N

N

The theory of calculi with explicit substitutions revisited

Delia Kesner

» To cite this version:

‘ Delia Kesner. The theory of calculi with explicit substitutions revisited. 2007. hal-00111285v3

HAL Id: hal-00111285
https://hal.science/hal-00111285v3

Preprint submitted on 17 Jan 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00111285v3
https://hal.archives-ouvertes.fr

The theory of calculi with explicit substitutions
revisited

Delia Kesner

October 9, 2006

Abstract

Calculi with explicit substitutions are widely used in difent areas of com-
puter science such as functional and logic programmingofgfeory, theorem
proving, concurrency, object-oriented languages, etan@ex systems with ex-
plicit substitutions were developed these last 15 yearsdardo capture the good
computational behaviour of the original system (with mietgel substitutions) they
were implementing.

In this paper we first survey previous work in the domain bynping out the
motivations and challenges that guided the developementadf calculi. Then we
use very simple technology to establish a general theoryfait substitutions
for the lambda-calculus which enjoys all the expected prtggmesuch as simulation
of one-step beta-reduction, confluence on meta-termseiwagon of beta-strong
normalisation, strong normalisation of typed terms antdminposition. Also, the
calculus we introduce turns out to admit a natural tranmfaito Linear Logic's
proof-nets.

Contents

1 Introduction 3
2 Syntax 8
3 Confluence on metaterms 11
3.1 Confluence by simultaneous reduction 13
3.2 Confluence by interpretation 91
3.2.1 A calculus with simultaneous substitution 19
3.2.2 A calculus with normal simultaneous substitutions 21
3.2.3 Relatinglesanddnss 22
3.24 Relating\nssandXes 23
4 Preservation of 3-strong normalisation 24
4.1 Thelesw-calculus 25
4.2 Relatinghesandlesw 28
4.3 TheAj-calculus. 28
4.4 RelatingleswandA;. o 29
45 Solvingthepuzzle. L 30
5 Recovering the untyped\-calculus 31
5.1 FromA-calculustoles-calculus 32
5.2 FromMes-calculustoi-calculus 32
6 The typedes-calculus 33
6.1 TypingRules 33
6.2 SubjectReduction. oo 34
7 Recovering the typed\-calculus 34
8 Strong normalisation of typed Aes-terms 35
8.1 LinearlLogic'sproof-nets 53
8.2 From)es-termsto Proof-nets 39
8.3 Discussion. 51
9 PSN implies SN 52
10 Conclusion 52
A Appendix: An abstract theorem 54

1 Introduction

This paper is about explicit substitutions (ES), an intatia® formalism that - by
decomposing th& rule into more atomic steps - allows a better understandirlyeo
execution models of-calculus.

We first survey previous work in the domain, by pointing ow thotivations that
were guided the developement of such calculi as well as tha ofellenge behind
their formulations. The goal of our work is to move back toyioes works and results
in the domain in order to establish a general and simple yhefaexplicit substitutions
being able to capture all of them by using very simple techgl

Explicit substitutions

In A-calculus, the evaluation process is modelle@bgductionand the replacement of
formal parameters by its corresponding arguments is med &y substitution While
substitution inA-calculus is ameta-leveloperation described outside the calculus it-
self, in calculi with ES it is internalised and handled by $>s and reduction rules
belonging to the proper syntax of the calculus. However e fbrmalisms are still
very close: lets{z/u} denote the result of substituting all tfree occurrences of in

s by u, then one defines-reduction as

(Az.s) v —g s{z/v}

where the operation{x/v} can be defined module-conversiort by induction on
s as follows:

x{x/v} = w

y{z/v} =y ifz#y

(twiz/v} = (Hz/v}u{z/v})

Myt {z/v} = Ay.(t{z/v}) if ©#yandy & £v(v)

Then, the simplest way to specify)acalculus with explicit substitution is to ex-
plicitly encode the previous definition, so that one stillrie® moduloa-conversion,
yielding the calculus known asx which is shown in Figure 1.

(Az.t) v — tlx/v]

x[z/v] — v

z[y/v] - if 2 #y

(tw)lz/o] — (tz/v]ulz/v])

Qz.t)y/v] — Az.(tfy/v]) if x #yandz & fv(v)

Figure 1: Reduction rules for thex-calculus

1Definition of substitution modula-conversion avoids to explicitly deal with the variable tap case
as one obtains it for free. Thus, for exampler.y){y/x} =a Az.y){y/z} =der Az.y{y/z} = Az.x.

This reduction system corresponds to the minimal behavtmatrcan be found in
most of the well-known calculi with ES appearing in the litture: substitutions are
incorporated into the language and manipulated expligitieduction is implemented
in two stages, first by the application of the first rule, whaatiivates the calculus of
substitutions, then by propagation of the substitutioril watiables are reached. More
sophisticated treatment of substitutions considers atemgosition operator allowing
interactions between them.

Related Work

In these last years there has been a growing interestalculi with explicit substitu-
tions. They were defined in de Bruijn notation [ACCL91, HL88s94, KR95, Kes96,
FKP96], or level notation [LRD95], or via combinators [GL98r simply by named
variables notation as shown above [Lin86, Lin92, Ros92, §R9

An abstract presentation of such calculi can be found in §&e&es00], where a
(syntactic) axiomatisation is used to define and study them.

In any case, all these calculi were all introduced as a briolgfeveen the clas-
sical A-calculus and concrete implementations of functional progning languages
such as CAML [Oca], SML [MTH90], Miranda [Tur85], Haskell pJP92] or proof-
assistants such as Coq [Coq], PVS [PVS], HOL [HOL], LEGO [lJEKaude [Mau]
and ELAN [ELA].

Now, the implementation of the atomic substitution operaby several elementary
explicit steps comes at a price. Indeed, whilealculus is perfectiyorthogonal?,
calculi with ES suffer at least from the well-known divergiexample

tly/ollz/uly/v]) " = ((Aat) w)ly/v] =7 tz/u]ly/v]

Different solutions were adopted by the calculi in the htere in order to close this
diagram. If no new rewriting rules are added to those in Fduyrthen reduction turns
out to be confluent on terms but not oretaterms. If naive rules for composition are
also considered, then one recovers confluence on metatetmpsiying an important
price: there exist terms which are strongly normalisabla-calculus but not in the
corresponding explicit version of thecalculus. This phenomenon, known as Mellies’
counter-example [Mel95], shows a flaw in the design of caleith ES in that they are
supposed to implement their underlying calculus (in ouedag A-calculus) without
losing its good properties. More precisely, let us éalh A-calculus with ES and let us
consider a mappingo, from A-syntax to)z-syntax (sometimes this mapping is just
the identity). We identify the following list of properties

(C) The refined reduction relatiok; is confluent on terms: I §_« ¢t —3 v, then
there ist’ such thaty —3 '3 < v.

(MC) The refined reduction relatioky, is confluent on metaterms.

2Does not have critical pairs.
3Terms with metavariables used to represent incompleteroo

(PSN) The reduction relation; preservesi-strong normalisaion: If € SN g, then
tox(t) € SN y,.

(SN) Strong normalisation holds fov;-typed terms: If is typed, thert € SN ,,.

(SIM) Any evaluation step ir\-calculus can be implemented By: If t —5 ¢/, then
tox(t) =3, toa(t).

(FC) Full composition can be implemented by t[z/u] Az-reduces ta{z/u} for an
appropriate (and natural) notion of substitution)grterms.

The result of Mellies has revived the interest in ES sin¢erdfis counterexample
there was a cleathallengeto find a calculus having all the good properties mentioned
above.

There are several propositions that give (sometimes paatiswers to this chal-
lenge, they are summarised in Figure 2.

