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LIMIT DESIGN OF AXISYMMETRIC SHELLS WITH APPLICATION TO 
CELLULAR COFFERDAMS 

By P. de Buhan1 and A. Corfdi� 

ABSTRACT: This pape� is devoted to the limit design of cellular cofferdams that are regarded as mixed struc­
tures where th� ba�kfill 1s model�d as � thre_e-dimensional continuum, while the surrounding sheet pile wall is 
treated as a. cylin

_
drical s�ell. Deahng w1� this structure from a static point of view, it turns out that the problem 

under. consideration requ1res the calculation of the ultimate load value of a circular cylindrical shell subjected 
to a lm�arly varying pressure distrib�tion rep�esenting th� thrust of the backfill material. Extending the results 
of prev10u� works, a com�lete solution to this . problem IS developed for different boundary conditions. The 
cor:espondm� results are discussed, notably the ���uence of the shell relative thickness. They are applied to the 
des1gn of a smgle cell�lar cc;>fferdam 

_
whose stability under gravity forces is examined, with the strength of the 

granular backfill matenal bemg descnbed by a Mohr-Coulomb criterion. 

INTRODUCTION 

Cellular cofferdams are civil engineering structures that are 
most commonly encountered in hydraulic works, where they 
provide a convenient means for isolating dry work sites in 
water-covered areas. They may also be used as breakwaters or 
retaining walls. They are constructed by assembling vertical 
metallic sheet piles, either driven into the soil or simply resting 
on it, in order to form circular cylindrical cells filled with a 
granular material. Although the intensive use of these kinds 
of structures is not new (it may even be traced back to the 
beginning of the century), their mechanical behavior is still to 
be fully understood, particularly their limit design. 

Simplified engineering design rules are already available 
(see, for instance, Bowles 1977 or Lacroix et al. 1970), based 
on the idea that the thrust of the backfill material inside the 
cell generates interlocking tensions between the sheet piles, to 
which the latter should be able to resist. One of the difficult 
points is to decide which value of the backfill thrust should 
� taken into account in such an analysis. A first comprehen­
Sive approach that provides a rigorous mechanical framework 
to this problem has recently been developed by Dormieux and 
Delaurens (1991), whose analysis is based on the yield design 
(or limit design) theory (Salen\=on 1983, 1990, 1993). Making 
use of both the lower bound and upper bound methods, they 
derived crude but rigorous estimates for the stability factor of 
a single cell subjected to its own weight. In regard to the lower 
?ound estimates that they obtained through the static approach,
1t should be noted that their calculation implicitly amounts to 
disregarding any resistance of the sheet piles to bending mo­
ments. It thus appears that a possible way to improve these 
estimates consists of taking the bending resistance into ac­
count. It is, therefore, necessary to get a better insight into the 
mechanical behavior of the sheet pile cell, which from now 
on will be modeled as a homogeneous cylindrical shell. 

Limit analysis methods applied to plates and shells, re­
garded as two-dimensional continuous media, have formed the 
subject of many prominent works, among which one should 
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quote those of Drucker (1954), Hodge (1954, 1963), Onat and 
Prager (1954), Eason and Shield (1955), and Drucker and 
Shield (1959). Drucker and Shield (1959), for instance, pro­
posed a simplified yield strength criterion for shells, involving 
no interaction between normal forces and bending moments. 
This criterion may be regarded as an approximation to the true 
strength criterion for a shell made of a homogeneous Tresca 
material. Using such a criterion, Olszak and Sawczuk (1959) 
have derived solutions to the classical problem of a tank sub­
mitted to a hydrostatic distribution of pressure. These results 
have been reported, with slight modifications, in Save and 
M_assonnet (1972). Unfortunately, they cannot be directly ap­
phed to cellular cofferdams, since the analysis performed by 
Olszak and Sawczuk (1959) in the relevant situation (tank with 
free upper edge) was restricted to "short" shells; that is, to 
shells whose length is small compared to their radius (given 
a value of the thickness). 

The main purpose of the present paper is to derive exact 
solutions to the aforementioned problem, for short as well as 
long cylindrical shells. Three kinds of boundary conditions 
conc�ming the lower edge of the shell will be successively
exammed. They are representative of different situations one 
may come across in practice, depending on the construction 
conditions of the cellular cofferdams. These solutions are first 
obtained by means of the yield kinematic approach, making 
use of failure mechanisms involving hinge circles, then by 
exhibiting generalized stress distributions along the shell, in 
order to prove that the lower and upper bound estimates co­
i�cide. Th� results so �btained make it possible to quite sig­
mficantly Improve prev10us lower bound estimates for the sta­
bility factor of cellular cofferdams. 

