | 0,07)) and | V,VT)). After some algebraic manipulations, the
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restriction PG(z)P is written as

D
PCEP = v (35)

where W(z) is expressed in terms of the projector @ = 1 — P onto the re-
maining populations | p,p")), 0 < p <V, as

W(z) = P(W + AW (2))P
—P(W + AW (2) Q2 + QW + AW (2)) Q) ™' QW + AW (2))P  (36)

The operator W(z) is represented by a (2 X 2) matrix which contains the
effective transition rates describing the population exchanges between the two
states | 0) and | V). The first term in the right-hand-side of Eq.(36) accounts
for a direct population exchange mediated by the full transition rate operator
W + AW/(z). By contrast, the second term in the right-hand-side of Eq.(36)
describes population exchanges between | 0) and | V) through their coupling
with the other populations. Due to the reflection symmetry, the states | 0)
and | V) are equivalent so that Wyo(z) = Wyv(2) and Wyy (2) = Wyo(2).
Therefore, by inserting Eq.(35) into Eq.(30), the Laplace transform of the
population difference is finally written as

v
- z + W()()(Z) — Wov(z)

Ag(z) (37)

Eq.(37) clearly shows that the effective transition rate matrix W(z) is the
central object of our analysis. Its knowledge allows to understand the different
mechanisms responsible for the energy exchanges between | 0) and | V) and
finally to compute the population difference. These calculations are illustrated
in the next sections in both the simple case V' =1 and in the general situation
vV >2.

6.2 FExact results for V =1

When V = 1, the Liouville space contains the populations | 0, 07)) and | 1, 1))
and the coherences | 0,1%)) and | 1,07)). As a consequence, the projectors

P and P are equivalent so that the effective transition rate matrix Eq.(36)
reduces to W(z) =W + AW (2).

From the expression of the relaxation operator Eq.(23), the (2 x 2) matrix
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which describes the incoherent transition rates is written as

W = w (38)

where w = Wy_,; = 2Rel’y, denotes the incoherent transition rate between
| 0) and | 1).

Because of the reflection symmetry, the states | 0) and | 1) are equivalent
so that they are characterized by the same energy ¢y, = €;. Therefore, the
restriction of the small polaron Liouvillian to the coherences | 0,17)) and
| 1,01)) vanishes. In addition, since the relaxation operator does not couple
populations and coherences, i.e. PRQ = 0 when V =1, the operator AW (z)
reduces to

AW (2) = PLpQ(z + QRQ) 'QL,P (39)

where QQR() is the restriction of the relaxation operator to the coherence
subspace defined as (see Eq.(23))

I —y
—y T

QRQ = (40)

The constant I' = I'y; + I'j, characterizes the dephasing mechanism in the
course of which the coupling with the phonon bath tends to destroy the quan-
tum coherences 0(0,1,t) and o(1,0,t). Note that I' = w when V = 1. In the
same way, the parameter v = 1, + 7§, accounts for a coupling between the
two coherences mediated by the phonon bath. Therefore, by inserting Eq.(40)
into Eq.(39), AW (2) is expressed as

292 1 -1

A = ——
W(z) z+T+v\ _1 1

(41)

At this step, Eqgs.(38) and (41) yield the required expression of the restricted
Green operator so that the Laplace transform of the population difference is
written as

Ag(z) = (42)

T
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By performing the invert Laplace transform, Ag(t) is finally expressed as

— 7 sin(Q1)] (43)

Ag(t) = e "cos(Ut) — 50

where Q = \/4@2 — (' —%)?/4and r = (3T +7v)/2.