Calculus C MC | PSN| SN | SIM | FC
AoAsAiA Az | Yes| No | Yes | Yes | Yes | No
Ao AoSP Yes | No | No No | Yes | Yes
Ao Ase AL Yes | Yes | No No | Yes | Yes
A¢s Aweak Yes| Yes | Yes | Yes| No | No
Aws Yes | Yes | Yes | Yes | Yes | No
Alxr Yes | ? Yes | Yes | Yes | Yes

Figure 2: Summarising previous work in the field

In other words, there are many ways to avoid Mellies’ coumteample in order
to recover the PSN property. One of them is to simply forbiel $skbstitution oper-
ators to cross lambda-abstractions [LM99, For02]; anotbesists of avoiding com-
position of substitutions [BBLRD96]; another one imposesiraple strategy on the
calculus with explicit substitutions to mimic exactly th@laulus without explicit sub-
stitutions [GL98]. The first solution leads t@eaklambda calculi, not able to ex-
pressstrong beta-equality, which is used for example in implementatioh proof-
assistants [Coq, HOL]. The second solution is drastic agposition of substitutions
is needed in implementations of HO unification [DHK95] or étional abstract ma-
chines [HMP96]. The last one exploits very little of the aotiof explicit substitutions
because they can be neither composed nor even delayed.

In order to cope with this problem David and Guillaume [DG6#&fined a calculus
with labelscalled \,,s, which allowscontrolled composition of explicit substitutions
without losing PSN and SN [DCKPO0O]. But the,s-calculus has a complicated syntax
and its named version [DCKPOQO] is even less readable.

The strong normalisation prooffor,; givenin [DCKPOO] reveals a natural seman-
tics for composition of explicit substitutions via Lineaogic’s proof-nets, suggesting
that weakening (explicit erasure) and contraction (expliaplication) can be added
to the calculus without losing termination. These are tlagtisig points of the ideas

proposed by thelxr-calculus [KLO5], which is in some sense a (complex) preaurs
of the \es-calculus that we present in this work. Indeeeterms can not be viewed
directly asAlxr-terms, so that we prefer to adojpt-syntax forAes, thus avoiding
special encodings in order to explicitly incorporate weadkg and contractions inside
A-terms. Moreover, the reduction system)dfxr is defined viab equations and9
rewriting rules, thus requiring an important amount of camakory reasoning when
showing its properties.

Another calculi with safe notions of compositions appeareieample in [SFMO03,
Sak]. The first of them lacks full composition and confluennaretaterms. The sec-
ond of them specifies commutation of independent subslitatby a rewriting rule
(instead of an equation), thus leading to complicated nstend proofs of its under-
lying normalisation properties. Here, we choose to makeramal (just one) use of
equational reasoning to axiomatise commutation of indéeetsubstitution. This will
turn out to be essential to achieve the definition of a simguigliage being easy to un-
derstand, which can be projected into another elementatgisylike proof-nets, and
whose properties can be proved with simple and natural peabhiques.

Last but not least, confluence on metaterms of both calc{ili®5] and [Sak] on
metaterms is only conjectured but not yet proved.

The logical meaning of explicit substitutions

Cut elimination is a logical evaluation process allowingetate explicit substitution
to a more atomic process. Indeed, the cut elimination peocas be interpreted as the
elimination of explicit substitutions. For example, letamnsider the following sequent
proof:

D

'A T,AF A (axiom)
kA

(cut)

If we want to eliminate the last cut rule used in this proois isufficient to take the

proof
D

r-A
which proves exactly the same sequEnt A but without the last cut rule. That is,
in the cut elimination process, the first proof reduces tosagond one. Now, let us
interpret proofs by terms and propositions by types as stgdédy the Curry-Howard
correspondence. We then get

FFv:A Nz: Ak x: A (proj)
Pk zz/v]: A

(subs)

which suggests that the process of cut elimination conisiseducing the term[x /v]
to the ternw, exactly as in th&ar rule of the calculus\x written as

(Var) z[z/v] = v

These remarks put in evidence the fact that explicit suligtit is a term nota-
tion for the cut rule, and that reduction rules for explieibstitutions behave like cut
elimination rules. However) and Ax basic (typed) syntax are taken from a natu-
ral deduction logical system, where application annotmtgdication elimination and
abstraction annotates implication introduction. That nsethatAx (typed) syntax is
based on a logical system mixing natural deduction with eatjgalculus such that
the meta-level operation in the normalisation procesgikoed by a more elementary
concept of cut elimination.

It is worth noticing that one can either define an explicitditbtion calculus inter-
preting cut-elimination, in such a way to have a perfect Gitoward correspondence
between them, as is done by Hugo Herbelin in [Her94]: thematesncode proofs,
types encode propositions and reduction encodes cutreltion in intuitionistic se-
quent calculus. So that the ideas we present in this papealsarbe adapted to se-
guent calculus notation. We refer the reader to [Len06] feystematic study of cut
elimination in intuitionistic sequent calculus via praefms.

Linear logic and proof-nets

Linear Logic decomposes the intuitionistic logical corthess, like the implication,
into more atomic, resource-aware connectives, like thealinmplication and the ex-
plicit erasure and duplication operators given by the egptials which provide a more
refined computational model that the one given by Xhealculus. However, sequent
presentations of Linear Logic can contain a lot of detaid tire uninteresting (or bu-
reaucratic). The main idea of proof-nets is to solve thidfmm by providing a sort
of representative of an equivalence class of proofs in tig@esgt calculus style that
differ only by the order of application of some logical onattural rules. Cut elimina-
tion over proof-nets is then a kind of normalisation proaedwer these equivalence
classes. Using different translations of thealculus into Proof Nets, new abstract
machines have been proposed, exploiting the Geometry efdction [Gir89, AJ92],
culminating in the works on optimal reduction [GAL92, Lanj90

Some calculi with explicit substitutions [DCKP03, KLO5]\reabeen already put in
relation with natural extended notions of proof-nets. Irtipalar, one defines a typed
version of the calculus and shows how to translate it int@Pkeets and how to estab-
lish, using this translation, a simulation of the reductiokes for explicit substitutions
via cut elimination in Proof Nets. As an immediate consegeednrf this simulation,
one proves that a simply typed version of the calculus isyglgonormalizing. An im-
portant property of the simulation is that each step in theutas with ES is simulated
by aconstantnumber of steps in proof-nets: this shows that the two sysiem very
close, unlike what happens when simulating khealculus. This gives also a powerful
tool to reason about the complexity gfreduction.

We apply this idea to thaes-calculus that we introduce in this paper so that we
obtain strong normalisation for type@s-terms via simulation of reduction in proof-
nets.

Summary

We present a calculus with ES using the named variable pgam which makes
some essential properties of explicit substitutions mppaeent, by abstracting out the
details of renaming and updating of de Bruijn notation. Themideas and results of
the paper can be summarised by the following points:

e Named variable notation and concise/simple syntax is useefine a calculus
with explicit substitutions calledes. There is no use of explicit contraction or
weakening.

e The calculus enjoys simulation of one-stepeduction, confluence on metaterms
(and thus on terms), preservation®étrong normalisation, strong normalisation
of typed terms and implementation of full composition.

¢ We establish connections with untyp&dalculus and typed-calculus.
e We give a natural translation into Linear Logic’s proofsiet
e We give some ideas for future work and applications.

The rest of the paper is organised as follows. Section 2doires syntax fohes-
terms as well as appropriate notions of equivalence andctieshu We show there
some fundamental properties of the calculus sudulhsompositionand termination
of the substitution calculus alone. In Section 3 we develppoaf of confluence for
metaterms. This proof uses an interpretation method baséweoconfluence property
of a simpler calculus that we define in the same section. Rsasen of 5-strong
normalisation is studied and proved in Section 4. The pbéaised on the terminating
properties of other calculi that we introduce in the samdiaec Relations between
reductionin\es and\-calculus are established in Section 5. The typing systerhde
is presented in Section 6 as well as the subject reductiqmepty Relations between
typing in Aes and A-calculus are established in Section 7. Section 8 introsipoeof
nets and gives the translation from typegk-terms into proof nets that is used to obtain
strong normalisation of typedes. Finally, a simpler proof of strong normalisation
based on the main result of Section 4 is given in Section 9.

We refer the reader to [BN98] for standard notions from rémngithat we will use
throughout the paper.

