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This paper presents a method allowing the simultaneous identification of parameters governing an orthotropic law with a nonlinear shear
response. Such laws appear for instance through the thickness of thick laminated composites. The tested specimen is subjected to
boundary conditions similar to those of a Iosipescu setup. The strain field in the central area is processed with the so-called virtual fields
method, which is an application of the principle of virtual work with particular virtual fields. The method is simulated with data obtained

from finite element calculations.
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1. Introduction

Designing composite structures and predicting their
mechanical behaviour requires the use of representative
models together with accurate procedures to determine the
parameters involved. However, this challenge is not easy to
face in the case of composite materials because of the
number of independent parameters to be determined. This
problem becomes critical when through-thickness proper-
ties are concerned because usual tests are not easily
adaptable to the through-thickness properties. These diffi-
culties are underlined in Refs. [1-4] for instance. Never-
theless, the through-thickness properties are required when
thick composite structures are designed. Such thick struc-
tures tend to appear nowadays in more and more industrial
applications [5]. This is the consequence of moving from
secondary to primary load bearing components, requiring
more strength and therefore leading to the use of thicker
composites.
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A solution for better measurement of mechanical proper-
ties of composites is to use one of the alternative methods
based on mixed experimental/numerical procedures that
have been developed during the last decade [6—16]. The
main advantage of such approaches relies on the fact that
several parameters can be determined from one single
coupon. Moreover, the experimental set-up is allowed to
develop heterogeneous strain/stress fields in the tested
specimen since closed-form solutions are not necessary.
This extra freedom can lead to simpler experimental set-
ups. Furthermore, these heterogeneous strain/stress fields
may involve simultaneously all the parameters governing
the mechanical behaviour. Therefore, it should be possible
to determine them provided that a suitable and efficient
identification strategy is used.

Several approaches have been proposed to identify the
elastic parameters of composite plates by back analysis of
experimental data without any closed-form solution. Most
of them are based on optimisation procedures with finite
element calculations performed until the experimental
data match the corresponding calculated ones. However
this approach exhibits some drawbacks. For instance, the
set of parameters input to initiate the optimisation procedure
must often be close to the actual ones to guarantee con-
vergence. Some difficulties are also expected to simulate
the boundary conditions correctly, particularly if they are



not point supports or forces. Finally, it must be pointed out
that using a finite element programme is suitable for solving
the direct problem of finding the displacement/strain/stress
fields when the material properties are known. However,
such a tool is not necessarily the best when the inverse
problem of finding the material parameters from strain/
displacement fields is addressed.

The basic idea is here to consider the whole strain field
onto the surface of the tested specimen as input data, i.e. to
process many tens of thousands of experimental points. In
practice, such fields can be measured with some suitable
optical method. These methods are becoming more and
more popular [17], but these experimental aspects are not
considered in the present work. It has been shown in some
recent studies that heterogeneous strain fields can be
advantageously processed with a method called the virtual
fields method which is simply based on the global equili-
brium of the tested specimen written with the principle of
virtual work. Feeding some particular virtual fields into this
equilibrium equation leads in the case of elastic properties to
a set of linear equations that are inverted to obtain the
unknown parameters. This method, introduced first in
Ref. [18], has been successfully applied to bending (either
in statics [19,20], or in dynamics [21,22]), to in-plane
[23,24] and more recently to through-thickness composite
characterization [25,26].

In the present paper, the objective is to investigate the
capability of the virtual fields method to identify parameters
governing the nonlinear shear behaviour of a composite.
The identification of parameters governing nonlinear
material behaviour from mechanical configurations giving
rise to heterogeneous stress/strain fields has seldom been
addressed in the literature, even though some recent papers
propose suitable strategies for the simultaneous identifica-
tion of non elastic mechanical parameters of isotropic
materials [27] for instance. Here, the aim is to consider an
unnotched specimen tested in a losipescu fixture. Then,
heterogeneous stress/strain fields take place in the central
part of this specimen though shear/bending is predominant.
In fact, the Iosipescu test used for shear characterization can
provide extra modulus values by taking advantage of the
presence of normal stresses in the gauge section. It is
clear that no closed-form solution is available in this case,

but one can expect to extract the whole set of unknown
linear and nonlinear parameters with the virtual field
methods, since a similar study limited to the linear response
has been recently successfully carried out [26].