To interpret and understand the physics involved in Eq.(43), it is interesting
to mention that this solution can be found directly by solving the quantum
kinetic equation Eq.(22) in the special case V = 1. Indeed, this equation
reduces to a system of four equations as

4(t)=0
Ct)=—( -7)C()
Ag(t)=—28J(t) — 2I'Ag(t)
J(t)=20Ag(t) — (I +7)J(t) (44)
where ¢(t) = 0(0,0,t) + 0(1,1,t) and 0(0,1,t) = (C(t) +iJ(t))/2

The first equation in Eq.(44) describes the conservation of the total number
of quanta and it yields the vanishing eigenvalue in the spectrum of the ef-
fective Liouvillian. By contrast, the second equation characterizes how the
phonon bath breaks the coherence between | 0) and | 1). It is a pure dephas-
ing mechanism which is responsible for the occurrence of a purely imaginary
eigenvalue A = —i(I' — ) in the spectrum of the effective Liouvillian. The
last two equations, whose the solution is given by Eq.(43), describe the energy
transfer between the states | 0) and | 1) which results from the competition
between two processes. Indeed, the coherent part of the effective Liouvillian
leads to a coupling between the populations and the coherences which favors
the occurrence of oscillations. These oscillations, which the frequency is equal
to 2&3, describe the delocalization of the polaron between the two sites of the
dimer. However, the influence of the phonon bath is twofold. First, it allows
for incoherent hops between the two sites of the dimer due to the stochastic
fluctuations of the effective hopping constant. Then, it tends to destroy the
coherence between the two sites and yields the damping of the imaginary part
of the coherence.

As shown in Eq.(43) the competition between these two processes leads to the
decay of the population difference which finally reaches a zero value describing
a uniform distribution at equilibrium. In addition, its favors the occurrence of
oscillations depending on the value of the parameter €). For real value of €2, i.e.
when 4%2 > (I’ — 7)2/4, the population difference exhibits oscillations which
the frequency is lower than the Bohr frequency 2& of the unperturbed dimer.
By contrast, when 492 < (T'—~)?/4, a purely exponential decay occurs. In fact,
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[ — v represents the difference between the incoherent transition rate and the
dephasing constant connected to the damping of the coherence. Therefore, if
the phonon bath leads to a fast incoherent energy transfer, or to a fast quantum
decoherence, then the population difference does not have enough time to
develop oscillations. This feature characterizes the fact that the population
and the coherence cannot interact if either the population difference or the
coherence disappear over a timescale shorter than (26)~".

However, in the situation studied here, the population difference exhibits os-
cillations with frequency €2 and damping rate r. Therefore, these oscillations
produce two complementary eigenvalues A = €2 — ir in the spectrum of the
effective Liouvillian, as observed in Fig. 4. To compare this theoretical cal-
culations with our numerical results, let us mention that when 7" = 100 K,
the relevant parameters are equal to I' = 0.445 cm ™!, v = —0.375 cm ™! and
® = 14.073 cm L. Therefore, Q = 14.068 cm ! and r = 0.48 cm ™%, in a perfect
agreement with the results displayed in Figs. 2 and 4.

6.3 Approzimated results for V > 2

In the general situation V' > 2, W(z) cannot be calculated exactly so that
several simplifying approximations are invoked. First, we apply the secular
approximation in which the population-coherence coupling mediated by the
relaxation operator is neglected, i.e. PR = 0. Then, the interaction between
the coherences mediated by the phonon bath is disregarded. The restriction of
the relaxation operator to the coherences is thus assumed to be diagonal, i.e.
QRQ = g, where g is the diagonal matrix which the elements g,y = R(pp/, pp’)
describe each dephasing constant. They are defined as

9o =Lpi1p(p+1)(V —p) + F;’—Fl,p(p, +1)(V - p')
+Tp1pyp(V—p+1)+T, (V-0 +1) (45)

Finally, the polaron Liouvillian £,, = Ly 4+ 0L is expressed as the sum of its
diagonal part £y and its non diagonal part L. In the local basis | pl,p;», Ly
characterizes the Bohr frequencies €,, —¢,, whereas 6 £ describes coherent hops.
Therefore, within these approximations, AW (z) is expanded in a perturbative
series as

(—iQ5LQ y"QSLP (46)

Z+g+i£0

These different approximations can be used to evaluate the population dif-
ference. Nevertheless, a general calculation still remains difficult so that we
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consider only the two asymptotic situations corresponding to the short time
limit and to the long time limit, respectively.