STABILIT Y  ANALYS IS OF CELLULAR COFFERDAM: 
STATEMENT OF PROBLEM 

Cellular cofferdams are civil engineering structures com­
prised of a cylindrical shell made of metallic sheet piles con­
nected to each other along the vertical direction filled with a 

�ohesionl�ss granular material (sand or gravel) [Fig. 1(a)]. It
1s co�vement to analyze the stability of such a structure by
resortmg to _a so-called "mixed modeling" approach where
the surroundmg sheet pile wall is schematized as a cylindrical 
shell, while the backfill material is considered as a three-di­
mensional continuous medium whose strength properties are 
defined through a Mohr-Coulomb condition that writes 

f(a) = (a, - <13) + (a, + a3)sin 'P s 0 (1) 

where a = stress tensor at any point of backfill material; a1 
�d <13 =major and minor principal stresses, respectively (ten­
sile stresses are counted as being positive); and 'P = friction 
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a 

b 
FIG. 1. Mixed Modeling of Cellular Cofferdam: (a) Basic Struc­
ture; (b) Coordinate System 

angle. It is thus assumed that the backfill material exhibits no 
cohesion. 

The whole structure is resting on a horizontal rigid bedrock. 
It is referred to as a cylindrical coordinate system (r, 6, z) with
the origin being taken as the intersection of the lower plane 
with the symmetry axis. No surcharge is applied to the struc­
ture apart from the gravity characterized by a uniform field of 
body forces equal to -"Ye., where "Y is the specific weight of 
the backfill material [Fig. l(b)]. Concerning the sheet pile 
wall, modeled as a cylindrical shell of height H and radius R, 
it will be assumed that no external load is applied on its upper 
edge (z = H), while the following three kinds of boundary 
conditions will be considered in the sequel for the lower edge 
(z = 0): 

• Free edge-the lower end is free to move horizontally as 
well as to rotate 

• Simply supported edge-the displacements are fixed 
equal to zero, while the rotation remains free 

• Clamped edge-no translation and rotation are allowed 

These boundary conditions may be considered as modeling, 
in a realistic way, the physical interaction between the sheet 
piles and the substratum. By way of illustration, the third 
boundary condition (clamped edge) corresponds, for instance, 
to the case when the sheet piles are driven deep enough into 
the substratum, while the free edge condition would be asso­
ciated with negligible horizontal friction forces between the 
sheet pile extremities and the substratum. The second type of 
boundary condition represents an intermediate situation. 

Taking into account the axisymmetry of the problem, it is 
advisable to consider distributions of stresses in the shell that 
also satisfy this symmetry. 

In terms of normal and shear resultants as well as bending 
moments (referring to an infinitesimal shell element such as 
that shown in Fig. 2), the following components vanish: 

dz 

FIG. 2. Equilibrium of Infinitesimal Shell Element under Axi­
symmetric Conditions 

(2a-c) 

Resorting to the same argument of axisymmetry, it appears 
that the stress vector T applied at any point of the shell by 
the backfill material is of the form 

T = p(z)e, + T(z)e. (3) 

Enforcing both the resultant and moment equilibrium of the 
shell element shown in Fig. 2 leads to the following equations: 

dV. N.. dMZZ 
dz - R + p(z) = 0; dz + v. = 0 

dN.. dM00 
dz 

+ T(Z) = 0; de = 0 

(4a, b) 

(4c ,d) 

Eliminating v. between (4a) and (4b), the following clas­
sical second-order differential equation is obtained: 

d2Mzz Noo 
dz 2 

+ R - p(z) = 0 (5) 

which may be found, for instance, in Chen and Han (1988). 
Integrating (4c) over the height of the shell and taking into 

account the boundary conditions on the upper edge [N"(z = 
H) = 0] yields

Nzz = -[ T(z' ) dz' (6) 

Eqs. (5) and (6) express the equilibrium of the shell subject 
to the stress distribution p(z) and T(z). 