The virtual fields method presently used is recalled in the
first part of the paper. The identification of the whole set of
through-thickness moduli as well as the parameter govern-
ing the nonlinear shear response is then presented. The
relevance of the approach is finally illustrated by some
numerical simulations.

2. Theoretical background

2.1. Global equilibrium of the tested specimen with the
principle of virtual work

Let us consider the tested specimen in a losipescu fixture,
as shown in Fig. 1. Its equilibrium can be written with the
principle of virtual work

J o€ dV = J Tl dS, (1
\%4 Vv

where V is the volume of the specimen, dV the elementary
volume element, dS the elementary outer surface element, o
the stress field, € the virtual strain field, 7 the external load
density, u” the virtual displacement field associated to €”
and 0V is the boundary of the specimen.

The above equation is valid for any admissible virtual
field u*. The basic idea is to write the above equation with
a set of different and independent virtual fields. Each new
virtual field provides a new equation in which the para-
meters governing the material behaviour can be consid-
ered as unknown. This equation, if the constitutive
equations of the material are assumed to have polynomial
expressions, is linear with respect to the parameters that
define the constitutive equations. Inverting the linear
system provides the parameters. The main advantage of
this approach is the fact that the unknowns are directly
determined, without any updating of a finite element
model, provided that the whole strain field onto a large
part of the tested specimen is available. In practice, such a
field can be obtained with a suitable optical technique,
either directly [28] or by differentiation of the measured
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Fig. 1. Dimensions of the specimen.
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Fig. 2. Virtual field 1: constant virtual shear.
displacement field [29]. The first requirement for obtain- be identified must be found in order to built up a
ing the parameters is the fact that heterogeneous strain/ system of equations where the mechanical parameters
stress fields take place in the tested specimen in such a are unknown. Another way for obtaining new indepen-
way that all the unknowns influence the mechanical dent equations is to process actual strain fields provided
response of the specimen. Secondly, a set of as many by other mechanical configurations. These two possibi-
independent virtual fields as mechanical parameters to lities are discussed below.
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Fig. 3. Virtual field 2: virtual Euler—Bernoulli-like bending.



2.2. Linear response

Let us considered as a first example the linear through-
thickness orthotropic behaviour of a thick composite

(T.’C Q.X.X QXZ O E.’C

O-Z = QXZ QZZ 0 EZ ’ (2)

g, 0 0 er €
where r holds for xz. Hence, €, = €, €, = €,, and €, =
Y, = 2€,,. In this case, Eq. (1) becomes
0u eciasto.| ecuas

5, s,
* « X Pu; (L
£0. [ (e teeds o, [ eqas= T,
S, S,
3)

where u;(L) is the constant virtual displacement of
surface S; (see Fig. 1) and P is the global positive
applied load on the right-hand side grip. It has been
shown in Ref. [26] that a linear system of four equa-
tions can be built-up with the four virtual fields reported
in Table 1 and plotted in Figs. 2—5. The first displace-
ment field stands for a virtual constant shear of the
central part of the specimen, which lies between the
two grips (see Fig. 2). This part of the specimen is

Table 1
Four virtual fields used for the identification of the stiffnesses (after Ref.
[26])

Virtual — u; u; u(L)  Area
field #
1 0 —X —L S,
2 6xz(L —x)  x*(2x — 3L) L} S,
3 xz(x — L) 0 S$s
4 0 xz(x — = 0 Ay
>=3) -
0 z2(x — L)(x — ?) 0 A,
0 0 0 S —A — A

called henceforth ‘active area’. The second virtual
field leads to a virtual Euler—Bernoulli-like bending of the
active area. The third one results in a virtual global compres-
sion of the active area. The fourth one finally results in a
virtual local compression of two sub-areas: A; and A,.
Inverting the system of four equations obtained with these
virtual fields leads to a direct identification of the
mechanical parameters [26]. The Q,, stiffness is rather
sensitive to noise in the data, but this feature is also
underlined in other global identification procedures
described in the literature.

