
HAL Id: hal-00114689
https://hal.archives-ouvertes.fr/hal-00114689

Submitted on 17 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A concurrent semantics of static exceptions in a parallel
programming language

Hanna Klaudel, Franck Pommereau

To cite this version:
Hanna Klaudel, Franck Pommereau. A concurrent semantics of static exceptions in a parallel pro-
gramming language. PETRI NETS, 2001, Newcastle upon Tyne, United Kingdom. pp.204-223,
�10.1007/3-540-45740-2_13�. �hal-00114689�

https://hal.archives-ouvertes.fr/hal-00114689
https://hal.archives-ouvertes.fr

Proc. of ICATPN’01, LNCS 2075, pages 204–223, Springer, 2001. c© 2001 Springer

A Concurrent Semantics of Static
Exceptions in a Parallel Programming Language

Hanna Klaudel and Franck Pommereau

LACL, Université Paris 12
61, avenue du général de Gaulle

94010 Créteil, France
{klaudel,pommereau}@univ-paris12.fr

Abstract. This paper aims at introducing a mechanism of exceptions
in a parallel programming language, giving them a formal concurrent
semantics in terms of preemptible and composable high-level Petri nets.
We show that, combined with concurrency, exceptions can be used as
a basis for other preemption related constructs. We illustrate this idea
by presenting a generalized timeout and a simple UNIX-like system of
concurrent preemptible threads.

Keywords. Exceptions, Petri nets, semantics, parallel programming.

1 Introduction

The starting point of our approach is B(PN)2 [3, 9] (Basic Petri Net Program-
ming Notation) which is a high-level programming language comprising in a
simple syntax most traditional concepts of parallel programming. It includes
nested parallel composition, iteration, guarded commands, procedures and com-
munications via both handshake and buffered communication channels, as well
as shared variables. One of the most interesting aspects of B(PN)2 is its simplic-
ity: it features most classical concepts in a simple syntax. So, it becomes possible
to use it as a test language and then to extend or apply the results found for
B(PN)2 to “real-life” languages.
B(PN)2 has an original formal semantics in terms of boxes [1], a class of

labelled Petri nets provided with a set of composition operations, and M-nets
[2], a high-level version of boxes. M-nets are strongly related to boxes by an
unfolding of M-nets into boxes and allow to represent in a clear and compact
way large (possibly infinite) systems. B(PN)2, boxes and M-nets are implemented
in PEP toolkit [7], allowing to simulate a modeled system and also to verify its
properties via model checking.
Recent works [11] led to the definition of the model of P/M-nets which ex-

tends M-nets with preemption, introducing for this purpose a new operator, π.
Given a net N , π(N) is a net which can be aborted, i.e., it’s termination can be
forced immediately. Despite this augmented capability, it is proved in [11] that
P/M-nets stay strictly equivalent to M-nets in terms of computational power
(both may be transformed into 1-safe Petri nets, but P/M-nets lead to much

1

2 Hanna Klaudel and Franck Pommereau

bigger nets) and have also a concurrent semantics. Having preemption naturally
leads to consider enhancing B(PN)2 with related constructs. This paper proposes
a modeling of static exceptions in B(PN)2, giving their semantics with P/M-nets.
The presented approach allows to propagate exceptions through a nested

block structure. However, the resolution procedure proposed here is one of the
simplest possible : the actually handled exception is choosen arbitrarily be-
tween exceptions occurring concurrently. On the top of this system, a more
sophisticated resolution system could be introduced, as proposed for instance in
[15, 16, 17].
We also show that combining exceptions with parallelism allows to express

other constructs like a generalized timeout and a simple multi-threaded system.

2 M-nets, P/M-nets and their Algebras

This section is devoted to introduce P/M-nets, high-level composable and pre-
emptible Petri nets [11], which are used as semantic model for exceptions. P/M-
nets are an extension of a high-level net model, called M-nets, which are in-
troduced first. P/M-nets (as well as M-nets) may be considered as an efficient
abreviation for safe place/transition Petri nets, into which they may be unfolded
[2, 11].

2.1 Basic Definitions

Let E be a set. A multi-set over E is a function µ : E → N, generally denoted
with an extended set notation, e.g., {a, a, b} for µ(a) = 2, µ(b) = 1 and µ(e) = 0
for all e ∈ E \ {a, b}. A multi-set µ is finite if so is its support set E \ µ−1(0).
We denote byM(E) (resp.Mf (E)) the set of multi-sets (resp. finite multi-sets)
over E, by ⊕ and ª the sum and difference of multi-sets. We may also use the
usual set notations, for example, if µ1 and µ2 are two multi-sets over E, µ1 ⊆ µ2

stands for ∀x ∈ E : µ1(x) ≤ µ2(x).

2.2 M-nets

M-nets (introduced in [2] and developed in [4, 10]) form a class of high-level
Petri nets provided with a set of operations giving them a structure of process
algebra.
An M-net N is a triple (S, T, ι), where S is the set of places, T is the set of

transitions, (T ×S)∪ (S × T) is the set of arcs, and ι is the annotation function
on places, transitions and arcs. The annotation of a place has the form λ.τ ,
where λ is a label (entry e, exit x or internal i) and τ is a type (a non-empty
set of values from a fixed set Val). As usual, for each node (place or transition)
r ∈ S ∪ T , we denote by •r the set of nodes {r′ ∈ S ∪ T | ι(r′, r) 6= ∅} and,
similarly, r• = {r′ ∈ S ∪ T | ι(r, r′) 6= ∅}.
Transitions annotations are of the form λ.γ where λ is a label (which can be

hierarchical or for communications) and γ is a guard (a finite set of predicates

A Concurrent Semantics of Static Exceptions 3

from a set Pr). Hierarchical labels are composed out of a single hierarchical
action (e.g., X) indicating a future refinement (i.e., a substitution) by an M-net.
A transition may perform different kind of communications when it fires:

– synchronous ones, similar to CCS ones [13], e.g., between transitions labelled
by synchronous communication actions such asA(a1, . . . , an) or Â(a

′
1, . . . , a

′
n),

where A is a synchronous communication symbol, Â is its conjugate and each
ai and a′i is a value or a variable (belonging to a fixed set Var);

– asynchronous ones, e.g., between transitions labelled by asynchronous links
such as b+(a1) or b

−(a2), where b is an asynchronous communication symbol
and each ai is a variable or a value ranging in type(b) ⊆ Val. The communi-
cation is done via a place sb of type τ(sb) = type(b) which plays the rôle of a
heap buffer. Link b+(a1) means that a1 can be sent to sb and b−(a2) means
that a2 can be received from sb;

– or possibly both types at the same time.