According to the yield design theory (or limit design) for­
mulation (Salen�on 1983, 1990, 1993), the stability of the 
whole structure is ensured if one can exhibit a stress distri­
bution of membrane forces (N", N99) and moments (M66, M") 
in the shell, with both of them complying with equilibrium 
and strength requirements. Dealing with this problem by 
means of the static approach, a particular choice is now being 
made concerning the stress fields in the backfill material, de­
fined as follows in the cylindrical coordinates: 

CJ'zz = -y(z - H), CJ'rr = CJ'eo = li.CJ".. and (7a) 

CJ"11 = 0 for the other components (7b) 

where ll. represents an arbitrary constant. 
These stress fields automatically satisfy the equilibrium 

equation (diva - "Ye, = 0) as well as the boundary conditions
prescribed at z = H (stress-free top level). Moreover, it com­
plies with the strength condition (1) if and only if 

(8) 

where Ka = (1 - sin <p)/(1 + sin <p) and KP = K:;1 denote
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classical active and passive earth pressure coefficients, respec­
tively. 

The corresponding stress distribution exerted on the sur­
rounding shell is therefore 

T = a·(-e,) = -X:y(z- H)e,

That is, by comparing with (3) 

p=P (1- �) ; T=O

(9) 

(10a,b) 

with P = 'A:yH representing maximum pressure applied to bot­
tom of shell (z = 0). 

It then remains to be seen whether the shell will be able to 
resist the linearly varying pressure distribution (10). This will 
now be considered in itself as an auxiliary yield design prob­
lem, where P stands for loading parameter. 

YIELD DESIGN FORMULATION OF 
AUXILIARY PROBLEM 

The auxiliary problem under consideration is that of a cy­
lindrical shell of height H and radius R subjected to an internal 
pressure distribution increasing linearly from zero at the top 
of the shell to a prescribed value denoted by P at the bottom 
(Fig. 3). As a result of (6) with z = 0, it appears that N,, = 0, 
so that the only stress components having nonzero values are 
Nee and M,, which fulfill equilibrium (5), while from (4d) 
Mee is an arbitrary function of z. Following Olszak and Saw­
czuk's (1959) approach, a simplified criterion limiting the val­
ues of Nee and M,,, respectively, will be adopted 

(l1a,b) 

Such a criterion may be considered as an approximation of 
the actual strength criterion, which can be derived in the case 
of a shell made of a homogeneous Tresca material (Drucker 
and Shield 1959). More specifically, denoting by <Yo the resis­
tance of the constituent material under a uniaxial stress, it can 
be shown that (11) is an upper bound of the exact criterion if 
one takes N0 = cr0e and M0 = cr0e2/4 (e is the thickness of the 
shell), while it turns out to be a lower-bound estimate when 
N0 = (3/4)cr0e and M0 = (3/16)croe2• In the case of a cellular 
cofferdam, the shell being constituted by an assemblage of 
metallic sheet piles, it seems reasonable, in the absence of 
more specific data, to adopt a simple criterion as (11), taking 
for N0 the force per unit length along the connection between 
two sheet piles necessary for tearing them apart. This force 
can be measured through a very simple testing procedure. 

Within the framework of the yield design theory, it appears 
that the ultimate load p+ is defined as the maximum value of 
P for which one can exhibit at least one distribution of Nee 
and M .. statically admissible with P. Such a distribution is 

z 

FIG. 3. Auxiliary Problem-Cylindrical Shell Submitted to 
Linear Distribution of Internal Pressure 

satisfying the equilibrium (5) together with the prescribed 
stress boundary conditions, while complying with the strength 
conditions (11) at every point of the structure. Introducing, for 
the sake of convenience, the following set of nondimensional 
variables 

Z Nee 
u--· n--· -H' -No' 

M,, 
m=-; 

Mo 
k = 

MoR. 
and f= 

PR 

N0H2' No 
(12a-e) 

This problem reduces to searching for f+ = p+ R/N0, defined 
as the maximum value off for which there exist two functions 
n(u) and m(u) defined on the interval [0, 1] such that 

d2m n f 
du

z + k- k (1 - u) = 0; lml ::5 1 and lnl ::5 1 ( 13, 14)

and for the upper edge (u = 1) 

m(1) = m'(l) = 0 ( 15)

[Note that m'(l) = 0 is derived from condition V,(z =H)= 0 
given in (4b)], whereas for the lower edge (u = 0) 

free edge: m(O) = m'(O) = 0 

simply supported edge: m(O) = 0 

clamped edge: no condition 

(16) 

(17) 

(18) 

As it is quite apparent from the previous definition.!+ may 
be written as 

(19) 

that is, as a function of the sole parameter k. 