2.3. Nonlinear shear response

As explained above, the objective is here to consider
that the shear response is no more linear, but nonlinear.
The idea is to consider the following stress/strain
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Fig. 4. Virtual field 3: virtual global compression.
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relationship writes
3
o, = 0,.€ — Kg,, “4) AX =B, (6)

where K is a positive real number. Such a polynomial
law models correctly the shear behaviour of composites
[30-32]. Feeding the above law in Eq. (1) leads to

QXXJ exe;k ds+ 0, eze: ds
S, S,

+ QXZJ (e)cgzk + 616:) ds + erj €€ dS
S N

2
P
—

—KJ e dS = (5)
S

It is worth noting that the polynomial law in Eq. (4)
describing a nonlinear behaviour leads to a linear equa-
tion where the five material parameters are unknown.
Other types of law would lead to nonlinear equations
and would require more sophisticated numerical tools
for the resolution. Since a polynomial law is presently
used, the objective is to build up a linear system of five
independent equations. Two ways can be explored for
constructing this system. At first, one can try to find
five different virtual fields associated with only one
actual testing configuration. In this case, the system

where A is a matrix and B a vector such that

- r
Ail = Gxeji ds
J 92
-
%
Ai2 = €, €, ds
Js, '
r
* *
Ai3 = s (Exez,- + Ezex,) ds
J 92
] r : %)
Ai4 == GrE: ds
Js,
[ 3
Ai5 = E;f: ds
Js, !
*
_ PLW)
L ! e

where i is the number of the virtual field used to built
up the linear system and X is a vector containing the
five unknowns.

Another solution is to consider more than one testing
configuration. Some examples of these two approaches are
presented and discussed below. Note finally that the shear
stress—strain response only approximately fits a cubic
response in practice. The actual response would be best



fitted with a function including more monomials than the
two ones which have been used in the present study
(the linear and the cubic ones). These additional unknowns
(the coefficients of the new monomials) could also be deter-
mined with additional equations in the linear system, but
this problem is not examined here.

3. Identification with five virtual fields and one testing
configuration

3.1. Introduction

The natural idea is first to consider again the four virtual
fields in Table 1 that have been shown in Ref. [26] to be
suitable for the determination of the parameters in the case
of a linear shear response. If only one actual strain field is
processed, the fifth field, which completes this set of four
equations, must be independent of the others. It must be kine-
matically admissible and chosen in such a way that the actual
stress field inside the grips does not virtually work. Hence, the
virtual strain components inside the grips will be zero, and the
corresponding virtual displacement must therefore be solid-
rigid like in this part of the specimen. This constraint must be
taken into account for the construction of the virtual field in the
active area of the specimen. Apart from these obvious
constraints, no systematic rule is available to establish auto-
matically this field from the four others and, at the present
stage of the development of the method, the relevance of
any new field can only be checked a posteriori.

3.2. Finite element simulation of the identification method

Since only the theoretical and numerical aspects of the
approach are discussed in this work, the data to be processed

are provided by a finite element programme. The CASTEM
2000 package has been used because it is well suited to
nonlinear material behaviours. The nonlinear stress/strain
constitutive Eq. (4) with the same stiffness values as in
Ref. [26] has been programmed: E,, =25 GPa, E_, =
10 GPa, v,, = 0.3, G,, = 4 GPa with an additional term
that governs the nonlinearity: K = 4420 GPa. Since the
cubic law is not sufficient to describe the whole actual
stress/strain curve (see Fig. 6): it is followed for these simu-
lations by a straight line with a weak slope arbitrarily taken
as Q,,/7T= Q,/7. The specimen in Fig. 1 is meshed with
23,520 triangular linear elements. It has been checked with a
convergence study that the mesh density is sufficient. The
boundary conditions are such that the contact between the
grips and the specimen is unilateral. This is obtained after
some iterative calculations, by relaxing at each step the
nodes where the force between the grip and the specimen
leads to a local traction of the specimen. For all the nodes in
contact with the grip, that is to say those for which the force
between the grip and the specimen leads to a local compres-
sion of the specimen, the imposed vertical displacement at
the right-hand side (respectively, left-hand side) grip is
constant and equal to u#, = 1.4 mm (respectively, O mm).
The strain components are collected at the gravity centre
of the triangular elements located in the active area. These
data are considered as input data for the identification
procedure. It must be pointed out that some local stress
concentrations occur near the edges of the grips. Some
shear strain components are therefore greater than €,
in Fig. 6 and cannot be considered as proper input data
for determining the parameters of the cubic law. Hence
the elements where the shear strain is greater than €,
are removed from the collected data. For practical
reasons, not only the areas near the edge of the grips
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Fig. 6. Nonlinear shear response of the constitutive material.
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Fig. 7. Virtual field 5: virtual cubic vertical displacement.