Communication labels are then of the form λ = α.β where α is a finite
multi-set of synchronous communication actions and β is a finite multi-set of
asynchronous links.
Arcs are incribed by annotations which encode the values consumed or pro-

duced in places by a firing of an adjacent transition. If no refinement is concerned,
they are simply multi-sets of values or variables; otherwise they are constructed
in a systematic way from the arc annotations coming from the refined and refin-
ing nets [4, 5].

2.3 Dynamic Behavior and Concurrent Semantics of M-nets

For each transition t ∈ T we shall denote by var(t) the set of all the variables
occurring in the annotations of t and in the arcs coming to and from t. A binding
for a transition t is a substitution σ : var(t)→ Val; it will be said enabling if it
satisfies the guard, if it respects the types of the asynchronous links, and if the
flow of tokens it implies respects the types of the places adjacent to t.
A marking of an M-net (S, T, ι) is a mapping M :S → M(Val) which asso-

ciates to each place s ∈ S a multi-set of values from τ(s). In particular, we shall
distinguish the entry marking, denoted Me, where, for each s ∈ S, Me(s) = τ(s)
if λ(s) = e and the empty multi-set otherwise; the exit marking, Mx, is defined
similarly.
The transition rule specifies the circumstances under which a marking M ′ is

reachable from a marking M . A transition t is enabled at a marking M , this is
denotedM [t〉, if there is an enabling binding σ of t such that ∀s ∈ S : ι(s, t)[σ] ⊆
M(s), i.e., there are enough tokens of each type to satisfy the required flow. The
effect of an occurrence of t is to remove from its input places all the tokens used
for the enabling binding σ and to add to its output places the tokens according
to σ; this leads to a marking M ′ such that

∀s ∈ S: M ′(s) =M(s)ª ι(s, t)[σ]⊕ ι(t, s)[σ].

4 Hanna Klaudel and Franck Pommereau

The above transition rule defines the interleaving semantics of an M-net
which consists in a set of occurrence sequences. This semantics can be generalized
by introducing the step sequence semantics [6], which allows any number of
transitions to occur simultaneously.

2.4 Algebra of M-nets

For compositionality, we are particularly interested in a sub-class of M-nets: we
assume that each M-net has at least one entry and one exit place, that each
transition has at least one input and one output place (T-restrictness property),
and that there are neither arcs going to entry places nor from exit places. Such
M-nets are said ex-good.
The algebra of ex-good M-nets comprises the operations listed below, where

N1, N2 and N3 are M-nets, X is a hierarchical symbol, A is a synchronous
communication symbol, b is an asynchronous link symbol and f is a renaming
function on synchronous and asynchronous symbols.

N1[X ← N2] refinement N1[f] renaming
N1‖N2 parallel composition N1 syA synchronization
N1;N2 sequence N1 rsA restriction
N1¤N2 choice [[A : N1]] scoping
[N1 ∗N2 ∗N3] iteration N1 tie b asynchronous links

The sequential composition “N1;N2” means that N1 is executed first and then
N2. The parallel composition puts nets side by side without any link between
them so they can execute in total concurrency. The choice composes nets in such
a way that only one of them can be executed. The iteration composes three
nets such that the first one is executed once as an initialization part, then the
second one is executed an arbitrary number of times as a loop part, and finally
the third one is executed once as an exit part. The synchronization w.r.t. a
synchronous symbol A adds to a net new transitions anticipating all possible
synchronous communications on A. The restriction w.r.t. A removes from the
net all unsatisfied communication capabilities on A. The scoping w.r.t. A is
defined as a synchronization w.r.t. A followed by a restriction w.r.t. A, it is
used to setup all synchronous communications w.r.t. A, making them local to
the net and no longer aviable for the other synchronizations. The asynchronous
links operation w.r.t. b, applied to a net, adds a new buffer place sb and arcs
between transitions which export or import values, through b+ or b−, into or
from the buffer, and removes all asynchronous link capabilities w.r.t. b from the
inscriptions of the transitions. The refinement of the transitions labelled X in a
net by another net is a kind of substitution which allows the refining net to be
executed each time (for every enabling binding) the hierarchical transition in the
refined net could fire. Renaming allows to change the names of synchronous or
asynchronous communication symbols. Detailed explanations and some examples
of these operations are given in [2, 5, 10].

A Concurrent Semantics of Static Exceptions 5

2.5 Pairwise Priorities and Priority M-nets

Let N = (S, T, ι) be an M-net. A pairwise priority relation over T is a binary
relation ρ ⊆ T × T . Intuitively, (t1, t2) ∈ ρ means that during an execution of
N , the firing of transition t2 is always preferred to the firing of t1 when both
are possible; in other words, t1 has a lower priority than t2. We use standard
mathematical notations, in particular, for ρ ⊆ T × T , we denote:

dom(ρ) = {t1 ∈ T | ∃t2 ∈ T such that (t1, t2) ∈ ρ},

cod(ρ) = {t2 ∈ T | ∃t1 ∈ T such that (t1, t2) ∈ ρ}.

A priority M-net is a pair P = (N, ρ) where N = (S, T, ι) is an M-net
(possibly having some non T-restricted communication transitions) and ρ is a
pairwise priority relation over T . We call N the net part of P .

Definition 1. Let P = (N, ρ) be a priority M-net, M a marking of N = (S, T, ι)
and t a transition of N such that M [t〉; then t is ρ-enabled in P at M , denoted
M [t〉ρ iff @t′ ∈ T such that M [t′〉 and (t, t′) ∈ ρ.