Lower Bound Static Approach 

This approach simply consists of applying the definition of 
f+; that is, in exhibiting particular classes of stress distribu­
tions that satisfy both equilibrium and strength requirements. 
As a first very simple approach, one may consider such dis­
tributions where the bending moment is taken to be equal to 
zero [m(u) = 0]. Eq. (13) then immediately gives 

n(u) = f(l - u) (20) 

and the strength condition (14), which reduces here to ln(u)l 
s 1 u E [0, 1 ], implies that f ::5 1. 

It follows that 

(21) 

for any value of k � 0. 

Upper Bound Kinematic Approach 

This approach results from the dualization of the static ap­
proach by means of the virtual work principle, which makes 
use of kinematically admissible velocity fields for the problem. 
Any such field that respects the condition of axisymmetry of 
the problem is characterized in each point of the shell by a set 
of two kinematic variables. These variables are the component 
of the velocity along the radial direction, denoted by v, and 
the rate of rotation w of the normal to the shell at the same
point, counted positive along the orthoradial direction. Owing 
to the symmetry of the problem, v and w are functions of the
z-coordinate only (Fig. 4). Note that these two variables are a 
priori independent. 

The principle of virtual work states that, given any statically 
admissible stress distribution of Nee. M, . . and V, in the shell,
the following equality holds: 

W,(v, w) + W,(v, w) = 0 whatever (v, w) (22) 
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FIG. 4. VIrtual Velocity Fields Considered for Problem 

where (v, w) denotes any kinematically admissible velocity 
field; and w. = work done by external forces 

W.(v, w )  = 2'TTR LH p(z)v(z) dz (23) 

while W1 represents work corresponding to internal forces 
(stress distribution), which can be written as 

W;(v, w )  = 2'TTR LH [ Vz (�;- w ) + Nos � + Mzz �:] dz 

Introducing { (dv ) v dw 
ll( v, w )  = sup Vz 

dz - w + N •• R + Mzz 
dz ;

with v .. N88, and Mzz satisfying ( 1 1)} 

(24) 

(25) 

it turns out that a necessary condition for the structure to re­
main stable (i.e., P :S P+) is 

W.(v, w )  ::5 Wm,(v , w) whatever (v, w )  (26) 

where Wmr(v, w) represents maximum resisting work defined 
as 

with 

n ( dv ) lvl 
l"l v, w = 

dz 
= No R + Mo v 

for w = 
dv 

= v' (Kirchhoff-Love condition) 
dz

(27) 

(28) 

ll(v, w) = +oo otherwise; i.e., when w -:1- v' since the adopted 
strength condition involves no limitation on the shear com­
ponent v •. 

The calculation of wmro and hence the kinematic approach, 
can be extended to velocity fields exhibiting discontinuities of 
both v and w, denoted by [v]1 and [w)1, respectively, along a 
finite number of points along the vertical direction (i = 1-n). 
It can be shown that the following quantity is to be added to 
the integral (27): 

. 

L ll([v]1, [w]1) (29) 
I• I 

where 

ll([v]1, [w];) = sup{Vz[V]; + Mzz[W];; 

with v .. Mw and N88 verifying ( 11)} 

That is 

and 

ll([v]1, [w]1) = +oo if [v]1 -:1- 0 

(30) 

(31a) 

ll([v]1, [w]1) = ll([v')1) = M0l[v'Jd if [v]; = 0 (31b) 

taking into account the fact that the Kirchhoff-Love condition 
holds on both sides of the discontinuity. This means that the 
only relevant discontinuities are such that v remains continu­
ous, whereas its first derivative (which coincides with the rate 
of rotation) may undergo jumps ("hinges") across horizontal 
circles drawn on the shell surface. Thus 

Wm,(v) = 2'TTR {LH (�o I vi + Molv"l) dz + t Mol[v'];j}
(32) 

Since W,( v ) = 21TRP f� (1 - z/H)v dz, one finally gets from 
(26) with P = p+ 

(33) 

provided that f� (1 - z/H)v dz be strictly positive. The in­
equality in (33) clearly shows that the kinematic approach pro­
vides upper-bound estimates for the ultimate load p+. 

CASE OF CYLINDER WITH FREE LOWER EDGE 

This case will first be dealt with by means of the kinematic 
approach, then through the static approach, thus obtaining the 
exact solution for the problem. 