2 Syntax

We introduce here the basic notions concerning syntagonversion, reduction and
congruence.
The set of\es-terms can be defined by the following grammar

to=a| (tt) | Aet | t[z/t]

Atermz is called avariable, (¢ v) anapplication Az.t anabstractionandt|x /u]
aclosure The syntactic objedt:/u], which is not a term itself, is called aaxplicit

substitution We do not write the parenthesis of applications if they dearcfrom the
context.

The syntax can also be given as a HRS [Nip91], with typemnd7 for variables
and (raw)terms respectively, and four function symbolsgdabed as constructors:

var: V—T sub: V—=T)—=(T—-1T)
lam: V—-T)—1T app: T — (T —=1T)

Thus, for example th@es-term (z y)[x/Az.z] is represented as the HRS-term
sub(z.app(var(z),var(y)), lam(z.var(z))). We prefer however to work with the syn-
tax given by the grammar above which is the one usually usecafouli with ES.

A term is said to b@ureif it has no explicit substitutions.

The termsh\z.t andt[x/u] bind z in ¢. Thus, the set ofree variablesof a termt,
denotedtv(t), is defined in the usual way as follows:

fv(z) = {z}

fv(tu) = fv(t) Ufv(u)
fv(dzt) = fv(t)\zx
fv(tfz/u]) = (fv(t) \ x) Ufv(u)

As a consequence, we obtain the standard notian-cdnversion on higher-order
terms which allows us to use Barendregt's convention [Bpt@4ssume that two dif-
ferent bound variables have different names, and no variaftee and bound at the
same time.

Besidesx-conversion we consider the equations and reduction rukggure 3.

Equations:

tla/ully/v] =c tly/vllz/u] ify ¢ fv(u) &z ¢ fu(v)
Reduction Rules:

Ax.t) u —p tz/u]

x[z/ul —var U

t[z/u] —g U if x ¢ £v(t)

(t u)[z/v] —upp, (t[x/v] ufz/v]) ?f xefv(t) &z e fv(u)
(t u)[x/v] —app, (tu[z/v]) if v ¢ fv(t) & = € fv(u)
(t u)[x/v] —app, (t[w/V] u) ?f x € fv(t) &z ¢ fv(u)
(Ay.t)[x/v] Slam AY.t[x/V] !f y & fv(v)

ta/ully/v] —comp, tly/vllz/uly/v]] ifyefv(u) &y e fv(t)
tle/ully/v] —conp, t[x/uly/v]] if y € fv(u) &y ¢ £v(t)

Figure 3: Equations and reduction rules fass

Therewriting systentontaining all the previous rewriting rules exceps denoted
by s. We writeBs for B U s. Theequivalence relatiomenerated by the conversions
« andc is denoted byE;. Thereduction relationgenerated by theeduction ruless
(resp. Bs) modulo the equivalence relatidty is denoted by— /Es or —. (resp.

—ps /Es OF — s (fOr equationals substitution), thee is for for equational and the
for substitution. More precisely

t —es ' iffthereares,s's.t. ¢t =g s —s ¢ =g, t/
t —res ' iffthereares, s’ sit. ¢t =g, s —ps 8’ =g, t/

The equivalence relation preserves free variables andethgction relation does
not increase them. Indeed, one can easily show by inducticerons the following

property.

Lemma 2.1 (Free variables do not increase)ft — s ¢/, thenfv(t') C £v(t). More
precisely,

o Ift =g ', thenfu(t) = £v(t)).
o If t —ps t/, thentv(t') C fv(t).

The (sub)calculus of substitutiors, which is intended to implement (meta-level)
substitution can be shown to be terminating.

Lemma 2.2 (Termination of es) The reduction relatiors (and thus als®) is termi-
nating.

Proof. For each terny we define a size and a multiplicity by structural induction.

S(x) =1 M. (2) =1

S(Az.t) = S(t) My(Ay.t) = M(t)+1

S(t u) = S(t)+S(u) My (t u) = Mp(t) +Mgp(u) +1

S(tle/ul) = S()+Ma(0) - S(w) Maltly/u]) = Ma(h) i ¢ tv(u)
My (tly/u]) = Ma(t) +My(t) - Mz(uw)+1) If x € fv(u)

Remark that, (s) > 1 ands(s) > 1 for every terms and every variable.

We can now show, by induction on the definition-ef, and—, that size is com-
patible witha andC equality and each-reduction step strictly decreases the size:

1. If s =g, ¢, thens(s) = S(s').
2. If s =4 &/, thens(s) > S(s').

We then conclude thais-reduction is terminating on ales-terms by application
of the abstract theorem A.1€ is Eg, R, is the empty relationR, is —5, K is the
relation given by the functiois(_) andS is the standard well-founded order on
natural numbers. .

We now address the property of full composition. For that,meoduce the fol-
lowing notion of substitution ones-terms.

Given \es-termst andu, the result osubstitutingall thefree occurrences of in
t by u is defined by induction, and modulaconversion, as follows:

10

x{x/v} = v

y{a/v} =y if z 7y

(tufz/v} = (Hz/v}u{z/v})

Ay t){z/v} = Ay.(t{z/v}) if x # yandy & £v(v)

tly/ul{z/v} = Ha/v}y/w{z/v}] it 2#yandy & fv(v)
(

It is easy to show by induction okes-terms that{z/u} =t if = ¢ £v(¢).
Lemma 2.3 (Full Composition) Lett andu bees-terms. Then|z/u] —3., t{z/u}.

Proof. By induction ont. .

3 Confluence on metaterms

Metatermsare terms containingietavariablesvhich are usually used to denateom-
pleteprograms and/or proofs in higher-order unification [Hue7&ch metavariable
should come with a minimal amount of information in order teagantee that some
basic operations such as instantiation (replacement advagables by metaterms) is
sound. Thus, we now consider a countable setwofmetavariables(, Y, ... that we
decorate them with sets of variablEsA, . . ., thus yieldingdecoratedmetavariables
denoted byXT, Ya, etc.

We now extend the primitive grammar fags-terms to obtain thees-metaterms:

tu=a|Xa | (tt) | Azt | tlx/t]

From now on, we may usgto denote, indistinctly, a variablgor a metavariable
Ya.

We add to the definition of free variables in Section 2 the ¢a$&A) = A. Even
if this new definition is used to completely specify the fregiables of a metaterm,
which may sound contradictory with the concept of metatdtng worth noticing
that the partial specification of the set of (free) varialdéan incomplete proof says
nothing about the structure of the incomplete proof itselfhas structural information
remains still unknown. The minimal information inside metdaables given by deco-
ration of set of variables guarantees that different oenaes of the same metavariable
inside a metaterm are never instantiated by different rmetet. Indeed, given the (raw)
metatermt = A\y.y X (Az.X), the instantiation of the (raw) metavariabfeby a term
containing a free occurrence efwould be unsound (see [Mufi97, DHKO0O, FdK] for

details).
We also extend the notion sfibstitutiorto metaterms as follows:
Xa{z/v} = Xa if ¢ A
Xa{z/v} = Xalz/v] fzeA

Observe that{z/u} = tif z ¢ fv(u). Also, a-conversion is perfectly well-
defined on metaterms by extending the renaming of boundblasdo the decoration
sets. Thus for exampler.Y, =, A\z.Y,.

11

Towards confluence by composition of substitutions The idea behind calculi with
explicit substitutions having compaosition is to implemaifitat is known in\-calculus
as thesubstitution lemmafor all A-termst, u, v and variables:, y such that: # y and

x ¢ f£v(v) we have
tz/up{y/v} = Hy/vi{z/uly/v}}
It is well-known that confluence on metaterms fails for chledith ES without
composition as for example the following critical pairir shows

s = tly/vl[z/uly/v] "= ((Az.t) w)ly/v] =" tle/u]ly/v] = &

Indeed, while this diagram can be closedifor termswithout metavariableBR95],
there is no way to find a common reduct betweesnd s’ whenevetrt is or contains
metavariables since no reduction rule is allowedito mimic composition. Remark
that this is true not only for raw but also for decorated matmbles.