Notice that ρ allows to disable a transition which would have been enabled
with the usual M-nets transition rule, but not the contrary. In other words, we
have M [t〉ρ ⇒ M [t〉. As for M-nets, this transition rule can be generalized in
order to define the step semantics of priority M-nets [11].
An algebra of priority M-nets can also be considered. The extension of the

usual M-net operations to priority M-nets is immediate for most of them. In order
to make the paper self-contained, we recall here the definition from [11] which
is an important for introducing the preemption operation π and preemptible
M-nets.

Definition 2. Let Pi = (Ni, ρi), for i ∈ {1, 2, 3}, be priority M-nets, where
Ni = (Si, Ti, ιi), and let X be a hierarchical symbol, A a synchronous commu-
nication symbol, b an asynchronous link symbol, and f a renaming function on
communication symbols. The usual M-net operations are extended as follows for
priority M-nets:

– P1[X ← P2] = (N1[X ← N2], ρ) where
ρ = {(t, t′) ∈ ρ1 | λ1(t) 6= X 6= λ1(t

′)}
] {(tX .t, tX .t′) | (t, t′) ∈ ρ2 ∧ tX ∈ T1 ∧ λ1(tX) = X}
] {(tX .t, t′) | t /∈ cod(ρ2) ∧ (tX , t′) ∈ ρ1 ∧ tX ∈ T1 ∧ λ1(tX) = X};

– P1 tie b = (N1 tie b, ρ1);
– P1[f] = (N1[f], ρ1);
– P1 syA = (N1 syA, ρ) where N1 syA = (S, T, ι) and ρ is the smallest set
including ρ1 such that if t′ ∈ T results from a basic synchronization of t1
with t2, and
• if ∃t′′ such that (t1, t

′′) ∈ ρ or (t2, t
′′) ∈ ρ, then (t′, t′′) ∈ ρ,

• if ∃t′′ such that (t′′, t1) ∈ ρ or (t′′, t2) ∈ ρ, then (t′′, t′) ∈ ρ.
– P1 rsA = (N1 rsA, ρ), where N1 rsA = (S, T, ι) and ρ = ρ1 ∩ (T × T).

6 Hanna Klaudel and Franck Pommereau

.

.
e.{1,2}

t1{A(a)}

x.{•}

a

•

e.{•}

t2 {Â(a′)}

x.{1,2}

•

a′

e.{•}

t3 {B}

x.{•}

•

•

P = (N, {(t3, t2)}) .

.
e.{1,2}

t1{A(a)}

x.{•}

a

•

e.{•}

t2 {Â(a′)}

x.{1,2}

•

a′

t4∅

a
•

•
a

e.{•}

t3 {B}

x.{•}

•

•

P syA = (N syA, {(t3, t4), (t3, t2)})

Fig. 1. Example of synchronization of a priority M-net. (Only synchronous labels
are represented.) Restricting on A would remove from the net transitions t1 and
t2 (with their surrounding arcs) and pair (t3, t2) from the priority relation.

Control flow operators, as sequential composition, iteration, parallel compo-
sition and choice, are based on refinement and so they are defined canonically.
Scoping, as for M-nets, is defined as a synchronization followed by a restriction:
[[A : P]] = (P syA) rsA.
Figure 1 shows an example of synchronization in a priority M-net. Transitions

t1 and t2 are synchronized, leading to a new transition t4 which“inherits” from t2
its priority over t3. In figures, transitions with thick borders are those belonging
to cod(ρ) and thus have the priority over some other ones. This notation is used
in all the sequel.
The definition of operation π is very important in our context because it

allows to make abortable an arbitrary priority M-net P = (N, ρ). The definition
of π presented here is slightly different from the original one from [11], but the
modification only concerns some labels involved in the semantics of exceptions.
We use for it the priority M-net Pπ = (Nπ, ρπ) where Nπ is represented in
figure 2, the priority relation being

ρπ = {(t8, t2), (t8, t5), (t7, t2), (t7, t5), (tX , t5), (t3, t4)}.

In order to produce π(P), P is embedded in Pπ by refining transition tX and
the resulting net is synchronized w.r.t. throw. This way, if P does not throw any
exception, it completes and so does π(P) by firing transition t0 (and no other
transition in Nπ can fire). However, in the case where P throws an exception,
by firing a transition labelled with throw, transition t1 fires too and enables the
abortion of π(P). This abortion is performed by consuming tokens in P through
the loop on t2 which is synchronized with the “emptying transitions”, ts ∈ Ts,
added to P when π is applied. Transitions t3 to t7 are used to transmit abortion
to all π’s nested in P . (More detailed explanations of this mechanism can be
found in [11].) Abortion is not elementary but, thanks to priorities, it is atomic
in the sense defined in [12]: when started, abortion cannot be interrupted. When

A Concurrent Semantics of Static Exceptions 7

.

.

e1

e.{•}

e2

e.{•}

tX

X

•
i1 i.{•}

•

t0

∅.∅.∅

•

x

x.{•}
•

•

t1

{ ̂throw(e)}.{c+(0), b+(e)}.∅

•

t3{k̂ill′}.{c+(0)}.∅

t4{k̂ill′}.{b−(e)}.∅

i2

•

◦

◦

•

t2

{abort}.∅.∅

a a

t5{kill}.{c−(n), c+(n+ 1)}.∅

a
a

t6 {empty}.{c−(n), c+(n− 1)}.∅

a
a

t8

{ ̂catch(e)}.{c−(0), b−(e)}.∅•

•

t7 {êmpty′}.{c−(0)}.∅
◦

Fig. 2. Nπ, net part of Pπ where type(b) = Val, type(c) = N and ι(i2) = i.{•, ◦}.

abortion is terminated, transition t8 fires, triggering the handler for the raised
exception.