6.3.1 Short time behavior

In the short time limit, the evolution of Ag(t) corresponds to the behavior of
Ag(z) when z — 0o. Consequently, only the lowest order of the perturbative
expansion of AW (z) (Eq.(46)) will contribute significantly. This contribution,
denoted AW®@)(2) (see Fig. 10), is described in details in Appendix A. It
characterizes the transitions between the states | p) and | p = 1) which result
from the occurrence of a quantum state involving the coherent superimposition
of these states. In other words, it refers to the indirect coupling between the
populations | p,pf)) and | (p £ 1), (p £ 1)!)) mediated by the coherences |

(p£1),p") and | p, (p £ 1)1)).

Therefore, by expressing the incoherent rate matrix W = Wy+0W (Eq.(32)) as
the sum of its diagonal part Wy and its non diagonal part 6W, the perturbative
expansion of W(z) with respect to W is performed. At the lowest order, it is
written as

1

~ @ N
W(z) & P(W + AW (2))P PéWQz .

QSWP (47)

After some straightforward algebraic manipulations, the required elements of
the effective transition rate matrix are defined as

A

2(2 + go)VP? Wor1 W10
=W, h
Woo(2) 01 (z+90)* + (61 — €0)* 2+ Wiso+ Wiss
Wo 1 W,
Wov (z) = — o110 Ova (48)

2+ Wiso+ Wil

Therefore, by inserting Eq.(48) into Eq.(37), and by taking advantage of the
fact that @ is larger than the different elements of the relaxation operator, the
Laplace transform of the population difference is written as

1% . 2V b2

Ag ~ —
9@~ W(Hl[ (2 + go1)2 + (€1 — €0)2

(49)

By performing the invert Laplace transform, the time evolution of the popu-
lation difference is finally expressed as

2V H?
r2 + w?

Ag(t) m Ve Wort[] — (1 - e cos(wt) — 56_” sin(wt))]  (50)
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where w = €; — ¢ and 7 = go1 — Wy1. Note that due to the reflection
symmetry, the relations Wy_,1 = Wy L,y 1, go1 = gyv_1 and w = ey — €y
are verified. In a perfect agreement with the numerical results, Eq.(50) clearly
shows that in the short time limit the population difference exhibits a zero
frequency component which decreases exponentially according to the decay
rate Wy _,y_1. This component supports a damped high-frequency modulation
which the frequency and the damping rate are equal to w = ey 1 — €y and
gyvv_1, respectively.

To interpret this behavior, let us remain that in the short time limit Ag(?)
is proportional to the population of the state | V) which is initially excited.
Therefore, the origin of the time evolution is twofold. First, the energy transfer
between the dimer and the phonon bath yields an incoherent transition from
| V) to | V —1). As a result, the population of the state | V) decreases ac-
cording to the decay rate Wy _,y_;. Then, the Hamiltonian of the unperturbed
dimer leads to a coupling v/V® between the states | V) and | V — 1) so that
the dimer develops a coherent superimposition of these states. Consequently,
the population of | V') exhibits a modulation which oscillates according to a
frequency given by the energy difference €y,_; — €. However, the coupling with
the phonon bath tends to break the coherence of this superimposition and it
favors a decay of the oscillations governed by the dephasing constant gy ;.
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These calculations allow for a complete interpretation of the numerical re-
sults displayed in Fig. 2, 3, 6 and 8. Indeed, the energy difference ey_; — €y,
equal (V — 1)(2A + Ejp), increases with both the number of quanta V' and
the anharmonicities A and Eg. As illustrated in Fig. 11, the dephasing con-
stant gyy_; increases with the number of quanta and with the temperature.
Finally, as shown in Eq.(50), the amplitude of the modulation typically scales
as 2(V®/(V —1)(2A+ Eg))2. It varies slowly with the number of quanta and
it decreases with the anharmonicities. It also decreases with the temperature
which reduces the effective hopping constant due to the dressing effect.