but also the whole columns of elements containing these
areas were removed. The area where the actual strain
field is processed remains therefore rectangular, but it is
about 80% of the initial active area.

As explained above, for this simulation, the imposed
displacement is O mm at the left-hand grip and u, =
1.4 mm at the right-hand grip. Those values are adjusted
in such a way that the maximum shear strain at the centre
of the active area is about 0.95 X €, . It can be checked that
L has been adjusted in such a way that the three strain
components o,, o, and o, are roughly of equal magnitude
in the active area away from the local stress concentrations,
leading to a possible identification of the material para-
meters. The vertical forces at the nodes where the displace-
ment u, is imposed are collected and added together to
provide the global resultant vertical force F that would be
measured in practice by the load cell of the testing machine.
The right-hand side in Eq. (5) can therefore be easily
calculated. It must be pointed out that the nodes where the
displacements are imposed are chosen in such a way that the
contact between grip and specimen remains locally
unidirectional.

Only the resultant of the external load on the right-hand
grip can be measured in practice whereas the loading distri-
bution on the boundary of the grip cannot be assessed.
Consequently it is proposed to construct the fifth virtual
field in such a way that the right-hand side grip virtually
moves like a rigid solid in the vertical direction, without any
virtual rotation. The trial-and-error approach performed to
construct the fifth virtual field is illustrated by the two
examples below.

3.3. Virtual cubic vertical displacement

3.3.1. Construction and results

As a first attempt, a polynomial field such that u, =
Oand u; = x" is considered. This type of field is an
extension of the first field in Table 1 where n = 1. The
results below are given in the case n = 3. Other powers
n were tested but they led to similar results: the correspond-
ing results are therefore not reported here. This virtual field
is plotted in Fig. 7. The parameters identified in this case are
reported in Table 2. It is worth noting that the identified
values are very close to the actual ones, apart from Q,,
which is not identified correctly, contrary to the results in
Ref. [26], where this term is only rather sensitive to noise in
the data. A possible reason is the fact that the active area has
been reduced to eliminate the columns of elements where
the shear strain is greater than €, . As a general remark,
note also that Q,, often only slightly influences the actual
strain/stress fields. This leads in practice to some inaccurate
results concerning this coefficient or to an important sensi-
tivity to noisy data, as reported in Refs. [6,14,15] for
instance, where other numerical strategies than the present

Table 2
Virtual cubic vertical displacement. Reference and identified values for the
material parameters

O 0 Oy 0, K
Reference (GPa) 25.94 10.37 3.11 4.00 4420
Identified (GPa) 25.49 10.00 0.77 4.00 4279
Relative difference (%) —1.7 —-3.6 =75 0.0 —3.2




Table 3
Virtual cubic vertical displacement. Identified stiffness distribution from
errors simulations on the strains

QX.’( QL' QXI er K
Reference (GPa) 25.94 10.37 3.11  4.00 4420
5%
Identified (GPa) 25.52 9.91 0.78 4.00 4281
Relative difference (%) —-1.6 —4.5 —74.8 0.0} —=3.1
Coefficient of variation (%) 0.2 2.4 8.5 0.3 1.4
10%
Identified (GPa) 25.55 9.83 0.8 4.00 4292
Relative difference (%) —1.5 —5.2 —74.3 0 —2.8
Coefficient of variation (%) 0.2 4.7 16.6 0.5 2.8

one were used. This drawback could certainly be reduced by
choosing virtual fields that better highlight the influence of
this coefficient (even if it is small in the actual field), but this
difficult question is not examined here.