Definition 3. Let P be a priority M-net. Then,

π(P) =
[[
{abort, throw, kill, empty} : Ab

(
Pπ[X ← P]

)
tie{c, b}

]]

[k̂ill′ 7→ k̂ill, êmpty′ 7→ êmpty]

where Pπ is the priority M-net defined above and Ab is an auxiliary opera-
tion which includes the additional emptying transitions; if Pπ[X ← P] = P ′ =
((S′, T ′, ι′), ρ′), then Ab(P ′) = ((S′′, T ′′, ι′′), ρ′′) with:

– S′′ = S′, and ∀s ∈ S′′ : ι′′(s) = ι′(s);

– T ′′ = T ′] Ts where Ts = {ts | s ∈ S′ \ {x} ∧ s• ∩ cod(ρ′) = ∅}

and ∀t ∈ T ′′ : ι′′(t) =

{
ι′(t) if t ∈ T ′,

{âbort}.∅.∅ if t ∈ Ts;

– ∀(t, s) ∈ T ′′ × S′′ : ι′′(t, s) =

{
ι′(t, s) if t ∈ T ′,
∅ if t ∈ Ts;

– ∀(s, t) ∈ S′′ × T ′′ : ι′′(s, t) =

ι′(s, t) if t ∈ T ′,
{a} ⊂ Var if t = ts ∈ Ts,
∅ if t ∈ Ts \ {ts};

8 Hanna Klaudel and Franck Pommereau

– ρ′′ = ρ′] {(t, ts) | ts ∈ Ts ∧ t ∈ (•ts)
•}.

This mechanism is directly applied to the semantics of exceptions in a pro-
gramming language. A net semantics P of (a part of) a concurrent program
usually contains some throw(e)-labelled transitions. It means that if such a
transition fires, P should not continue its normal behavior but should start
an exceptional one. Operation π embeds P in such a way that the firing of such
a transition in π(P) is taken into account and brings about abortion of all the
part corresponding to P in π(P). This abortion is atomic (even if composed of
several events) and when it is finished, a ̂catch(e)-labelled transition can fire in
π(P). Also, ̂catch(e) is the only action related to exceptions and visible outside
π(P). It is used to trigger the handler for the thrown exception.

2.6 Preemptible M-nets: P/M-nets

Preemptible M-nets (P/M-nets for short) are defined as a sub-class of priority
M-nets with some structural constraints. These constraints allow P/M-nets to
have interesting properties, such as to be transformable into safe Petri nets. This
sub-class is reasonably wide (it includes ex-good M-nets) and sound with respect
to the semantics of preemption [11].

Definition 4. Let P = (N, ρ) be a priority M-net. P is a P/M-net iff either:

– N is an ex-good M-net and ρ = ∅, or
– P is defined as π(P1), P1[X ← P2], P1‖P2, P1;P2, P1¤P2, [P1 ∗ P2 ∗ P3],

P1 syA, P1 rsA, [[A : P1]], P1 tie b or P1[f], where Pi, for i ∈ {1, 2, 3}, are
P/M-nets, X is a hierarchical symbol, A is a synchronous communication
symbol, b is an asynchronous links symbol, and f is a renaming function on
communication symbols.

In the following, we often use some basic P/M-nets as that shown in figure 3.
Their net parts are denoted by the label of their unique transition (i.e., α.β.γ
or X .γ).

. .e.{•} t

ι(t)

x.{•}
{•} {•}

Fig. 3. A basic M-net used in this paper. Transition t may be either a communi-
cation transition in which case ι(t) = α.β.γ or a hierarchical one with ι(t) = X .γ.

3 Syntax and Semantics of B(PN)2

B(PN)2 is a parallel programming language comprising shared memory par-
allelism, channel (FIFO buffer) communication with arbitrary capacities, and
allowing the nesting of parallel operators, blocks and procedures.

A Concurrent Semantics of Static Exceptions 9

The following is a fragment of the syntax of B(PN)2 (with keywords typeset
in bold face, non-terminal in roman face and italic denoting values supplied by
the program):

program ::= program block
block ::= begin scope end
scope ::= com | decl ; scope
com ::= 〈expr〉 | proc-call

| com ‖ com | com ; com | do alt-set od
| block | (com)

decl ::= var name: set
| var name: chan k of set
| procedure name(formal-parlist) block
| decl, decl

proc-call ::= name(effective-parlist)

An atomic action is a B(PN)2 expression “〈expr〉”, i.e., a term constructed
over operators, constants (here again, Val is the set of all possible values) and
identifiers of program variables and channels. A program variable v can appear
in an expression as ′v (pre-value) or v′ (post-value), denoting respectively its
value just before and just after the evaluation of the expression during an exe-
cution of the program. A channel variable c can appear in an expression as c!
(sending) or c? (receiving), denoting respectively the value sent or received in a
communication on the channel c. An atomic action can execute if the expression
evaluates to true. Thus, for example, 〈′v > 0∧v′ = c?〉 corresponds to a guarded
communication which requires v to be greater than zero and a communication to
be available on channel c, in which case the value communicated on c is assigned
to variable v.
A command “com” is either an atomic action, a procedure call (“proc-call”),

one of a number of command compositions operator or a block comprising some
declarations for a command. Parentheses allow to combine the various command
compositions arbitrarily.
The domain of relevance of a variable, channel or procedure identifier is

limited to the part of a B(PN)2 program, called “scope”, which follows its dec-
laration. As usual, a declaration, in a new block, with an already used identifier
results in the masking of the existing identifier by the new one. A procedure
can be declared with or without parameters (in which case its “formal-parlist”
is empty); each parameter can be passed by value, by result or by reference. A
declaration of a program variable or a channel is made with the keyword “var”
followed by an identifier with a type specification which can be “set”, or “chan
k of set”where set is a set of values. For a type “set”, the identifier describes an
ordinary program variable which may carry values within set. Clause “chan k
of set” declares a channel of capacity k (which can be 0 for handshake commu-
nications, 1 or more for bounded capacities, or ∞ for an unbounded capacity)
that may store values within set.
Besides traditional control flow constructs, sequence and parallel composi-

tion, there is a command “do . . .od” which allows to express all types of loops

10 Hanna Klaudel and Franck Pommereau

and conditional statements. The core of statement “do . . .od” is a set of clauses
of two types: repeat commands,“com; repeat”, and exit commands,“com; exit”.
During an execution, there can be zero or more iterations, each of them being
an execution of one of the repeat commands. The loop is terminated by an exe-
cution of one of the exit commands. Each repeat and exit command is typically
a sequence with an initial atomic action, the executability of which determining
whether that repeat or exit command can start. If several are possible, there is
a non-deterministic choice between them.