Let us now see how to close some of the interesting criticias ia Aes. For that,
let us consider the ones created from a mate{gpm.t) u)[y/v].

If y € fv(t) & y € fv(u), then

tly/ollz/uly/ol] "= (Qwt) wly/v] — tlz/ully/v]
tly/vllz/uly/vl] — tla/ully/v]

Ify € fv(t) & y ¢ fv(u), then

tly/vllz/u] *—= ((Awt) u)ly/v] — tlx/ully/v]
tly/v]lz/ul = tl/ully/v]

If y & fv(t) &y € fv(u), then

tlafuly/ol] T ((Awt) u)ly/v] — ta/u]ly/v]
tla/uly/vl] - tla/ully/v]

If y ¢ fv(t) & y ¢ fv(u), then remark thaf(A\z.t) u)[y/v] cannot be reduced
further by an— ;. rule so that the only possible case is

(Azt)u) e (Azt) u)ly/v] — iz/u]ly/]
(Azt)u) — ta/u] o= tlz/ully/v]

Proof techniques to show confluence While most of the calculi with explicit sub-
stitutions in the literature are only specified by rewritinges, Aes-reduction is de-
fined by a notion of reduction modulo an equivalence relatid®e then need to prove
confluence of anon-terminating reduction relation moduyléor which the published
techniques [Hue80, Ter03, Ohl98, JK86] known by the authibr Kore precisely, the
untypedies-calculus is trivially non-terminating (as it is able to sitate3-reduction),
so these techniques cannot be applied to our case sincestipgiye the reduction rela-
tion to be terminating.

We now present two different proofs of confluence for metater The first of
them (Section 3.1) uses the technique due to Tait and MadifiBar84] which can be

12

summarised in four steps: define a simultaneous reductiatime denoted= . ; prove
that=?, and—}, are the same relation; show that;, has the diamond property; and
use this to conclude.

The second solution (Section 3.2) consists in using a paveeirsion of thein-
terpretation techniqu@Har87]. Thus, we infer confluence ag&s from confluence of
Anss, a calculus witHlattened or simultaneous substitutiomBose reduction process
does not make use of any equivalence relation.

3.1 Confluence by simultaneous reduction

We first remark that the systess can be used as a function Bg-equivalence classes
thanks to the following property:

Lemma 3.1 Thees-normal forms of metaterms are uniqgue modejeequivalence.

Proof. We apply the proof technique in [JK86]. For that, terminatdd es can be
shown for metaterms by extending the definitions ahdM in the proof of Lemma 2.2
as follows: S(Xa) := 1 andM,(z) := 1. Also, es can be checked to be locally
confluent and locally coherent.

A direct consequence of this lemma is thatg, ¢’ implieses(t) =g, es(t').

Lemma 3.2 A metatermt in es-normal form has necessarily one of the following
forms:

e t=uxo,0r
e t =t ty, Wheret; andt, are ines-normal form.
e t = \y.ty, wheret, is in es-normal form.

o t = Xalz1/u1] ... [xn/us], wheren > 0 and every; is in es-normal form and
x; € Aandz; ¢ fv(u;) forallé,j € [1,n].

Lemma 3.3 Lett andu bees-normal forms. Then{z/u} is anes-normal form.

Proof. The proof is by induction onusing Lemma 3.2.

Let considert = Xa[z1/u1]...[zn/u,]. By the i.h. everyu;{z/u} is anes-
normal form and byx-conversion we can suppose that¢ fv(u). Thus, Lemma 3.2
allows to conclude{z/u} = Xa{z/u}[zi/uwi{x/u}]... [z, /u{a/u}] is in es-
normal form.

All the other ones are straightforward.

Lemma 3.4 Lett, u, v bees-normal forms and suppose¢ fv(v). Thent{z/u}{y/v} =k,

Hy/vH{z/u{y/v}}-

Proof. By induction on thees-normal form¢ using Lemma 3.2.

13

Lemma 3.5 Lett, u, v be Aes-terms. Thers((t u)[z/v]) = es(t[x/v]) es(u[z/v]).

Proof. By cases.

If z € £v(t) & x € £v(u), then(

If v ¢ £v(t) & x € £v(u), then(
(u), then(

)&/ v] —app, tlz/v] ulz/v].

)a/v] —app, t ulz/v] e tlz/v] ulz/v].
If z € fv(t) & a ¢ fv(u), then(t u)[z/v] —app, t[z/v] U ce— t[z/v] ulz/v].
If o ¢ fv(t) & x ¢ fv(u), then(t u)[z/v] —¢c t u §.— tlx/v] ulz/v].

Thus, in all cases the property holds.

tu
tu
tu
tu

Lemma 3.6 Lett, u, v beles-terms. Thers(t[z/u][y/v]) =k, es(tly/v][x/uly/v]]).

Proof. By cases.

If y € £v(t) & y € fv(u), thentz/u][y/v] —comp, tly/v][x/uly/v]].

Ity ¢ fv(t) &y € fv(u), thent[z/ul[y/v] —conp, tlx/uly/v]] cc—tly/v][z/uly/v]].
Ity € tv(t) &y & £u(u), thentfe/ully/v] =, tly/2) /] cetly/v] x/uly /o]
Ity ¢ £v(t) &y ¢ £v(u), thentz/ully/v] —ec t[z/u] g tly/v][z/uly/v]].

Lemma 3.7 Lett andu be metahes-terms. Thers(¢[x/u]) = es(t){z/es(u)}.

o —

Proof. The proof is by induction onusing Lemmas 3.5, 3.6 and 3.3.

Lemma 3.8 Let ¢,t,u,u’ be es-normal forms. Ift =g, ¢ andu =g, ', then

t{x/u} =g, t'{x/u'}.

Proof. By induction ont.

The simultaneous reduction

We now introduce the simultaneous reduction relatiofy ones-normal forms which
is given by a simpler relatios> moduloE;-equivalence.

Definition 3.1 (The relations= and =.s) The relation= is defined on metaterms
in es-normal forms:

e r=

o Ift= t/,then\z.t = \z.t/

o Ift = t'andu = u/, thent u = ' v/

o Ift = t'andu = v/, then(Az.t) u = es(t'[z/v'])

o Ifu; = ujandx; ¢ fv(u;) forall ¢,j € [1,n], thenXa[z1/wi]. .. [zn/un] =
Xaler/ui] - [n/up]

Now we define the following reduction relation

t = t'iffthere ares, s’ s.t.t =g, s = s’ =g, t'

14

The following properties are straightforward.
Remark 3.9
e t = t for everyes-normal formt.

o = isclosed by contexts: #f =g t; fori € [1,n], thenu = C[t1,...,tn] =es
C[ty,...,t.] =« whenever andu’ are es-normal forms.

e If t = t/, then theres(t) = es(¢).
Lemma 3.10 =}, C—7,..

Proof. It is sufficient to show=*C—*. This can be done on induction on the
number of steps ig>*, then by induction on the definition ef.

A consequence of this lemma is that> s t' impliesfv(t’) C fv(t).
Lemma 3.11 If t1 =¢s t) andis =g th, then(Az.t1) to =g es(t)[z/th)]).

Proof. Let considert; =g, u; = u} = Egt] andty =g, us =es uh =g,
th. We haveu)[z/ub] =g, t)[xz/t}] so thates(uj[z/ub]) =g, es(t|[z/t;]). Then
(Az.t1) to =g, (A\x.u1) us = es(u)[z/uy]) =g, es(t)[z/t5]).