Finally, let us discuss the occurrence of a transition between the two dynamical
regimes in terms of the behavior of the incoherent transition rate Wy, =
Wy _v_1. As shown in Fig. 11, above a critical value V* the decay rate becomes
suddenly very small. This behavior originates in its dependence on the energy
difference between the states | V) and | V — 1). Indeed, as detailed in the
Appendix B, the main contribution of the rate decreases with the energy
difference to finally vanishes when €,_; — €,y becomes greater than the phonon
cutoff frequency, i.e. (V —1)(2A + Ep) > Q.. This behavior results form the
energy exchange between the dimer and the phonon bath mediated by single
phonon processes. However, transitions induced by multi-phonon exchanges
remain but their contribution to the decay rate is rather small. Consequently,
a transition takes place for a critical value of the number of quanta V* =
1+ Q./(2A+ Fg). For A =8 cm™, Eg = 3 cm™! and Q. = 92 em™,
this critical value is equal to V* = 5.84, in a perfect agreement with the
observations made in Fig. 2 and 3. In the same way, we can define a critical
value for the anharmonicity A which, for V =5, Eg =3 cm ! and €, = 92
cm !, is equal to A* = 10 cm ™!, as observed in Fig. 8. Therefore, when V < V*
(or A < A*), the population difference shows an exponential decay due to the
rather strong value of the transition rate Wy _,y_;. By contrast, when V' > V*
(or A > A*), the transition rate becomes negligible so that the population
difference supports a small amplitude modulation but without any exponential
decay. This latter regime is the quantum counterpart of the classical self-
trapping which only occurs over a timescale of about a few picoseconds.

6.3.2 Long time behavior

In the long time limit, the evolution of the population difference is described
by the behavior of Ag(z) when z — 0. As shown in Eq.(46), the perturbative
expansion of AW (z) defines pathways in the Liouville space which connect two
populations. Therefore, for a specific pathway, a matrix element AW, (2) is
expressed in terms of the product of the free propagators (z + gp,p, + i(€p, —
€p,)) " associated to the coherences | pl,pg)) lying along the pathway. The
Liouville space contains two kinds of coherences. First, it supports a set of
coherences | py,pb)) which the free evolution is governed by a non vanishing
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frequency €,, — €,,. Then, due to the reflection symmetry, the Liouville space
exhibits a set of (V' 41) coherences which the characteristic frequencies vanish.
These coherences, which satisfy the relation p; +ps = V, are resonant with the
populations and thus they play a key role in the long time limit. Therefore,
to evaluate AW(z), the propagators (z + gp,p, + i(€p, — €p,)) "+ for which
€p, # €p, can be approximated by their value for z = 0. Then, among the
propagators (z+gp,,) " involving resonant coherences, the main contributions
in the long time limit will involve those with the smallest dephasing constant.
Our numerical study has revealed that only the two coherences | V,07)) and
| 0, V1)) satisfy this requirement (see Fig. 10).

As a consequence, when z — 0, AW(z) is approximated as

AW (2) =~ AWEB(0) + w®B () (51)

where w®(z) is the resonant contribution which describes a population-
population interaction mediated by the coherences | V,0%)) and | 0,V1)) |
whereas AW (VB (0) characterizes all the other contributions. At the pth or-
der, AWWH)(0) is proportional to the ratio PP /A, where Ae is the typical
energy difference between two basis vectors. For realistic systems in which the
anharmonicities are greater than the effective hopping constant, it represents
a rather small correction and only the second order will contribute signifi-
cantly, i.e. AWWR)(0) ~ AW®)(0). By contrast, at the lowest order equal to
2V, the resonant contribution w®(z) characterizes a coupling between the
two populations | V, V1)) and | 0,0")) mediated by the coherences | V,0"))
and | 0, VT)). Therefore, as detailed in Appendix C, the corresponding matrix
elements are defined as
AFE

(R)( \ —
Wopo (Z) - 2(Z+go()) (52)

where AFE (Eq.(14)) is the energy splitting between the two lowest energy

levels of the dimer and where w(()@) (2) = —w(()g)(z).