3.1 P/M-net Based Semantics of B(PN)2

The definition of the M-net semantics of B(PN)2 programs (having no pre-
emptible constructs) is given in [3] through a semantical function Mnet. A P/M-
net semantics of such programs is easy to obtain through the canonical trans-
formation from M-nets to P/M-nets (as defined in [11]).
In this paper, we introduce new constructs in B(PN)2 in order to provide it

with exceptions. The associated semantics is given through a semantical function
PM which extends the canonical semantics obtained from Mnet: function PM

maps directly the new B(PN)2 constructs or overrides the semantics of some
existing ones, in particular, of blocks, which may include now the treatment of
exceptions.
The semantics of a program is defined via the semantics of its constituting

parts. The main idea in describing a block is (i) to juxtapose the nets for its local
resources declarations with the net for its command followed by a termination
net for the declared variables, (ii) to synchronize all matching data/command
transitions and (iii) to restrict these transitions in order to make local variables
invisible outside of the block.
The access to a program variable v is represented by synchronous action

V (vi, vo) which describes the change of value of v from its current value vi (i for
input), to the new value vo (output).
Each declared variable is described by some data P/M-net of the correspond-

ing type, e.g., NVar(v, set) for a variable v of type set or NChan,k(c, set) for a
variable c being a channel of capacity k which may carry values of type set. The
current value of the variable v is stored in a place and may be changed through
a {V̂ (vi, vo)}-labelled transition in the data net, while {Ĉ!(c!)}- and {Ĉ?(c?)}-
labelled transitions are used for sending or receiving values to or from channel
c.
Sequential and parallel compositions are directly translated into the corre-

sponding net operations, e.g., PM(com1; com2) = PM(com1);PM(com2). The
semantics of the “do . . .od” construct involves the P/M-net iteration operator.
The semantics of an atomic action “〈expr〉” is (α.∅.γ, ∅) where α is a set

of synchronous communication actions corresponding to program variables in-
volved in“expr”, and γ is the guard obtained from“expr”with program variables
appropriately replaced by net variables, e.g., vi for ′v and vo for v′. For instance,

A Concurrent Semantics of Static Exceptions 11

we have:

PM
(
〈′v > 0 ∧ v′ = c?〉

)
=
(
{V (vi, vo), C?(c?)}.∅.{vi > 0 ∧ vo = c?} , ∅

)
.

The P/M-net above has one transition as shown in figure 3. Its synchronous label
performs a communication with the resource net for variable v and for channel
c: it reads vi and writes vo with action V (vi, vo), and it gets c? on the channel
with action C?(c?). The guard ensures that vi > 0 and that vo is set to the value
got on the channel.

4 Modeling Exceptions

In order to model exceptions we introduce in the syntax of B(PN)2a new com-
mand, throw, which takes one argument which may be either a constant in Val
in which case it is denoted by w, or a program variable in which case it is de-
noted by v. It actually represents the exception to throw. Moreover, we change
the syntax for the blocks as follows:

block ::= begin scope end
| begin scope catch-list end

catch-list ::= catch-clause
| [catch-clause or] catch-others [v] [then com]

catch-clause ::= catch w [then com]
| catch-clause or catch-clause

Each catch-clause specifies how to react to an exception w (a value in Val).
The optional clause catch-others can be used to catch any exception uncaught
by a previous catch-clause; in this case, it is possible to save the caught exception
in a variable v whose type must be Val.
The semantics for a block “begin scope cc1 or . . .or cck end”where scope is

the scope for the block and the cci’s are the catch-clauses (cci handles exception
wi, cck may be a clause catch-others) is the following:

PM
(
begin scope cc1 or . . . or cck end

)
=[[

{catch,noexcept} : π
(
PM(scope) ;

(
{noexcept}.∅.∅ , ∅

))

∥∥∥
(
PM(cc1)¤ · · ·¤PM(cck)¤Ptransmit¤

(
{ ̂noexcept}.∅.∅ , ∅

))]]

where Ptransmit and noexcept are explained below.
If the block finishes without throwing any exception, action {noexcept}.∅.∅ is

reached in π
(
PM(scope) ; ({noexcept}.∅.∅ , ∅)

)
and the block can exit by firing

the transition which results from the synchronization w.r.t. noexcept . If an ex-
ception e (e is a net variable) is thrown in the block, it is either caught by one of
the catch-clauses cci in the block and then a corresponding PM(cci) is executed,
or there is no specific catch-clause for it and there are still two cases:

12 Hanna Klaudel and Franck Pommereau

– a catch-clause has been specified explicitly in cck using catch-others, in
which case the corresponding PM(cck) is executed;

– there is no catch-others specified in the block and so, the uncaught excep-
tion e is simply re-thrown by P/M-net Ptransmit.

P/M-net Ptransmit is defined has follows:

Ptransmit =

(Nstop, ∅)
if cck is a clause catch-others;(

{catch(e), throw(e)}.{e 6= w1 ∧ · · · ∧ e 6= wk}.∅ , ∅
)

otherwise.

where Nstop is shown in figure 4 and w1, . . . , wk are the exceptions caught in
the catch-clauses of the block.

.

.

e.{•} x.{•}

Fig. 4. The net Nstop used in the semantics of blocks.