Lemma 3.12If t = ¢’ andu = «/, thenes(t[z/u]) =es es(t'[x/u']).
Proof. By induction ont = ¢'.

o If z = z, thenes(z[z/u]) = es(u) = es(u') = es(z[z/u’]) holds by Re-
mark 3.9.

e If y = y, thenes(y[z/u]) = y = y = es(y[z/u']) holds by definition.

o If t1 to = t) t,, wheret; = ¢} andty, = t), then

es((t1 t2)[z/u]) = (L. 3.5)
es(t1[z/u]) es(ta]x/u]) =es (ih.)
es(t[z/u']) es(th[z/u']) = (L.3.5)
es((th ta)[z/u)

o If A\y.v = \y.0v/, wherev = ¢/, then

es((A\yv)lz/u]) =
Ay.es(v[z/u)) Ses (i.h.)
Ay.es(v'[z/u]) =
es((.0)z/u])

15

o If (\y.t1) v = es(t)[y/v']), wheret; = ¢} andv = ¢/, then

es(((Ay.t1) v)[z/u)) = (L. 3.5)
es((Ay-t1)[z/u) es(v[z/u]) =

(Ay.es(ti[x/ul)) es(v[z/u)) Ses (¢.h.andL. 3.11)
es(es(ty[z/u])ly/es(v'[z/u])]) =
es(ty[z/u][y/v'[x/u']]) =5, (L. 3.6)

(
(ti[y/o")z/u']) =
es(es(ti[y/v])[z/u'])

o If Xalzy/ui]. .. [xn/un] = Xalzy/ul]. .. [z, /ul), whereu; = u) andz; ¢
fv(u;) forall i, j € [1,n], then we reason by induction en

— Forn = 0 we have two cases.

If z ¢ A, thenes(Xa[z/u]) = Xa = Xa =es(Xalz/u']).

If z € A, thenes(Xa[z/u]) = Xa[z/es(u)] = Xalz/es(u')] = es(Xa[z/u']).
— Forn > 0 we consider the following cases.

If v ¢ fv(Xalzy/u1] ... [xn/un]), thenalsa: ¢ fv(Xalzy/ul]. .. [zn/ul])

and thus
es(Xalzy/uq] = [T /un][z/u))
Xalzr/u] ... [xn/un) = Xalzy/ui] ... [xn/ul)

es(Xalz/wi]. . o /u][z/ul)

If z € fv(Xalz1/u1]...[zn/us]), then leti be the greatest number such
thatx € fv(u;) so thatx ¢ fv(u;41)...fv(u,) and thus alsor ¢
fv(uj,,) ... fv(u;,). Two cases are possible.

If x ¢ fV(XA [xl/ul] Ce [xi_l/ui_l]), then alsac ¢ fV(XA [:vl/u’l] e [xi_l/ugfl])

es(Xa[z1/w] ... [xn/un][z/u]) =,
es(Xalzy/ua] ... [wi/wilr/u][@ivs /uita] - [on/un]) =
es(Xaley/u] . [wifwile/u]l[zigs fuia] . Jen fun]) =
Xalzr/u] ... [z /es(ui[x/u)][Tig1 /wir1] - - [Tn/un] Des (firsti.h.)
Xalwr/ua]. . [wi/es(uilz/u])][wi1/wiq] - - [on/up]) =e.
es(Xalzi/uh] ... [xn/up][z/u'])

If z € fV(XA[:vl/ul] . [wi_l/ui_l]), then

e}
[

es(Xalz1/u1] ... [zn/un][x/u]) =
es(Xalzy/u1] ... [wi/wil[x/u][@iv1 fuita] - . [2n /un]) =
es(Xalzy/ua] ... [wim1/uima][x/ul[w: /uilz/ull[@ig1 [uita] - - - [2n/un]) =
es(Xalz1/ur] ... [wimy /uia][z/ul)[2i/es(uilz/u))][Tis1 /uita] . . - [2n/ua]

16

By the first i.h. we haves(u;[x/u]) =es es(u}[z/v']) and by the second

i.h. we havees(Xa[z1/u1] . ..
Thus,

[wim1/ui-1][z/u]) Ses es(Xalz1/uy] ...

zifes(uilz/u])][®it1/uit] - ..

[zi/es(ujz/u)][xipr/uiyq] -

)
!
/’1,

uil[wivr /ui4] -

[/l /)] i1 Jly] -
willz/u')[wig1 /uiy4] ...
ui) [0 /ug)[z/u'])

[z /uy,]

Corollary 3.13 If t =5 t’ @andu = v/, thenes(t[x/u]) =es es(t'[z/u']).

[i1/uja][z/u]).

[Tn/un] Ses
[Tn/uy] =

[/ul] =g, (L. 3.6)

Proof. Lett =g, t; = t2 =g, t’ andu =g, u1 = uy =g, v’ S0 thatt[z/u] =g,

t1[z/u1] andis[z/us] =g, t'[x/u']. By Lemma 3.12 we have

es(t[z/u]) =, es(t1[r/u1]) Ses es(talr/uz]) =, es(t'[z/u])

Thus we concludes(t[z/u]) =es es(t'[z/u']).
Lemma 3.14 — s C=es

Proof. If s —.s s, thens =g, ¢ —os ' =g, s’ SO thates(s)
es(t') =g, es(s’) holds by Lemma 3.1. By definitioas(s) =g, es(
es(t') =g, es(s’). Thus,es(s) =.s es(s’) by definition.

=g, es(t)
t) = es

(t) =2,

Now one shows that —g s’ implieses(s) =.s es(s’) by induction ons and
using Remark 3.9 and Corollary 3.13. We then have that, s; —p s2 =g, &

implieses(s) =g, es(s1) =es es(s2) =g, es(s’).
Finally, one concludes that—).s s’ implieses(s) =5 es(s).

Lemma 3.15 The relation= ¢ has the diamond property, that istif s & t =es t

then there ig3 such that| = .5 t3 os < ta.
1. We first prove & u =g, v/ impliest =g, t’ & u/'.
Proof. By induction ont &< u.

& X <= =g T
o \r.t € \x.u =g, \z.u/, wheret & u =g, u'.

o 111y & Uy us =E, u’l u’2, Wheret1 < U1 =g, ’U,/l andt2 & U =g, u’2

XA[,Tl/tl] [:vn/tn] GXA[xl/ul]

[xn/un] —ES XA[:I:W(I /ul 1)]

2

N () U ()

wheret; & u; =g, u;. By the i.h. we have; =g, t, < u/ so that we close

the diagram by

A[xl/tl] .. [xn/tn] —Es
Xalz1/ty] [xn/t’] =E,
Xalzr) /“ 1)] N () U)]

17

° es(tl [w/tg]) & ()\.T.tl) to =k, ()\.”L'tll) tl2 Wheret1 =E, tll andtg =E, t/Q.
We havety [z/t2] =k, t;[z/t5] so that we close the diagram by

es(t1[x/ta]) =g, es(ti[z/to]) & (A1) 15

2. We provey .s & v' =g, v’ impliesv =g, ' & u/.
Proof. If v ,s& v/ =g, ¢/, thenv =g, t & u =g, v =g, v’ so thatv =,
t € u =g, u’. By the previous pont there i such that =g, ' < «’. Then
v=g t' Eu.
3. We provel; &t = to impliest; =es t3 s € to.
Proof. The proof is by induction on the definition &f.
e Letus consider
(Az.t1) up € (Ax.t) u = es(tefr/us))
wheret = t¢; andt = t, andu = w; andu = wus. By the i.h. we know
there arés andus such that; =.s t3 andty = t3 andu; =.s uz and

u2 =es ug SO that in particulat; =g, w1 = w3 =g, t3 andu; =g, W} =
wh =g, uz. We have

(Az.t1) ur =g, (Az.wi) wy = es(wslz/ws]) =g, es(tsz/us))
and Corollary 3.13 gives
es(taz/uz]) Ses es(ts[z/us)
e Letus consider
es(ti[x/u1]) & (\e.t) u = es(tafz/us])
wheret = t¢; andt = t, andu = w; andu = wus. By the i.h. we know

there arés; andus such that; = t3 andty =, t3 andu; = uz and
Uz =es u3. Then, Corollary 3.13 gives

es(t1[z/u1]) =es es(ts[x/us]) s <€ esta]r/usl)

o All the other cases are straightforward using Remark 3.9.