In that context, the effective transition rate matrix W(z) is expressed as

W(z) = Pu®(2)P + PWP — PWQ[z + W] ' QWP (53)

where W = W +AW ) (0) characterizes the transitions between nearest neigh-
bor populations due to both a direct coupling with the phonon bath and an
interaction mediated by the non resonant coherences. Note that since the res-
onant term w®(z) is a 2Vth order contribution, it has been neglected to
describe the coupling between the populations | 0,0%)) and | V,VT)) via by
the other populations.
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At this step, by expressing W = W, + dW in terms of its diagonal W, and
non diagonal part §W, the perturbative expansion of the effective transition
rate matrix W(z) with respect to §W is performed. This procedure, detailed
in Appendix D, yields the two required elements Wy (2) and Wy (2) to finally
obtain the Laplace transform of the population difference as

Vv

Ag(z) = = 54
9) = i, S 59

where, at the lowest order, Wef 7 is defined as

- - Wy W-
Werr = Woo — %(1 — dv2) (55)
11

In a general way, W,y (see Appendix D) is the effective rate for the incoherent
transition between the states | 0) and | V). Such a transition results from a
series of hops between nearest neighbor basis vectors according to the global
rate matrix W. Therefore, its incoherent nature must be understood in the
sense that it does not involve any coupling with the resonant coherences |

V,0M)) and | 0, VT)).

By performing the invert Laplace transform of Eq.(54), the time evolution of
the population difference is finally expressed as
We ff — 900

Ag(t) = e "cos(Qt) — 90

sin(Qt)] (56)

where ) = \/AE2 — (Wepr — go0)2/4 and 7 = (Weps + goo)/2.

As shown in Eq.(56), the long time behavior of the population difference results
from the competition between two main mechanisms. The first mechanism
originates in the coherent part of the effective Liouvillian. It yields a coupling
between the populations | V, V1)) and | 0,0")) through their interaction with
the resonant coherences | V,07)) and | 0,V)). This coupling corresponds to
the superimposition of the states | V') and | 0) which yields the delocalization
of a V-polaron bound state. This delocalization leads to a coherent energy
transfer responsible for the oscillations of the population difference at a fre-
quency AFE equal to the energy splitting between the two lowest energy levels
of the dimer. The origin of the second mechanism, which prevents the coherent
energy transfer, is twofold. First, the phonon bath favors the quantum deco-
herence of the superimposition involving | V') and | 0). It is a pure dephasing
effect which yields the decay of the corresponding coherence according to the
dephasing constant gog = goy- Note that ggg is equal to the incoherent rate
Wo—1 (see Eqs.(33) and (45)). Then, a series of transitions between nearest
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neighbor basis vectors takes place. It yields a redistribution of the population
of the basis vectors and it ensures the convergence of the population difference
to a vanishing value at equilibrium. This series of transitions is described by
the effective rate W, 7¢ and it involves both purely incoherent hops due to the
coupling with the phonon bath and population exchanges mediated by the
interaction with non resonant coherences.

As shown in Eq.(56), the competition between these two mechanisms leads to
the occurrence of two dynamical regimes depending on the ratio between the
energy splitting AE and the parameter | W,;; — goo | /2. When this ratio is
greater than unity, the population difference exhibits damped oscillations de-
scribing a limited coherent energy transfer. The frequency of these oscillations
is slightly red shifted form the value of the energy splitting AE and the decay

rate is given by r = (Wess + goo)/2. By contrast, when the ratio is smaller
than unity, Ag(t) shows a purely exponential decay which the rate, in the long