Kinematic Approach 

The class of velocity yields v which we will consider is 
shown in Fig. 5. 

It involves a hinge circle separating the upper part of the 
shell that remains motionless from the lower part, which is 
given a motion defined by 

v(z) =a ( 1 - �); 0 ::5 z ::5 z, ::5 H (34a,b) 

where a = positive constant. The value of the discontinuity of 
v' is therefore 

(35) 

Hence, the maximum resisting work is given by (32) where 
Wmr(v) = 2'TTR[M0(a/z1) + a(N0/R)(z112)] and then from (34), 
simplifying by a ,  p+ ::5 (M0/z1 + N0z/2R)/(z112)(1 - z113H) 
or, put in nondimensional form 

z 

FIG. 5. Failure Mechanism with Circular Hinge 
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FIG. 6. Failure Mechanism without Circular Hinge 

+ 1 + 2kluf • . [O 11 f s = f ,(u�> k) w1th u1 = z1/H u1 E , 1 - u1/3 
(36) 

The minimal value of the right member, that is, the optimal 
upper-bound value off+ derived from this particular class of 
mechanisms, is obtained for u, = ur such that 

hence 

*' 
k = 

u, 
6(2 - ur) 

(37) 

2 
r :S n[uf(k), k] = /�(k) with f�(k) = 

2 - ur 
(38) 

Consequently, the optimal upper bound is given in the fol­
lowing implicit form as the solution of: 

2 (f� - 1)3 
k = 3 (/�)2

(39) 

This approach is completed by considering another class of 
mechanisms where no circular hinge is involved, as shown in 
Fig. 6. 

The motion is defined by 

v(z) = a ( 1 - t) for 0 s z s H (40) 

Performing the same calculations as before, one obtains 

Wm,(v) = 27raN0H [ u1 - ( 1 - 2
�J J if U1 :S 1 (41)

We get the following upper bound: 

!+ s 3 
(2uf - 2u1+ 1) 

= /"( k) (42) (3u1 - 1) 2 u" 

which is valid for 1/3 s u1 s 1, and whose minimum value, 
obtained for ur = [<v'W + 2)/61. is 

r s �� = 2<V'i0 - 1) .... 1.4415
3 

(43) 

Fig. 7 represents the curves giving the variations of both 
upper bounds f� and /2 as functions of parameter k. It follows 
that the best upper-bound estimate that can be derived from 
the two previous kinds of mechanisms is 

r :S f"(k) = min{f�./2} withf"(k) = /�(k) solution of (39) 

if k s 0.0276 and/2 ""' 1.4415 otherwise 

Static Approach 

(44a-c) 

It will now be demonstrated that f + = f" by finding out the 
corresponding distributions of normal force Nee and bending 
moment Mu, which are in equilibrium withf", while comply-

0 0.08 0.12 0.16 0.20 
k 

FIG. 7. Plotting of f� and f; as Functions of k 

ing with the strength criterion everywhere. This can be 
achieved by using the theorem of association (Salen�on 1983) 
as a guideline. More specifically, in the present case, this the­
orem states that if any such stress distribution exists, it nec­
essarily satisfies Nee = + N0 (or n = + 1) in the lower part of 
the structure, since the associated strain rate component viR 
in the optimal mechanism is positive. Therefore, the equilib­
rium (13) combined with the boundary conditions (16) gives 

1 [ u2 u3]m(u < ur) = m-(u) = k (f" - 1) 2 - f" 6 (45) 

It can be easily seen that this distribution is compatible with 
the strength condition <lm-1 s 1). It may be completed in the 
upper part (u :2: un by two kinds of distributions. 

Sinusoidal Distribution 

We consider the distribution defined by 

m+(u) =- cos 7r ---1 + 1 1 [ ( u- u*) J 
2 1 - ur 

(46) 

This distribution verifies I m + I < 1, as well as the continuity 
of m and m' at the connecting point ur with m- and the bound­
ary conditions on the upper edge [m(l) = m'(1) = 0]. Then, 
the equilibrium (13) makes it possible to calculate the corre­
sponding distribution of n, denoted by n + 

n+(u) =f"( l - u) + !5. ,.2 

2 cos (,. 
u- ur) 

2 (1 - ur) 1 - ur 
(47) 

A sufficient condition for this distribution to obey the 
strength condition <In+ 1 s 1, ur s u s 1) is 