18

4. We provel] (s &t o5 to Impliest] =5 t3 os E ta.

Proof. Lett; st =5, u = ' =g, t2. By the second point there i5 such
thatt; =g, u; < uwand by the third point there tg such thati; = s t3 s € .
We conclude; = t3 os & to. .

Corollary 3.16 The reduction relatior-, is confluent.

Proof. Any relation enjoying the diamond property can be shown tadweflu-
ent [] so that the reduction relatios-;, does. We also remark that}, and—}_,
are the same relation so that;__ turns to be also confluent. Indeest} C—3_ . by
Lemma 3.10 and-3_,C= 7, by several applications of Lemma 3.14.

3.2 Confluence by interpretation

We present a second proof of confluence for metaterms. Farwhafirst define a
calculus with simultaneous substitution whose reductimtgss does not make use of
any equivalence relation.

3.2.1 A calculus with simultaneous substitution

We consider here dense ordeon the set of variabled’. Renaming is assumed to be
order preserving.

We then defines-metaterms as metaterms witkary substitutions used to denote
simultaneoussubstitutions The grammar can be given by:

tuo=a|Xa | (tt) | Aet | tleg, /[t ..., 2k, /T

where substitutioney, /ug, - .., xk, /uk,] are non-empty (so that > 1) and
Tk, -, Tk, are alldistinctvariables.

Remark that no order exist in the general syntax betweenistiact variables of a
simultaneous substitution.

We use letterd, J, K to denote non-empty lists of indexes for variables aQd/
to denote concatenation of the listsand J. If I is the listk; ...k, then we write
[;/u;); for the list [z, /uk,, ..., zk, /ug,]. We might also use the notatigbst]
for any of such (non-empty) lists arjds[z/¢];]; for a simultaneous substitution of
I elements containing /¢ at position: € I. Given [z;/u;];, we use the notation
[x;/ui]r+ to denote the substitution where an element has been adtedlatd of the

listxy, /ui,...,zk, /u, and[z; /u;] ;1 to denote the substitution where an element has
been added at the beginning of the list.
If j € Tand|I| > 2, we write[z; /u;]\ ; for the list[zy, /ug, , ..., 2, /uk,] Whose

elementr; /u; has been erased. Thus for example./z, x3/w] can be written as
w[z; [u] 2,3 With ky = 2, ko = 3, uz = z anduz = w andz[z;/u;][2,1\2 denotes the
termafzs/w).

For any permutatiom(I), the notation[z; /u;]. ;) denotes the (permutated) list
[T (k) /U (er)s - - > Tre(le) /U (k)] THus for example, if = &, ...k, andsort(I) =
jl .. .jn, [Ii/ui]sort(]) meanqle /Ujl, . ,Ijn/an].

19

Definition 3.2 (Free and bound variables) Free and bound variables ek-metaterms
are defined by induction as follows:

fv(x) = {a}

fv(Xa) = A

fv(tu) = fv(u) Ufv(u)

fv(Az.t) = fv(t) \ {z}

fV(t[CL‘kl /ukl, . ,xkn/ukn]) = fv(t) \ {CCkl, ... ,,’Ekn} U fv(ukl) LU fv(u;gn)
bv(x) = 0

bV(XA) = 0

bv(t u) = bv(u) Ubv(u)

bv(A\x.t) = bv(t)U{z}

bv(t[Tr, [Ukys- s Tk, JUR,]) = bv(t) U{xk,,..., Tk, } Ubv(ug,) ... Ubv(ug,)

As before, we work modulo alpha conversion so we assume atidbwariables are
distinct and no variable is bound and free at the same time @&mnsequence, for any
term of the formt[xy, /up,, ..., ok, /uk,] We havery, ¢ fv(ug;)foralll <i,j <n.

The following reduction systerft is used to transform successive depending unary
substitutions into one single (flattened) simultaneoustiuition.

(t u)[lst] —1, t[lst] u[lst]

(A\x.t)[1st] —1, Az.t[lst]

tlri/wilrly;/vils —ns tHo/wilyi /vl yi/vilias

tlzi/uilr =1, T/ Uilsore(r) if 1 is not sorted

Figure 4: Reduction rules foF

Note that bya-conversion there is no capture of variable in the rdfesandf1,.
As an example we have

(x[xa/m3, 22/ 2] Y)[23 /W] =11,
(z[wa/73, 22/ 2][13 /W] Y[23/W]) —flg
(z[ra/z3[zs/w], w2/ 2[23 /W], T3 /W] YlT3/W]) —11,
(zlza/z[zs/w], 23 /w, x4 /23]23/W]] Y23/ W])

The systenmF can be considered as a functional specification thanks tioHosy-
ing property.

Lemma 3.17 The systenf is confluent and terminating ass-metaterms.

Proof. Confluence can be shown using the development closed cooéueah-
nique in [Ter03]. Termination can be shown using for exangkemantic (for the
sorting) Lexicographic Path Ordering [Ter03].

20

From now on, we denote b¥(¢) the F-normal form oft.

Observe that — + ' impliesfv(t) = fv(t') so thatfv(F(¢)) = fv(¢).

The following property will be useful in the rest of this sect, it can be shown by
induction onss-metaterms.

Lemma 3.18 (F-normal forms) The sehf (F) of ss-metaterms that are ifF-normal
form can be characterised by the following inductive definit

o If u; € nf(F) forall s € I andyis a variable or a metavariable anblis sorted,
theny[z; /u;]r € nf(F).

o If u € nf(F), then\z.u € nf(F)
o If u,v € nf(F), then(uv) € nf(F)

3.2.2 A calculus with normal simultaneous substitutions

Thenss-metaterms are defined as the subset ofthmetaterms that are iR-normal
form. TheAnss-calculus is defined by the following set of reduction ruleshass-
metaterms.

(Az.t) u —n, F(tlz/u])

zjlri/wilr —n, Jjel

t[l‘i/ui]] —nj t[:vi/ui]l\j j cl& Z;j ¢ fv(t)
t[z/u) —, x ¢ fv(t)

Figure 5: Reduction rules for thenss-calculus

Note that then, is a particular case afs, but we have to specify it separately
because we choose to avoid the use of empty substitutions.
The Anss-reduction relation is defined by induction as follows.

o If t =y, nynym, ', thent —pges t/.
o If t — nes t/, thenhz.t — ynes A2t
o If t —ypss t/,then(t u) —ynss (' w) @and(ut) —ypss (ut').

o If u —yss v/ andj € I, theny[cs[z/u];]r — anss yles[z/u'];]r andYalcsz/ul;]r — anss
Yales[z/uT;]1-

As expected, the reduction system is well-defined in theesthratt € nf(F) and
t —nss t'impliest’ € nf(F).

Lemma 3.19 F-normal forms are stable bynss.

21

Here is an example ofnss-reduction, where we assume< z.

M.z (My.y) w)) z

zlz/z] (Ay.ylz/z]) wlz/z])

zlz /2] yly/wlz /=], x/z[y/wlz/z]]]
zyly/wlz/z), x/zy/wz/z]]]
zyly/wlz/z], /2]

z yly/wlz/z]]

x wlz/z]

L A A

As expected, thanss-calculus enjoys confluence
Theorem 3.20 Qnss is confluent) The relationAnss is confluent on metaterms.

Proof. Confluence can be shown using the development closed cooditie@orem
in [Ter03]. .
3.2.3 Relating\es and A\nss

We now establish a correspondence betwges and Anss-reduction which will be
used in the interpretation proof of confluence fess.
We first need the following lemma.

Lemma 3.21 Letv andu; (i € I) bess-terms.

1. If j € I, where|I| > 2andz; ¢ £v(v), thenF (v]z;/u]r) =10 Flzi/un;)-

Anss

2. Ifx ¢ fv(v), thenF(v[z/u]) —1

Anss

F(v).