time limit, is expressed as ' = (Wess + goo)/2 + \/(Weff — goo)%/4 — AE2,

These theoretical results give a complete understanding of the numerical fea-
tures presented in Section 5. Indeed, when ® =7.8cm™, A=8cm™!, Eg =3
em™L Q. =92 cm™!, T = 100K, the evaluation of the ratio 2AE/ | Wz —goo |
shows that the transition between the two dynamical regimes takes place when
the number of quanta ranges between V* =5 and V* = 6, in a perfect agree-
ment with the results displayed in Fig. 2. When V' < V*| the detailed study of
the effective rate W, in Appendix D reveals that the long time decay rate r is
typically of about the incoherent rate Wy_,1. As a result, Wesr =~ goy << AE
so that both the depopulation of the states | 0) and | V') and the dephasing
of the coherence between these two states occur over a same timescale larger
than AE!. Population and coherence couple to each other and they produce
oscillations of the population difference whose frequency is about the energy
splitting AE (Eq.(14)). This frequency decreases with both the number of
quanta, the anharmonicities and the temperature, as observed in Fig. 2,3,4
and 8. In this regime, the return to the equilibrium is thus ensured by a series
of population exchanges due to the energy transfer with the phonon bath.
When V' > V* gy is negligible. Since AF is very small, the depopulation
of the states | 0) and | V) is faster than the dephasing of the coherence be-
tween these two states and it occurs over a timescale shorter than AE~!. As
a consequence, a purely exponential decay takes place according to a decay
rate 7' typically of about W,ss. From Appendix D, Wy is approximately
given by AW (O)AWS)(O) / AWD (0) so that the return to the equilibrium
is governed by a series of population exchanges mediated by the coupling with
the non resonant coherences. Note that, as illustrated in Figs. 7 and 9, the
theoretical expression of the decay rate in the long time limit, either equal to
r or 7' depending on the dynamical regimes, clearly reproduces the behavior
of the exact rate obtained from the diagonalization of the effective Liouvillian.
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To conclude, let us mention that the transition in the long time limit discrimi-
nates between two mechanisms for the return to the equilibrium. It originates
in the disappearance of an efficient energy transfer between the dimer and the
phonon bath. Since only single phonon exchanges contribute significantly to
this transfer, the transition occurs when the energy required to leave the ini-
tial state | V') is greater than the phonon cutoff frequency, i.e. ey — ey > Q..
In other words, the transitions in both the long time and the short time limit
have the same origin.

A Expression of the transition rate matrix AW®(z)

From Eq.(46), the second order expansion of the operator AW (z) is defined
as

1

AW®(2) = PLL,Q—
(2) vl L,

QL P (A1)

Therefore, by inserting into Eq.(A1) the local basis set which generates the
Liouville space, the matrix element of AW ®)(z) are expressed as

AT (o) — 5 12| Loo [ 21, 0E) (Pl p2 | Ly | 2 0'7) Ao
ppl (Z) — Z . ( * )
P1.p2 2+ Gpipy +i(€p, — €py)

Since the polaron Liouvillian connects nearest neighbor basis vectors in the
Liouville space, the non vanishing elements satisfy p' = p and p’ = p+1. They
are defined as

2(z + gpp+1) (+ D)(V — p)(i)Q
(2 + gppt1)? + (€ — €p41)?

2(z+ gpp—1)p(V —p+ 1)$2

(2 + gpp—1)* + (€ — €p—1)?

AW (2) =~ (A.3)

where AW (z) = —AWp(ﬁ)q(z) - Aszﬁll(Z)-

B Expression of the transition rate W,_,,

From Eq.(33), the incoherent transition rate W,_,, is expressed in terms of
the parameter Iy, defined in Eq.(24). This parameter involves the correlation
function of the fluctuations of the polaron-phonon coupling (Eq.(11)) and the
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free propagators of the unperturbed dimer. In that context, since the small
polaron binding energy is about one order of magnitude smaller than the
phonon cutoff frequency, the dressing operators can be linearized. Therefore,
the fluctuations V{; of the polaron hopping constant is approximately written
as

4DA . » Z.
Vo 32 cos(a/2)y/| sin(a/2) (e — ¢%a,) (B.1)
q c

where Vi = —Vp;. In addition, for a sufficiently strong anharmonicity, the
free propagator of the unperturbed dimer reduces to the evolution operator
obtained in the limit ® = 0, i.e. Gpo(p,p,t) ~ exp(—ieyt). In this context,
Eq.(24) can be calculated straightforwardly as

160%E A np(| Ae if Ae <0
Ty = 6733 | Ac|[1— (252 n(| &el) (B.2)
95 Q" |1+ np(| Ac|)if Ae >0

where Ae =¢, — e;, and where ng denotes the Bose-Einstein distribution.