Since the present approach is designed to be used with
experimental data, it is of prime importance to examine the
stability of the four remaining parameters with respect to
noise in the data. Two cases are considered. First, a random
noise is added to each of the strain components of the field.
Since the displacement/strain field will be captured by a
CCD camera in practice, the effect of a global shift of the
camera is examined in a second simulation.

3.3.2. Random noise

In the first simulation, a random noise denoted & is added
to each of the three simulated strain components provided
by the FE programme

€ =¢+35
e.=¢€+3 ®)
e€.=¢+6

The average of the noise & is zero. Its distribution is
uniform between two bounds which are successively =5
and £10% of the maximum of each strain component in
the active area. The distribution of the noise is uniform
between the two bounds. Repeating the identification proce-
dure 30 times leads to a distribution of the disturbed identi-
fied stiffnesses. The average and coefficients of variation are

Table 4
Virtual cubic vertical displacement. Influence of a shift

reported in Table 3. The coefficient of variation is computed
in each case as an indicator of the scatter, even though the
distribution is linear and not normal. It can be seen that the
shear stiffness is the most stable. On the other hand, Q,, is
the less stable. The sensitivity of the other terms is low.
These results are in agreement with the results found
above. This relative global stability is due to the average
effect caused by the integrals in Eq. (5), which tends to
average out local discrepancies between exact and disturbed
strain components. This feature is one of the main advantages
of the present method.

3.3.3. Global shift of the x- and z-coordinates

A global shift is now considered. A constant value is
added to each coordinate x and z of the simulated
captured data points in order to simulate an imperfect
centring of the camera on the specimen. Let us assume
that the size of the CCD grid of the camera is 512 X 512, the
step between two pixels of the grid is equal to 30 mm/512.
Hence, if the shift is equal to m pixels, a constant value
equal to mX30/512mm is added to each coordinate.
Results obtained in two cases: m=6andm = 12 are
reported in Table 4. It clearly appears that the procedure
is unstable in the present case: a slight variation of some
of the coefficients in matrix A leads to a very important
variation of the identified values. The reason is that the
five equations are almost dependent.

3.3.4. Analysing the dependence of the linear equations
Before analysing the dependence of the linear equations,
a ‘scaling’ of the matrix A has been carried out. Since the
magnitude of the components in matrix A are not of the
same order, each row is divided by its highest value. This
leads in practice to a multiplication of matrix A by a matrix
denoted Q;. In the diagonal of Q) are reported the inverse of
the maxima of each row in matrix A. Furthermore, since the
magnitude of the five unknowns is very different because of
K, each column of the product QA is divided by its maxi-
mum. This leads in practice to a multiplication of Q;A by a
matrix Q, which diagonal is made of the inverse of the
maxima of each column. Finally, the initial matrix A is
replaced by A’ = Q;AQ, and the solution is found by
computing X = QZ(AFIQI)B. The main advantage is the

O O Ox: O K
Reference (GPa) 25.94 10.37 3.11 4.00 4420
Identified (GPa) 25.49 10.00 0.77 4.00 4279
Relative difference (%) —-1.7 —-3.6 =75 0.0 —-32
Shift, m = 6 (GPa) 25.79 49 22 =73 —61,376
Relative difference (%) —-0.5 =100 —28.7 = —100 = —-100
Shift, m = 12 (GPa) 26.29 90.4 4.61 —18.8 —128,458
Relative difference (%) 1.3 =100 48.3 = —100 = —100




Table 5
Angles 6; between vectors V; characterizing the equations of the linear
system

Fifth field 0, (°) 6, (°) 05 (°) 04 (%)
Field 5 90 38.7 36.4 0.3
Field 6 90 38.7 36.4 29

fact that the components in matrix A’ are of comparable
magnitude.