2 (/" - 1)(2 - /")2 
k < - -"'-----'--'--::----''---'-- ,.2 (/")2 

(48) 

that is, taking into account the relationship between f" and k 

k :S 0.01629 (49) 

It follows that 

F(k) =f"(k) for ks 0.01629 (50) 

Polynomial Distribution 

This kind of distribution is obtained by choosing n + = a = 
ct, so that integrating the equilibrium (13) and using the 
boundary conditions for u = 1 

+ 1 [n 3 a 2]m =- - (1 - u) - - (1 - u) 
k 6 2 (51) 
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-1 0 

u 

-1 0 

u 

-1  0 

u 

(c) 
FIG. 8. Three Examples of Distributions of m(u) and n(u) In 
Equilibrium with: (a) f+(k) = 1.2, {b) f+(k) = 1.3, and (c) r(k) = 
1.4415 

The value of parameter a may be determined by enforcing 
the continuity of m and m' at the connecting point between
m+ and m- ( 

3!" - 4 ) a =r sr- 12 

This distribution respects the strength condition <I a I 
and I m+ I ::5 1) if and only if 

1.2 ::5 f"( k) :S 1.4415 

or 

0.0037 :S k :S 0.0276 

and then 

r< k> =f"< k> if o.oo37 s k s o.o276 

(52) 

::5 1 

(53) 

(54) 

(55) 

Finally, since it can be easily seen thatf+ increases with k, 
(50) and (55) lead to 

r =f"( k) given by (44) for k 2: 0 (56) 

For illustrative purposes, the corresponding distribution of 
n(u) and m(u) has been drawn in Fig. 8 for several values of 

r<k). 
C YLINDER WITH SIMPLY SUPPORTED OR 
CLAMPED EDGE 

The equations governing the problem are the same as those 
in the preceding case, except that the boundary conditions ap­
plying at the bottom edge are now 

m(O) = 0; v(O) = 0 

for the case of the simply supported edge and 

v(O) = v'(O) = 0 

in the case of the clamped edge. 

(57a,b) 

(58) 

The same kind of approach as that previously developed for 
a free bottom edge is followed. The failure mechanisms ex­
plored in the kinematic approach are represented in Fig. 9. 
They involve up to three hinge circles, with the lowest one, 
located at the bottom of the cylinder, implying no contribution 
to the maximum resisting work for a simply supported edge. 
They produce upper-bound estimates for f+( k), which can be 
proved to be the exact solution by exhibiting associated stress 
distributions given in Appendices I and II. As an example, 
such a distribution, along with the associated failure mecha­
nism, is shown in Fig. 10 for the case of a simply supported 
cylinder. 

The results of the present study are gathered in Fig. 11, in 
the form of curves giving the exact value off+ as a function 
of k for the three different boundary conditions.

As could be anticipated, the greatest value of f+( k) is ob­
tained for the case of a clamped edge, the intermediate curve 
corresponding to the simply supported edge which remains 
free to rotate about the orthoradial axis. 

BACK TO INITIAL PROBLEM 

Resuming the analysis of the cellular cofferdam undertaken 
in an earlier section of the present paper, it appears that the 
stability of the composite structure ( backfill material + sheet 
pile wall) under its own weight is ensured provided that 

'YHRIN0 ::5 ("/HR!Not (59) 

where ("/HRIN0t denotes the ultimate value of "/HRIN0 be­
yond which failure will occur. It may be easily seen from 
dimensional analysis arguments that 

(a) (b) (c) 
FIG. 9. Failure Mechanisms Considered in Case of Simply 
Supported or Clamped Bottom Edge: (a) One Hinge Circle; (b) 
1\vo Hinge Circles; (c) Three Hinge Circles 

-1 0 

FIG. 10. Stress Distribution and Associated Mechanism for 
Simply Supported Cylinder W(k) = 1.6] 
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0 0.04 0.08 
FIG. 11. Ultimate Load f+ versus Parameter k for Different 
Boundary Conditions at Bottom of Shell 

+ + ( H Mo )
('yHR/N0) = F (j), R, No R

(60) 

Referring again to the lower-bound static approach, where 
stress fields of the form (7) are considered in the backfill ma­
terial, it can be deduced from the previous analysis of the 
auxiliary problem that a sufficient condition for the sheet pile 
wall to resist to the linear pressure distribution (10) associated 
with those stress fields, writes 

that is 

+ No + ( Mo R) 
P = 'A:yH s P = - f k = --

2 R No H 

-y HR F(k) --<--
No - A 

(61) 