In other words, when ¢, < ¢, the incoherent transition from | p) to | p') re-
sults from the absorption of a single phonon. By contrast, when ¢, > e;,, the
transition occurs due to the emission of a single phonon. In fact, because of
the linearization of the dressing operators, Eq.(B2) describes single phonon
processes, only, for which the corresponding rates vanish when the exchanged
energy exceeds the phonon cutoff frequency. In that case, multi-phonon ex-
changes remain but their contributions to the rates are very small.

C Expression of the transition rate matrix w(®(z)

As mentioned in the text, the lowest order of the operator w(®(z) describes
the coupling between the populations | 0,0%)) and | V, V1)) mediated by the
resonant coherences | 0, V1)) and | V,0")). It corresponds to the 2V'th order
expansion of AW (z) (see Eq.(46)) and its matrix elements are defined as

vy {0f,0 0L 1,00...(((V-1F0]|sL|V,0h
(z 4 g10 +i(€1 — €))...(z + gv—10 + i(ey_1 — €))
1 y ((VE0|6L |V, IN..((VE,V —1|6L]|V,VT)
Z + gvo (Z + gyv1 + i(GV — 61))(z + gvv_1+ i(GV — EV—I))
+c.c. (C.1)

Wed (2) = (=1)

X

36



where WO((J)EE ) (2) = — 0(5) (2). The first term in the right-hand-side of Eq.(C1)
characterizes the Liouville pathway containing the coherence | V,07)). The
symbol c.c. represents the complex conjugate which refers to the pathway in-
volving the coherence | 0, VT)). After some straightforward manipulations and
by taking advantage of the reflection symmetry, Eq.(C1) is finally rewritten
as

oV 12Hp2V V-1 1

(R) (. _ C.2
Woy (Z) Z + goo | (Z n gp0)2 + (Ep _ 60)2 ( )

Since the energy difference between the basis vectors are greater than the de-
phasing constant of about several orders of magnitude, the z+ g,, dependence
in the product of Eq.(C2) can be neglected so that

Vl:f(ep — )’ = (V-1)""2A4+ BV (C.3)

p=1

By inserting Eq.(C3) into Eq. (C2), we finally obtain

B VoY , 1
Woy (Z) = 2((V — 1)!(2A+ EB)V_l Z + goo

(C.4)

which is equivalent to Eq.(52).

D Expression of the effective transition rate Weff

According to Eq.(53), the perturbative expansion of the effective transition
rate matrix W(z) with respect to the non diagonal part 0W of the global
incoherent rate W = Wy + 0W is written as

_ _ 1 _
_ py(®) _ g}
W(z) = Pul® ()P + PWP — PoW Q- QsWP
1 1 ,
_ _ D.1
+POW Q- QW Q- QSWP + (D.1)

The corresponding matrix elements are defined as

—w® L _W0}W10_W0_1W1_2W2_1W10 1_5
Ponle) = w0 oo = g T iy (O

Wo W, Wor Wi W-
Wor (2) = wi) — %/11125‘/2—% %1/1111/%22235‘/3—%... (D.2)
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Therefore, at the lowest order, the difference Wyo(2) — Wov (2) involved in the
calculation of the population difference is expressed as

Wo() (Z) - WOV = Qw(()g) + Woo + Weff (D.3)

where the effective incoherent rate Wef 7 is defined as

_ _ W W
Wass = Woo — 01 W10

(1 =bya) (D.4)

From the expression of the rates W for the purely incoherent transitions, and
by using the results displayed in Appendix A, the different parameters used
in Eq.(D4) are defined as

= 2V<i’2901
=2 r
Woo =2V Rel'1g + ((V_1)2A + Ep))?
— 2Vé2g01
Wy = -2V Rel'y; —
" COT(V-1)A T Ep))?
QV(ngOl

Wio==2VEelw = (7104 + )2

- 2V(i)2901
=9V Rely; +4(V — 1)Rel’
W11 V Re 01 =+ (V )Re 21 + ((V — 1)(2A+EB))2
4V —1)®%gy 4V —1)d2
1-6 A el y D.5
(V- B)@AT By~ v T g v (D-5)
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