The degree of independence of each equation in the linear
system is now assessed as follows. The ith equation in the
new linear system can be characterized by a vector denoted
V; which components are

V;: . €))

This vector is perpendicular to the hyperplane which
equation is the ith equation in the system. The idea is to
compute the angle 6; between each vector V; + 1 and the
space built up with the vectors Vi, k = 1...i — 1. Obtaining
a set of angles all equal to 90° means that the equations are
completely independent (all hyperplanes are perpendicular
in this case). If one of the angles is equal to zero, the equa-
tions are dependent. Between these two cases, a small angle
means that the equations are ‘almost’ dependent. This set of
angle is a practical indicator to compare different linear
systems provided by different sets of virtual fields and to
assess the quality of the linear systems to be inverted. The
angles found in the present case are reported in the first row
in Table 5. It clearly appears that the fourth angle is very
close to zero, showing that the fifth field does not lead to an
equation ‘sufficiently’ independent of the four others.

The reason for that comes from the actual stress field
itself and can be explained as follows. Let us consider a
virtual displacement field such that u, is zero and u,
only depends on the x-coordinate, like the above fifth
virtual field. Hence u. = u.(x) and consequently, €, =
€ (x). Let us now assume that the actual shear stress
field only depends on the z-coordinate. Hence, o, =
0,(z) and €, = €,(2), €, = €, = 0. We have approximately
such an actual shear stress field in our case, as could be
checked in the shear stress distribution. In this case, the
equilibrium Eq. (5) reduces to

hl2 L hi2 L
g{ Jq@amm&—Kj .[éwamm&
—hli2 0 —hl2 0

__ Puz)
= (10)

€,(x) = u_ (x) in our case, thus

hi2 L L
0, J' J Er(Z) dZJ MZX(X) dx
—h2 JO0 0

W L
- KJ €.(2) dzJ u:,x(x) dx
—hr2 0

_ _Puz'(L) (11

e

and finally, after integration in the x-direction

hi2 hi2 *
cofo 7 cwa-k[” awu)- -0,

(12)

As can be seen, feeding in the above equation any
virtual field u; verifying the above requirements and
such that u;(L) # 0 leads in any case to the same equa-
tion since u;(L) appears in both sides in the above
equation. Since we used u} = x and u} = x° as, respec-
tively, first and fifth equations to built up the linear
system, we have finally obtained two equations that
are almost dependent since the actual shear stress field
almost only depends on the z-coordinate. The solution
obtained is therefore unstable. This has been clearly
observed above when the components of the matrix
are slightly modified. Let us now built up another
fifth field expected to lead to a better independence of
the equations.

3.4. Virtual field with a parabolic virtual shear strain
distribution through the thickness

3.4.1. Construction of the field

The objective is here to propose an alternative virtual
field that will lead to a fifth independent equation. Since
the first field led to a constant virtual shear strain in the
active part, the idea is to construct a virtual field that
depends on z. A linear virtual shear strain would not be
relevant. This is due to the fact that the integral that provides
the coefficient of Q,, and K in Eq. (5) would be zero because
of the evenness of the integrand. On the other hand, a quad-
ratic virtual shear strain would not lead to zero coefficient.
One could therefore suggest the following virtual shear
strain

€ =7 — — (13)

where 4 is the height of the specimen. Such a shear strain
leads to a maximum value at the centre of the specimen and
is like the shear strain field distribution in higher-order
theories for thick structures. The contribution of the actual
shear stress at the centre of the specimen is expected to be
maximum. The feature is important since the actual shear
stress is also maximum at the centre of the specimen. It is
therefore expected to magnify the influence of the nonlinearity
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Fig. 8. Virtual field 6: virtual parabolic through-thickness shear strain.

compared to the first field, for which the virtual shear strain
is constant. Considering a quadratic shear strain leads
however to a warping of the sections, but this warping
must decrease and reach zero near the grips, at the boundary
of the active part of the specimen, since the virtual displace-
ment field within the grips must be solid-rigid-like. It is
therefore suggested to weight the quadratic virtual shear
strain as follows

h2
€ =x(x—L)(z2 - I)' (14)
The virtual field is easily obtained by integration
2 2
« , h
u, =x(x — L)z Lo
34 ). (15)