The new constructs added to the syntax have the following semantics:

PM(throw(w)) =
(
{throw(w)}.∅.∅ , ∅

)

PM(throw(v)) =
(
{V (vi, vo), throw(e)}.∅.{e = vi ∧ vo = vi} , ∅

)

where e is a net variable

PM(catch w) =
(
{catch(w)}.∅.∅ , ∅

)

PM(catch w then com) = PM(catch w) ; PM(com)
PM(catch-others) =

(
{catch(e)}.∅.{e 6= w1 ∧ · · · ∧ e 6= wk−1} , ∅

)

where w1, . . . , wk−1 are the exceptions caught in the previous
catch-clauses

PM(catch-others v) =
(
{catch(e), V (vi, vo)}.∅

.{e 6= w1 ∧ · · · ∧ e 6= wk−1 ∧ vo = e} , ∅
)

PM(catch-others then com) = PM(catch-others) ; PM(com)

PM(catch-others v then com) = PM(catch-others v) ; PM(com)

The propagation of exceptions is ensured by alternating scoping w.r.t. throw
and catch, as shown in figure 5. First a throw(e) is “emitted” somewhere in
scope. Operation π aborts the scope and “converts” the throw(e) into a ĉatch(e)
which synchronizes with an appropriate catch(wi), then the associated comi is
executed.
In figure 5, we assume that cck is a clause catch-others which re-throws the

exception outside the block. Otherwise, the semantics of the blocks would have
ensured this behavior. For 1 ≤ i < k, we assume that cci is a clause “catch wi

then comi”.

A Concurrent Semantics of Static Exceptions 13

.

.

scope on throw

scope on catch

PM(begin scope cc1 or · · ·or cck end)

π(PM(scope); · · ·) PM(cc1)¤ · · ·¤PM(cck)

PM(scope) PM(cc1)

PM(cck−1)

PM(cck)

throw(e)

t̂hrow(e)

e

ĉatch(e)
e

catch(w1)

e = w1 ...

catch(wk−1)

e = wk−1

catch(e)

e 6= wi

PM(com1)

PM(comk−1)

PM(comk)

throw(e)

e

e

Fig. 5. The semantics of a block with exceptions. A simple arrow denotes a causal
dependence between two actions, a double arrow links two synchronized actions.
The thick arrow denotes that abortion is performed between the occurrence of
the two linked actions.

Notice that several exceptions may be thrown concurrently (from different
concurrent parts of the block); in such a case the choice operation in the seman-
tics of the blocks ensures that only one of them may be caught and the others
are ignored (this choice is non deterministic).

4.1 Preprocessing

On the top of the semantics given above, we build a preprocessor which rewrites
programs, before PM is applied, in order to enforce a more intuitive behavior.
Until now:

1. The variables declared in a block are not visible from the commands given
in the catch-clauses of this block. The reason is that the declarations for the
block are made in a scope nested in π and so they are local to it.

2. Exceptions at the top level of the program are not handled.

14 Hanna Klaudel and Franck Pommereau

The first rewriting rule fixes the first point. It applies when a block comprises
some declaration followed by a command and some catch-clauses (all three at
the same time):

(R1) :

begin
declarations ;
command
catch-clauses

end

−→

begin
declarations ;
begin
command
catch-clauses

end
end

Then, we use a simple rule for the second point:

(R2) : program name block −→

program name
begin
block

catch-others
end

In order to avoid a recursive application of this rule, the preprocessor has to
jump to block after the first application of (R2).
Notice that this rules changes the behavior of the program since it now silently

discards an unhandled exception. This behavior may be undesirable and one
may prefer a more sophisticated rule which would warn about the problem.
Our purpose is just to show that embedding the whole program into a generic
environment is an easy solution of this problem.

4.2 Semantics of Procedures in the Context of Static Exceptions

It is well known that static exceptions may lead to an unexpected behavior of
procedures when they raise an exception. Consider for example the following
block and its sub-block (where w is a given value):

begin
procedure P () begin throw(w) end ;
begin

P ()
catch w
end

end

One could expect the clause “catch w” to catch the exception thrown by proce-
dure call. But it is not the case with static exceptions: a throw occurs “physi-
cally” where it was declared, and so, not inside the sub-block.
In order to have the intuitively expected behavior, we extend the preprocessor

in such a way that it encapsulates procedure declarations and procedure calls into
some additional B(PN)2 constructs. The usual way to solve this is to consider
an exception coming out of a procedure call as a hidden return value. If this

A Concurrent Semantics of Static Exceptions 15

value is set when the procedure returns, then this value is re-thrown at the
call point. This way, the thrown exception continues to be propagated from the
point where the procedure was called and not from where it was declared. To do
this, the preprocessor adds two additional parameters to all procedure call and
declaration, one is used to know if an exception was thrown during the procedure
call and the other carries the value of the exception when needed.
A call to a procedure P is encapsulated into a block which declares two

additional variables, ex and v, which are assumed not to be already used as
parameters for P nor as variables already visible from P (in such a case, we just
need to choose other names). Variable ex is set to ⊥ if no exception is thrown
in P , otherwise it is set to > and, in this case, v stores the value of the thrown
exception. So, for procedure calls, we have:

(R3) : P (effective-parlist) −→

begin
var ex : {>,⊥} , var v : Val ;
P (effective-parlist, ex, v) ;
do
〈 ′ex = >〉 ; throw v ; exit
〈 ′ex = ⊥〉 ; exit

od
end

where ex and v are fresh identifiers and effective-parlist is the list of effective
parameters for the procedure call.
For a procedure declaration, we have:

(R4) :
procedure P (formal-parlist)
block

−→

procedure P (formal-parlist,
procedure P (ref ex, ref v)
begin
block ; 〈ex′ = ⊥〉

catch-others v
then 〈ex′ = >〉

end

where ex and v are fresh identifiers not already used in formal-parlist (the list
of formal parameters). These two new parameters are passed by reference.
Since these rules could be applied recursively, the preprocessor uses the fol-

lowing additional directives: for (R3), it jumps directly after the text produced
since it does not match any other rule; for (R4), the preprocessor just has to
jump to block since no other rule matches the rest.

5 Applications

Combined with concurrency, exceptions allow to express some other preemption
related constructs. As an illustration, we give in this section two applications of
the exceptions introduced in the paper. First, we use the exceptions in order to

16 Hanna Klaudel and Franck Pommereau

introduce in the language a generalized timeout. Second, we show how to model
systems composed of concurrently running blocks, called threads, which can be
killed from other parts of the program, in particular from the other threads.