Proof. We can reason by induction an

The Anss-reduction relation is stable by closure followed by flaitegp that is,

Lemma 3.22 Letv be ass-terms and, t» be F-normal forms. Ift; — uss t2, then

1. f(tl) —>+ f(tg)

Anss

2. Fta[z/v]) —Sues F(t2[z/v])

Anss
3. F(vlesle/t1lilr) —=fuee F(v[csla/talilr).

Proof. We can show the first and second properties by inductiohmas and the
third one by induction om.

We are now ready to simulates-reduction into the systetss via the flattening
functionF:

22

Theorem 3.23If t —es ¢/, thenF(t) —3% .. F(t') .

Anss

Proof. We proceed by induction. If the reduction is internal, amslan application
or an abstraction, then the proof is straightforwardz ¥ t;[xz/v] is a closure and
t' = toz/v], thenF(t1) —3,. F(t2) by ih. andF(t) = F(F(t1)[x/v]) —3ee
F(F(t2)[z/v]) holds by Lemma 3.22:2. If = v[z/t1] is a closure and' = v[z/ts],
thenF(t1) —Xnss F(t2) by ih. andF(t) = F(v[z/F(t1)]) —3nes F(vlz/F(t2)])
holds by Lemma 3.22:3. If the reduction is external we havagpect all the possible
cases.

We can then conclude

Corollary 3.24 If t =3, t/, thenF(t) —3},c F(t).

*
Anss

3.2.4 Relating\nss and Aes

We have projectedes-reductions steps intanss-reduction steps but we also need
to prove that the projection in the other way around is pdsgio. This will be the
second important ingredient of the interpretation proafaifluence that we present at
the end of this section.

In order to translatenss into Aes we define the following sequentialisation func-
tion.

seq(x) = =z

seq(t u) = seq(t) seq(u)

seq(A\x.t) = Az.seq(t)

seq(t[zi/wi]r) = seq(t) if everyz; ¢ fv(seq(t))
seq(tfrs/uir) = seq(t)lri/seq(ui)lx

whereK is the biggest non empty sublist 6fsuch that for alk € K the variable
xy is free inseq(t).

We remark thatv(seq(t)) C £v(¢).

As expected, the systeseq can be used to project-reduction (Theorem 3.25)
andnss-reduction (Theorem 3.26) inthes-reduction.

Theorem 3.25If s ands’ aress-terms such that — » s/, thenseq(s) —3,, seq(s’).

Proof. By induction on the reductioft. If the reduction is internal the property is
straightforward. Otherwise we have to inspect all the fegiases.

Theorem 3.26 If s —nss 8, thenseq(s) —3 .. seq(s’)

Proof. By induction on—),ss. The cases where the reduction is internal are
straightforward so we have to inspect the cases of extezdaktions.

We can now conclude this section with one of the main restiltiseopaper.

23

Fy=F@)
Yo ke oF V*
* f(tl) f(tQ) .
seq(F (1)) " wx seq(F ()
t3
< seq(tg)*

Figure 6: Confluence proof fores on metaterms

Corollary 3.27 The systemies is confluent on metaterms.

Proof. Lett = ¢/, t —3,, t1 andt’ —3}., t2. By Theorem 3.23 we have
F(t) = F{') and F(t) —3,. F(t1) and F(t') —3,.s F(t2). Theorem 3.20
gives confluence oAnss on F-normal forms so that there is aA-normal formts
such thatF(t1) —3,. ts andF(t2) —3%. t3. Now, t1 —% F(t1) andty —%
F(t2) imply seq(t1) —3. seq(F(t1)) andseq(ta) —3.. seq(F(t2)) by Theo-
rem 3.25. Butseq(t1) = Gc(t1) andseq(t2) = Ge(t2) so thatt; —3,, seq(t1) and
to —3.s Seq(tz2). Theorem 3.26 allows us to conclusleg(F (t1)) —%.s seq(ts) and
seq(F(t2)) —3%.s seq(ts) which closes the diagram.

4 Preservation of 3-strong normalisation

Preservation ofi-strong normalisation (PSN) in calculi with explicit suistions re-
ceived a lot of attention (see for example [ACCL91, BBLRDB®95, KR95]), start-
ing from an unexpected result given by Mellies [Mel95] whastshown that there are
(B-strongly normalisable terms ik-calculus that are not strongly normalisable when
evaluated by the reduction rules of an explicit version &f thcalculus. This is for
example the case oo [ACCL91] or Aoy, [HL89I].

This phenomenon shows a flaw in the design of these calcuii exiplicit substi-
tutions in that they are supposed to implement their undeglgalculus without losing
its good properties. However, there are many ways to avoidiédecounter-example
in order to recover the PSN property. One of them is to simptpifl the substitu-
tion operators to cross lambda-abstractions [LM99, For@2pther consists of avoid-

24

ing composition of substitutions [BBLRD96]; another onepimses a simple strategy
on the calculus with explicit substitutions to mimic exgdthe calculus without ex-
plicit substitutions [GL99]. The first solution leadsw@aklambda calculi, not able to
expressstrongbeta-equality, which is used for example in implementaiohproof-
assistants [Coq, HOL]. The second solution is drastic agposition of substitutions
is needed in implementations of HO unification [DHK95] or €tional abstract ma-
chines [HMP96]. The last one exploits very little of the aotiof explicit substitutions
because they can be neither composed nor even delayed.

In order to cope with this problem David and Guillaume [DGE@&fined a calculus
with labels called \,,s, which allowscontrolledcomposition of explicit substitutions
without losing PSN. These labels can be also seen as spaciatagions induced by
a logicalweakeningrule. Another solution, called1xr, has been introduced latter
by Kesner and Lengrand [KLO5], the idea is the complete obrtf resources, so
that not only for weakening, but also feontraction Anyway, both calculi can be
translated to Linear Logic’s proof-nets [DCKP03, KLO5],darlying in this way the
key points where composition of substitutions must be abletl. The calculus\,,,
as well as\1xr introduces new syntax to handle composition. The claim isf pla-
per is that explicit resources as weakening and contraatiemot necessary to define
composition correctly. Indeed, whilelxr-reduction is defined vié equations and
19 rewriting rules, \es only uses an equation for commutativity of substitutiond @&n
natural rewriting rules.

Preservation of3-strong normalisation is quite difficult to prove in calculith
composition (see for example [Blo97, DG01, ABR0OO, KL05, KOBA]). This is
mainly because the so-callecentterms are not stable by reduction : a tetris
said to bedecentin the calculusZ if every subtermy appearing as body of some sub-
stitution (i.e. appearing in some subtewfn: /v] of t) is Z-strongly normalising. As an
example, the terme[z/(y v)][y/ w.(w w)] is decentimes since(y y) andAw.(w w)
areles-strongly normalising, but itSomp,-reductz[z/(y v)[y/Aw.(w w)] is not since
(y v)|y/ w.(w w)] is notAes-strongly normalising.

In this paper we prove thates preserveg-strong normalisation by using a proof
technique based on simulation. The following steps will beadoped

1. We define a new calculugsw (section 4.1).

2. We define a translatiahfrom Aes-terms (and thus also frotkrterms) tolesw
such that

(@) t € SN g impliesK(t) € SN xesu (Corollary 4.15).
(b) K(t) € SN sesw iMpliest € SN yes (Corollary 4.6).

4.1 The)\esw-calculus

We introduce here theesw-calculus, an intermediate language betweenandAlxr [KLO5],
which will be used as technical tool to prove PSN.
The grammar ofesw-terms is given as follows:

tu=ao| et | (tt)] tlx/t] | Wa(t)

25

We will only consider herstrict terms: every subterm.t andt[x/u] is such that
x € fv(t) and every subtermV, (¢) is such thate ¢ £v(¢). We use the abbreviation
Wr(t) for Wy, (... Wy, (t)) whenevel' = {x1,...,z,}. In the particular casE is
the empty set the notatioy(t) = ¢

Besidesa-conversion we consider the equations and and reducti@s finl Fig-
ure 7.