"
u, =0

This virtual field is plotted in Fig. 8. It can be checked that
the corresponding virtual vertical displacement of the right-

Table 6

hand side grip is zero, leading to a zero virtual work of the
external loading. A non zero virtual strain €, appears by
differentiation of the virtual displacement and the final
virtual strain field is

r Z2 h2
f=0x—Lz| = - —
€ = (2x )z( 3 ) )

h2
Z)

3.4.2. Results and discussion

The above virtual field has been used in the linear system
and the identification procedure has been applied with the
simulated data provided by the FE computations. Results
are reported in Table 6. When no error is considered, the
accuracy is about the same as in the preceding case. The
sensitivity to a global shift is however much lower. This

(16)

€ = x(x — L)()c2 -

.

Virtual parabolic through-thickness shear strain. Reference and identified values for the material parameters in different cases

O 0. O O K
Reference (GPa) 25.94 10.37 3.110 4.000 4420
Identified (GPa) 25.49 10.00 0.8 4.00 4270
Relative difference (%) —-1.7 —-3.6 =754 0.0 —34
Shift, m = 6 (GPa) 25.75 10.74 2.02 3.96 4060
Relative difference (%) -0.7 3.6 —35.1 -0.9 —8.1
Shift, m = 12 (GPa) 25.60 12.29 1.3 3.89 3665
Relative difference (%) —-1.3 18.5 —59.5 —-2.6 —-17.0




feature is directly related to the angle 6,4 introduced above.
This angle is reported in Table 5, row 2. As can be seen, the
value of this angle is higher than in the preceding case, but it
is clearly the lowest of the four angles. The consequence
appears in Table 6, where one can observe that the sensitiv-
ity of Q,,, O,. and K to noise in the data has been improved
since it is lower than in the previous case. It is however
greater than that obtained when the elastic parameters
only are identified [26].

3.5. Conclusion

Several tracks can be followed to improve the above
results:

e searching other more relevant virtual fields but this criti-
cal point is not considered here;

e the removal of elements that reduces the processed area
has probably an harmful effect for the evaluating the
correct value of Q,,. Indeed, in Ref. [26], the correct
value of Q,, is obtained by using the same method with
the following conditions: the material is linear elastic and
the area S, is the whole processed area. In practice, one
could therefore estimate properly Q,, by using the
approach developed in Ref. [26] at the beginning of the
loading and the present one when the nonlinearity occurs,
that is when the actual shear strain becomes close to €,
near the grips. As a result, the five parameters would be
accurately identified;

e another way to feed the linear system with some new
equations is to consider other actual stress fields. If the
constitutive material is linear elastic, stress fields
provided by other testing configurations should also be
processed. In the present case of a non-linear shear
response, one can consider the same specimen under
increasing load levels. The strain/stress fields are not
proportional from one level to another and one can
expect to obtain some new independent equations. This
point is examined in the next section.

4. Identification with four virtual fields and several
testing configurations

4.1. Introduction

Since the first four virtual fields have been shown to be
satisfactory to identify the elastic constants, they are kept to
build the first four equations of the linear system with the
actual stress/strain field provided by the model with an
imposed displacement of the right-hand grip equal to u, =
1.4 mm. The strain components at the nodes are also
collected at intermediate values of the displacement of the
grip. These values are processed with the simplest virtual
field, that is the first in Table 1. A new equation is obtained
at each load level. Two cases are presented below. In the

Table 7
Values obtained after processing the actual fields obtained at two loading
levels

Q.\TX QZI QXZ QT” K
Reference (GPa) 25.94 10.37 3.11 4.00 4420
Identified (GPa) 25.49 10.15 0.8 396 4016
Relative difference (%) —1.7 —-2.1 =175 —1.1 —9.1
Shift, m = 6 (GPa) 25.76 10.77 2.02 396 4016
Relative difference (%) 0.7 3.8 -35 -1.1 -9.1
Shift, m = 12 (GPa) 25.59 12.08 1.25 396 4016

Relative difference (%) 1.3 16.5 —59.8 —1.1 -9.1

first case, the fifth equation is obtained with the strain field
at u,/2 = 0.7 mm. In the second case, a set of actual fields
obtained at different imposed displacements is processed
with the first virtual field to obtain a redundant linear
system.