5.1 Generalized Timeout

A timeout is usually expressed through a construct such as:

run com1 then com′
1

before com2 then com′
2

which intuitively means “start concurrently commands com1 and com2, if com1

finishes before com2, then run com′
1 else run com′

2”. Usually, com2 just waits for
a timeout event. This may be expressed using exceptions: the command, which
finishes first throws an exception which is caught in order to run either com′

1

or com′
2. So, the syntax given above may be rewritten as the following B(PN)

2

block:

begin(
com1 ; throw(1)

) ∥∥ (com2 ; throw(2)
)

catch 1 then com′
1

or catch 2 then com′
2

end

This construct can be easily generalized to an arbitrary number of commands
running concurrently, each one trying to finish first. The“winner”kills the others
and is the only one allowed to execute its clause then. It would also be useful
to allow one of the clauses to be a timeout. This may be made easily using,
for instance, the causal time model introduced in [10]. Thus, the syntax would
become:

run com1 then com′
1

and com2 then com′
2

...
and comn then com′

n

[timeout d then com′
0]

end run

where d is the number of clock ticks to be counted before timeout occurs. This
generalizes the run/before construct given above and its semantics is easy to
obtain: all comi and, optionally, a chronometer for at most d clock ticks run con-
currently; the first which finishes stops the chronometer and throws an exception
which is caught in order to execute the corresponding com′

j .

5.2 Simple Threads

As they are defined above, exceptions model what we could call “internal abor-
tion”: an exception is propagated through the nesting of blocks, from internal to
external ones. In the following, we show that exception can be used in order to
model “external abortion”where a block can be aborted by another (non nested)

A Concurrent Semantics of Static Exceptions 17

one. For this purpose, we model a simple multi-threaded system in which pro-
cesses (or threads), identified by process identifiers (pid for short), are able to
be killed from any part of the system. The execution of a command “kill(s, p)”
somewhere in the program has the effect to send signal s to the thread identified
by p. When it receives a signal, a thread is allowed to run a command and then it
finishes. This behavior is a simplification of what happens in UNIX-like systems.
We use the following syntax for threads:

thread
declarations for the thread ;
command for the thread

signal sig1 then com1

...
signal sign then comn

end thread

Constants sig1 to sign are the signals captured by the thread; we assume
that there exists a reserved constant SIGKILL which cannot be used in a clause
signal (in UNIX, it is the name of a signal which cannot be captured). This
restriction can be checked syntactically and will be useful in the following.
The programmer is also provided with a new command“kill(s, p)”which may

be used to send a signal s (any constant in Val) to a thread identified by p. One
could prefer to restrict signals to a predefined set but this is not necessary for
our purpose. The semantics for this new command is simply

PM
(
kill(s, p)

)
=
(
{kill(s, p)}.∅.∅ , ∅

)
.

Inside each thread, a variable called pid is implicitly declared, it contains the
pid allocated for the thread. This variable must not be changed by the program
(this is easy to check syntactically).
In order to attribute pids and to transmit signals, we use a pid server , which

is a kind of data P/M-net, its priority relation is empty and its net part is defined
by the following expression:

[
∅.{b+((p1,⊥)), . . . , b

+((pk,⊥))}.∅

∗ {k̂ill(s, p), ̂transmit(s, p)}.∅.∅

¤{ ̂allocpid(p)}.{b−((p,⊥)), b+((p,>))}.∅

¤{̂freepid(p)}.{b−((p,>)), b+((p,⊥))}.∅

∗ {P̂S t}.{b
−((p1, x1)), . . . , b

−((pk, xk))}.∅
]
tie b

This iteration is composed of three parts (separated by stars):

– ∅.{b+((p1,⊥)), . . . , b
+((pk,⊥))}.∅ is the initialization which sets up the server

by filling the heap buffer represented by the asynchronous links on b. It is
filled with pairs (pi,⊥), for 1 ≤ i ≤ k, where the pi’s are the pids and ⊥
mark them free;

18 Hanna Klaudel and Franck Pommereau

– conversely, the termination, {P̂S t}.{b
−((p1, x1)), . . . , b

−((pk, xk))}.∅, clears
the buffer; it can be triggered from the outside with a synchronization on
action P̂S t;

– the repeated part is the most complicated. It is a choice between three ac-
tions, this choice being proposed repeatedly as long as the iteration is not
terminated. It offers the following services:
• allocation of a pid when a thread starts: when the transition labelled
by { ̂allocpid(p)}.{b−((p,⊥)), b+((p,>))}.∅ fires, a token (p,⊥) is chosen
through asynchronous links on b and marked used (with > on its second
component);

• symmetrically, when a thread terminates, it frees its pid by synchronizing
with {̂freepid(p)}.{b−((p,>)), b+((p,⊥))}.∅;

• part {k̂ill(s, p), ̂transmit(s, p)}.∅.∅ is used to transmit a signal to a thread
identified by p. It just “converts” a k̂ill into a ̂transmit ;

The iteration is under the scope of a tie b which sets up the asynchronous links.
Notice that because of the choice in the loop part of the iteration, only one

thread action (starting, terminating or killing a thread) can be executed at one
time, allowing in this way to avoid, for instance, mutual killings. However, a
server with more concurrent behavior may be designed.
Provided this server, we define three internal commands (i.e., not available

for the programmer) with the following semantics:

– “alloc-pid(v)” asks the server to allocate a pid which is written in variable
v, so we have
PM(alloc-pid(v)) =

(
{allocpid(p), V (vi, vo)}.∅.{vo = p} , ∅

)

– “free-pid(v)” frees an allocated pid, reading it in v and so
PM(free-pid(v)) =

(
{freepid(p), V (vi, vo)}.∅.{p = vi} , ∅

)

– “capture-signals” receives a signal relayed by the server and converts it
into an exception:
PM(capture-signals) =(
{transmit(s, p), throw(s),PID(pid i, pido)}.∅.{p = pid i ∧ pido = pid i}

¤ {transmit(s, p), throw(SIGKILL),PID(pid
i, pido)}.∅

.{s 6= sig1 ∧ · · · ∧ s 6= sign ∧ p = pid i ∧ pido = pid i} , ∅
)

where sig1, . . . , sign are the signal already captured by the thread.