(62) 

Thus, given any value of A ranging between K. and KP [see 
(8)], so as to ensure that the stress field in the backfill material 
complies with strength condition (1) f+(k) /A clearly provides
a lower bound estimate for ('yHR/N0t. The best (i.e., the 
greatest) estimate is obviously obtained by choosing the min­
imum value of A, which is K •. Hence (-y HR) + 

� 
f+ 

= Kpf+ 
No K. (63) 

This represents a significant improvement of the result al­
ready obtained by Dormieux and Delaurens (1991) by taking 
f+ = 1; that is, by implicitly neglecting the resistance of the 
confining shell to bending moments (k = 0). 

A numerical example will help to assess this improvement. 
A cellular cofferdam of height H = 20 m and radius R = 7.5 
m is built up by using sheet piles having a thickness of e = 
0.012 m made of a steel, the yield strength of which is equal 
to rr 0 = 250 MPa so that 

No = rro e = 3 MN/m; Mo = rr0 e2/4 = 9 kNmlm (64a,b) 

Mo R s and k = --
2 
... 5.62 w- (64c) 

N0 H 

The corresponding values of f+(k) reported in Fig. 11 are 

• 1.045 for a free bottom edge 
• 1.102 for a simply supported edge 
• 1.119 for a clamped edge 

That is an improvement of up to 12% with respect to the 
simplified lower-bound estimate of Dormieux and Delaurens. 

CONCLUDING REMARKS 

By adopting a simplified expression for the yield criterion 
of an axisymmetrically loaded shell expressed in terms of nor­
mal forces and bending moments, exact solutions to the prob­
lem of a cylindrical shell submitted to a linearly varying in­
ternal pressure have been developed. In particular, it has been 
shown that the ultimate load increases with a parameter k, 
which characterizes the relative thickness of the shell. More­
over, the importance of the boundary conditions prescribed at 
the lower edge of the shell has been clearly pointed out. As 
an example, the improvement of the lower-bound estimate for 
the stability factor of a single cellular cofferdam resulting from 
such an analysis may range between 5% and 12% when com­
pared to previous conservative estimates where the resistance 
to bending moments is neglected. It should be emphasized that 
such improved lower-bound estimates remain valid for any 
strength condition governing the interface between the sheet 
pile wall and the backfill material. In other terms, taking into 
account nonzero shear stresses T along this interface and, 
hence, more complex stress fields in the backfill zone than 
those considered in the prior analysis (namely with rr,8 -:;:. 0) 
would necessarily result in deriving still better lower bounds. 
Likewise, upper-bound estimates for the stability factor could 
be expected from the kinematic approach. This would neces­
sitate constructing relevant velocity fields both in the backfill 
material and in the surrounding shell. 

APPENDIX I. RESULTS FOR CYL INDER WITH 
SUPPORTED EDGE 

If k :S 0.01276, we have the following results: 

0 (f-1)3 3 - 0 f-1 
k = 27 

!2 ; U1 =
3 f 

3 + 0t- 1 
u2= -- and 

3 f 

(65a,b) 

(65c) 

m = -30 -- u + 90 (f-
f !2 [ 

b f-1 (f- 1)3 
u2 u3]1) -- J-
2 6 

(65d) 

where u1 and u2 denote loci of the two hinges. The distribution 
mb must be completed in the upper part by two kinds of dis­
tributions 

m, = � [cos 
( 

1T � = ::) + 1 J (66a) 

m =.!. [u- a) 
u2

-f
u3 

+.!. (2a- f)u-.!. (3a - n] p k 2 6 2 6 

. J4- 4P + 12/ 2 - 16f + 4
wtth a = -

12/(2 -f) (66b) 

It can be proved that the distribution m, gives a static solution 
for 1 :Sf ::s; 1.759 (0 ::s; k ::s; 0.009061) and that mP gives a
static solution for 1.421 ::s; f ::s; 1.893 (0.002371 ::s; k ::s; 
0.01276). 