4.2. Two load levels

As explained above, the actual shear strain field in the
active area is collected at u,/2 and processed with the first
virtual field to obtain the fifth linear equation. The values
obtained after inversion of the system are reported in Table
7. The global shift with m =6 and m =12 is also
performed. The results are slightly better than in the preced-
ing case. The two shear parameters Q,, and K are stable with
respect to the shift. This is certainly due to the fact that the
first virtual field is linear. Then, the corresponding strain
components are constant and therefore not sensitive to any
additional shift in the coordinate of the point.

4.3. Six loading levels

As a final example, the actual shear strain field in the
active area is collected at u /4, u,/3, u,/2, 2u,/3 and 3u /4
and processed with the first virtual field to obtain five linear
equations that complete the four first ones obtained with the
actual strain fields at u,. A linear system of nine equations
with five unknowns is finally obtained. It is solved with the
least square method: the initial system AX = B is multiplied
by the transposed matrix of A denoted A’ to obtained a
linear system of five equations with five unknowns A’AX =
A’B. This linear system is easily inverted: X = (A’A) " x
(A'B). The results are reported in Table 8. Except again for

Table 8
Values obtained after processing the actual fields obtained at six loading
levels

Qxx Qz: QXZ er K

Reference (GPa) 25.94 10.37 3.11 4.000 4420
Identified (GPa) 25.53 10.09 0.93 3.98 4162
Relative difference (%) —1.6 —2.7 =70 —0.4 —-5.8
Shift, m = 6 (GPa) 25.79 10.71 2.19 3.98 4162
Relative difference (%) 0.1 3.3 —29.7 —-04 —5.8
Shift, m = 12 (GPa) 26.63 12.03 1.42 3.98 4162
Relative difference (%) —1.1 16.0 —54.2 -04 —5.8




the Q,, term which is completely wrong, the parameters are
close to the reference values. Improving the number of
actual fields to be processed has also improved the accuracy
on the nonlinear term K. The stability of this term also
clearly appears. In conclusion of the above results, it
seems that processing more than one mechanical con-
figuration leads to better results than processing only one
mechanical configuration with the fifth virtual fields
presented in Section 3.4.

5. Conclusion

The method described here allows the determination of
the through-thickness properties of a thick composite
including a nonlinear shear response. The method is based
on the use of the principle of virtual work with particular
virtual fields. Actual strain fields onto the central part of the
specimen are processed. Such fields should be obtained in
practice with suitable optical techniques.

Two strategies have been presently tested. First, only one
mechanical configuration has been considered. The main
problem that occurs is to build an independent virtual
field, which completes the four fields suitable for
determining elastic parameters. Another solution is to
process strain fields obtained at different loading levels.
This latter procedure has been shown to be more accurate
and stable than the previous one.

In both approaches, the shear properties are identified with
the highest accuracy and stability. The probable reason is the
fact that the loading is obtained with a Iosipescu fixture initi-
ally developed for composite shear testing. On the other hand,
the Q,, stiffness could not be identified. Previous work carried
out within the framework of linear elasticity does not confirm
this results [26]. This is probably due to the fact that a part of
the active area of the specimen near the grips has been
presently removed for the processing because the shear strain
at some points is not modelled by the cubic law. One could
avoid the present drawback by using in practice the approach
developed in Ref. [26] at the beginning of the loading to obtain
precisely O, and the present one when the nonlinearity occurs,
that is when the actual shear strain becomes close to €, near
the grips to obtain precisely K. As a result, the five parameters
would be accurately identified.

Two main issues remain to be addressed in the near future.
First, the experimental implementation of the approach has to
be carried out. Second, it should be relevant to find a systema-
tic method to build up virtual fields leading to independent
equations. Indeed, it is clear that any significant improvement
of the virtual fields method is now related to the determination
of independent and optimal virtual fields.
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