Then, the semantics for the threads given above is a nested block structure
as follows:

begin
var pid : {p1, . . . , pk} ,
var ex : Val ,
declarations for the thread ;
alloc-pid(pid) ;
begin
(command for the thread ; throw(SIGKILL)) ‖ capture-signals

catch sig1 then com1

A Concurrent Semantics of Static Exceptions 19

...
or catch sign then comn

or catch SIGKILL
end ;
free-pid(pid) ;

catch-others ex then free-pid(pid) ; throw(ex)
end

First, we declare fresh variables pid (whose name is reserved for threads and
must not be declared by the programmer) and ex (used to re-throw an exception
thrown by the thread). Then we make the declarations for the thread in such a
way that they are visible from clauses signal. The first instruction initializes pid
with a call to the pid server. Then the commands (i) which forms the body of the
thread and (ii) capture-signals, areput in parallel. Command capture-signals
waits for any signal coming from outside. If this happens, the signal is converted
into an exception which is caught accordingly to what is specified in the thread.
If a signal which is not handled by the thread comes, it is converted into a
SIGKILL. If the command for the body of the thread terminates, command
throw(SIGKILL) is used to abort command capture-signals and to terminate
the block. When the internal block is finished, the pid for the thread is freed
and, if the termination comes from an unexpected exception, the first command
free-pid is by-passed. A catch-others allows to free the pid in this case and
to re-throw the unexpected exception so it is propagated to the block which
declared the thread.
Finally, the semantics for the program just put the pid server in parallel to

the most external block (as for a global variable declaration), with the scoping
on actions transmit , kill , allocpid , freepid and PS t.

6 Conclusion

Concurrent exceptions has been addressed in literature, for instance in the con-
text of Coordinated Atomic Actions [14] or Place Charts Nets [8]. In this paper,
we introduced static exceptions in a parallel programming language, B(PN)2,
which is provided with a concurrent semantics based on Petri nets and for which
implemented tools can be used [7].
It turned out that combining these exceptions with concurrency allowed to

express other preemption related constructs like a generalized timeout and a
simple multi-threading system.
Future works may emphasize the links with real-time, for instance by intro-

ducing causal time, already defined in [10] for M-nets, at the level of B(PN)2.
This would allow one to express timed systems using statements like delays and
deadlines, and thus would turn B(PN)2 into a full featured real-time language.
Another interesting work would be to apply this kind of semantics to other lan-
guages. We believe that, in the present state of the development, these ideas
could be used to give a semantics for a reasonably rich (even if not fully general)
part of the Ada programming language.

20 Hanna Klaudel and Franck Pommereau

Acknowledgements

We are very grateful to Tristan Crolard: our discussions were fruitful and helped
us to clarify our mind about exceptions. We also thank the anonymous referees
who pointed out some mistakes and missing references.

References

[1] E. Best, R. Devillers, and J. G. Hall. The box calculus: a new causal algebra with
multi-label communication. LNCS 609:21–69, 1992.

[2] E. Best, W. Fraczak, R. Hopkins, H. Klaudel, and E. Pelz. M-nets: An alge-
bra of high-level Petri nets, with an application to the semantics of concurrent
programming languages. Acta Informatica, 35, 1998.

[3] E. Best and R. P. Hopkins. B(PN)2 — A basic Petri net programming notation.
PARLE’93, LNCS 694:379–390, 1993.

[4] R. Devillers, H. Klaudel, and R.-C Riemann. General refinement for high-level
Petri nets. FST&TCS’97, LNCS 1346:297–311, 1997.

[5] R. Devillers, H. Klaudel, and R.-C. Riemann. General parameterised refinement
and recursion for the M-net calculus. Theoretical Computer Science, to appear
(available at http://www.univ-paris12.fr/klaudel/tcs00.ps.gz).

[6] H. J. Genrich, K. Lautenbach, and P. S. Thiagarajan. Elements of General Net
Theory. Net Theory and Applications, Proceedings of the Advanced Course on
General Net Theory of Processes and Systems, LNCS 84:21–163 , 1980.

[7] B. Grahlmann and E. Best. PEP — more than a Petri net tool. LNCS 1055,
1996.

[8] M. Kishinevsky, J. Cortadella, A. Kondratyev, L. Lavagno, A. Taubin and
A. Yakovlev. Coupling asynchrony and interrupts: place chart nets and their
synthesis. ICATPN’97, LNCS 1248:328-347, 1997.

[9] H. Klaudel. Compositional high-level Petri net semantics of a parallel program-
ming language with procedures. Science of Computer Programming, to appear
(available at http://univ-paris12.fr/lacl/klaudel/proc.ps.gz).

[10] H. Klaudel and F. Pommereau. Asynchronous links in the PBC and M-nets.
ASIAN’99, LNCS 1742:190–200, 1999.

[11] H. Klaudel and F. Pommereau. A concurrent and compositional Petri net seman-
tics of preemption. IFM’2000, LNCS 1945:318–337, 2000.

[12] P. A. Lee and T. Anderson. Fault tolerance: principle and practice. Springer,
1990.

[13] R. Milner. A calculus of communicating systems. LNCS 92, 1980.
[14] B. Randell, A. Romanovsky, R. J. Stroud, J. Xu and A. F. Zorzo. Coordinated

Atomic Actions: from concept to implementation. Submitted to IEEE TC Special

issue.
[15] A. Romanovsky. Practical exception handling and resolution in concurrent pro-

grams. Computer Languages, v. 23, N1, 1997, pp. 43-58.
[16] A. Romanovsky. Extending conventional languages by distributed/concurrent

exception resolution. Journal of systems architecture, Elsevier science, 2000
[17] J. Xu, A. Romanovsky and B. Randell. Coordinated Exception Handling in Dis-

tributed Object-Oriented Systems: Improved Algorithm, Correctness and Imple-
mentation. Computing Dept., University of Newcastle upon Tyne, TR 596, 1997.

	A Concurrent Semantics of Static Exceptions in a Parallel Programming Language