If 0.01276 ::s; k ::s; 0.07407, we have the following results 
with m�o the moment distribution, in the lower part (u :S u,) 
and m2 for the upper part 

1 k- ­- 18/2 

{ <6- 36f + 27/2 + 3!'- 6v'6Vi+3t2 + 6v'6Vi+3n} . 
+�[4(/ + 3)312 - 4v6(f + 3) - l2v;+3 + 13v'6]312 

(67)
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m = - (f-1)--J-+ - y'j+3 --- u 
1 [ u2 u3 ( � f + 2) J1 k 2 6 3 2 (68) 

� = i [ <f + 1) � - f � -� (f + 2)u + � (f + 3) J (69)

u, = �¥; U1 
=! � 1 _ � (/ � 1 r + � � _7 _ 1 

If k =::: 0.7407, we have the following results: 

1 ( u3 u) f = 3; m = k -2 + u2 - 2 
APPENDIX II. RESULTS FOR CYLINDER WITH 
CLAMPED EDGE 

If k :5 0.01108, we have the following results: 

1 (f - 1)3 f - 1 3 f - 1 
k=- · u =-- · u =- -- and 

24 /2 ' 1 2f ' 2 2 f 

f - 1 /2 [ u2 u'] 
mb = 1 - 9 f u + 24 

(f _ 1i (f - 1) 2-f(; 

(70a,b) 

(71, 72) 

(73a-c) 

(73d) 

The distribution mb must be completed in the upper part of the 
shell by two kinds of distributions 

m. = � [cos ( 1r � = ::) + 1 J (74a) 

1 [ u2 u3 1 1 Jm = - (f - a) - - f - - - (f - 2a)u + - (f - 3a) 
p k 2 6 2 6 

(74b) 

. 3f4 - 12!' + 42/2 - 60/ + 11 
w1th a = 

16(3/2 _ 61 _ 1) 
(74c) 

It can be proved that m. gives a static solution for 1 :5 f :5 
1.8762 (0 :5 k :5 0.00796) and that mP gives a static solution 
for 1.486 :5 f :5 2.0315 (0.002167 :5 k :5 0.01108). 

If 0.01108 :5 k :5 0.05927, it can be proved that k is the 
only positive root of the following equation: 

k4(559872/4) + k3( -186624/5 - 559872/4 - 1990656/3 

+ 27648/2) + ec23328P + 46656!' + 728352/4

+ 432000/3 + 2125440/2 82944/) 

+ k(- 1296/7 + 3888/6 - 5616/5 - 108720/4 

+ 27648/3 + 680832/2 - 601344/ + 62208)

+ (27/8 - 324/7 + 450/6 + 4372!' - 11565/4 

9432/3 + 49464/2 - 38880/ + 3888) = 0 (75) 

This equation can be algebraically solved, but it is more con­
venient to use numerical methods. We denoted by m1 the mo­
ment distribution in the lower part (u < u,), and by m2 the 
moment distribution in the upper part. The expressions of m1 
and m2 are given next

m, = I + i [ ( /  - I) � - f �

+ 
_-_u_+_2>_+_�:_!_u_

+_3> __ 16_< "l 
(76a) 

1 1 [ u2 u3 
m2 = k (f + 1) 2 - f 6 2 (f + 2)u f + 3] + -6- and 

(76b) 

u, = ± �� (f + 3) - 16k (76c) 

If k =::: 0.059217, the study has been completely carried out 
by Olszak and Sawczuk (1959). The results are 

f - 3 1 [ u2 u3 
k = -

6
-; m = 1 + k (f - 1) 2 - f 6 
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APPENDIX IV. NOTATION 

The f ollowing symb ols are u sed in this paper: 

e = thickness of shell; 
f = nondimensiona1 1oading parameter (PR!No); 

f+ = ultimate value of (PRIN0);
H = height of cylinder; 
k = nondimensional characteristic parameter of cylindrical 

shell (M0RIN0H2); 
K. = active earth pressure coefficient; 
KP = passive earth pressure coefficient; 
M = bending moment; 

Mo = yield bending moment; 
m = reduced bending moment (M!Mo); 
N = normal force per unit length; 

N0 = yield normal force per unit length; 
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n = reduced normal force per unit length (N/N0); 
p = pressure; 
P = loading parameter (greatest value of pressure); 

p+ = ultimate value of loading parameter; 
R radius of cylinder; 
u = reduced vertical coordinate (z/H); 
v = horizontal velocity; 
V = shear per unit length; 

w. = work of external forces; 
WI work of internal forces; 

w,., = maximum resisting work; 
-y = specific weight of backfill material; 

n = density of maximum resisting work; 
<P = friction angle; 

CJ'o = resistance of material under uniaxial solicitation; and 
w = rate of rotation. 
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