Equations:

tle/ully /] —o tlfllefe] oy fe(u) & ¢ £u(o)
Wa (W (1)) =wc Wy(Wa(t))]

Wy (8)[z/u] =veart Wy (t[z/u]) ifo#y&yd¢fv(u)
Wy (Ax.t) =umbs AT W (t ifx#£y

Reduction Rules:

(Az.t) u —p t[z/u]

x|z /ul —Var U

W (t) [z /u] o Wrsun\sv(e) (1)

(t u)[z/v] —upp, (tlx/v]uz/v]) ifx € fv(t) & e fy(u)
(t u)[x/v] —upp, (tulz/v]) if v ¢ fv(t) & = € fv(u)
(t u)[x/v] —app, (t[w/V] u) if v € fv(t) & = ¢ fv(u)
(Ay.t)[x/v] —lamb AY.t[x/V] ify ¢ tviv)&a#y
ta/ully/v] —conp, t[y/vl[x/uly/v]] yetv(u) &y e fu(t)
tla/ully/v] —comp, tla/uly/v]] ify e tv(u) &y ¢ tv(t)
Wy (t) uw) —wpush (T) if yefv(u)

Wy (1) u) e (Wt W) iy ¢ v(u)

(t Wy(u)) —wpush () if y € £v(t)

(t Wy (u)) ~—WPush (W (t)) If Y ¢ fV(f)

Wy (8)[z/u] ~WPush [:C/u] if y € £v(u)

tx /Wy (u)] —wpusn Wy (t[z/u]) ify & £v(t)

t/ Wy (1) —upenn_t[e/1] f y € sv(t)

Figure 7: Equations and Reduction rules fesw

The rewriting system containing all the previous rewritintes excepB is denoted
by sw. We writeBsw for BUsw. The equivalence relation generated by all the equations
is denoted b¥,. The relation generated by the reduction ridegresp.Bsw) modulo
the equivalence relatioBg, is denoted by—g, /Esy OF —esy (F€SP. —psy /Esu OF
—esw)- More precisely

t —esu t iff there ares, s’ s.t. t =g, s —sy 8 =g, ¢
t —xesw ' iffthereares,s’s.t. ¢ =g, s —psy 8’ =, t/

The following lemma can be proved by induction on terms.
The following property can be shown by induction on terms.

Lemma 4.1 The\esw-reduction relation preserves strict terms.

26

From now on, we only work with strict terms.

We proceed now to show thasw is a terminating system. We will do this in two
steps: first we show thatres, MiNUS —ypusy IS terminating (Lemma 4.2), then we
show that—ypusn / =k, IS terminating (Lemma 4.3). All this allows us to conclude
(Corollary 4.4) that the whole system.g, is terminating.

We will need the following measure for terms.

Definition 4.1 For each)esw-terms we define a size and a multiplicity by structural
induction.

S(x) = 1 M. (2) =1
SWa(t)) = s(t) Ma(Wy(t)) = Ma(t)
Mz(Wr(t)) =1
S()\:c.t) = S(t) Mz()\y.t) = Mz(t) +1
S(t u) = S(t) +S(u) M, (t w) = Mg(t) +My(u)+1
S(tlz/u]) = S(t) +Mz(t)-S(u) Mu(tly/u]) = Mu(?)
Mo (tly/u]) = Ma(t) +My(t) - Ma(u) +1)

Remark that,(s) > 1 andS(s) > 1 for every terms and every variable.
This measure enjoys the following property:

Lemma 4.2 Lets, s’ be A\rxw-terms.
1. If s =g, ¢, thens(s) = S(s').
2. If s —ypusn §', thens(s) = S(s').
3. If s —g\wpusn 8, thens(s) > s(s').

Proof. The proof is by induction 0R-g,.

Lemma 4.3 —ypush /Esy IS @ terminating system.

Proof. For each terny we define a measuids) by induction as follows:

P(x) =1

P(t u) = 2-P(t)+2-P(u)
P(\z.t) = P(t)+1
POWV,(t)) = P{)+1
P(tlz/u]) = P(t)+2-P(u)

Remark thaP(s) > 1 for everys.

Now, givens we considefnbu(s),P(s)), wherenbw(s
ings ins. We show that —ypusn /g, s’ implies (nbw(s), P(

The proof proceeds by induction eAypysh /Esy-

We can then conclude thfitPush} /Eg,-reduction is terminating on allesw-terms
by application of the abstract theorem A.Z is Eg;, R is the empty relationR, is
—wpush, K is the relation given by the measufebw(_),P(_)) andS is >, which is
the standard (well-founded) lexicographic ordeox N.

) is the number of weaken-
$)) >tes (abu(s'),P(s").

27

If x ¢ fv(u)
If x € fv(u)

In order to conclude with that the whole systerw is terminating on all\esw-
terms we apply again Theorem A4.is Eg,;, R is the relation—ypysy (SO that—ypusn
/Esy is well-founded by Lemma 4.3}, is the relation given by the functiad{_), R is
the relation— g\ (upusny Which strictly decreases the measea(e) by Lemma 4.2 and
S is the standard well-founded orderon N.

Corollary 4.4 The reduction relatiorsw is terminating.

4.2 Relatinges and \esw

The aim of this section is to relatess and \esw-reduction in order to infer thaksw-
normalisation implies\es-normalisation.

We start by giving a translation frobes-terms to\esw-terms which introduces as
many weakening constructors as is necessary to build atrit-terms.

Definition 4.2 (From \es-terms to (strict Aesw-terms) The translation from\es-terms
(and thus also from\-terms) to strict\esw-terms is defined by induction as follows:

K(x) = =z

K(u v) = K(u)K(v)

K(Az.t) = AzXK(t) If x € £v(t)
K(Az.t) = Az W, (K(t)) If x ¢ £v(¢)
K(u[z/v]) = Ku)[z/K(v)] If x € fv(t)
Kulz/v]) = We(K(u))[z/K(v)] Iz ¢ £v(t)

Remark thatv(X(t)) = £v(t).
The relevant point to relate nowes and Aesw-reduction consists in pulling out
weakening constructors:

Lemma 4.5 If s —xes 8, thenK(s) — ... Wevs)\£v(s) (K(5)).

Proof. By induction on— yes.

It is worth noticing that we really need in this proosdak1 andwAbs as equations
and not as rewriting rules.
We can then now conclude this part with the main result ofgbigion.

Corollary 4.6 If K(t) € SN yesu, thent € SN yes.

4.3 TheA;-calculus

Definition 4.3 The setA; of terms of the\I-calculus [Klo80] is defined by the follow-
ing grammar:

M=z |(MM)| e.M|[M,M)]

28

We only considestrict terms: every subtermz. M satisfiest € £v(M).

We usgN, (M)] or [N, My, Ms, ..., M,]todenotetheterm.. [N, M1], Ma], ..., M,)
assuming that this expression is equaMavhenn = 0. The termM and the notation
(M) inside[N, (M)] must not be confused.

As in the A-calculus, the following property is straightforward bydirction on
terms.

Lemma 4.7 (Substitutions [KIo80]) For all A;-termsM, N, L, we haveM {z/N} €
ArandM{z/N}{y/L} = M{y/L}{«/N{y/L}} provided there is no variable cap-
ture.

In what follows we consider two reduction rules Ap-terms:

(Ax.M)N —z M{z/N}
[M,N]L —, [ML,N]

Figure 8: Reduction rules fak;

The reduction relatior on A;-terms preserves free variables.

Lemma 4.8 (Preservation of free variables)Lett € A;. Thent —g, t' implies
fv(t') = fv(t).

Proof. By induction ont using the fact that any abstractiontiis of the form\z.«
with z € fv(u).

As a consequenger-reduction preserves stridt;-terms.

4.4 Relating\esw and A;

We now introduce a translation frofesw to A; by means of the relationZ _. The
reason to use a relation (and not a function) is that we watnatwslate the\esw-term
into A ;-syntax by adding somgarbageinformation which is not uniquely determined.
Thus, each\esu-term can be projected in different-terms, this will essential in the
simulation property (Theorem 4.10).

Definition 4.4 The relation Z betweerstrict Aesw-terms andstrict A;-terms which
is inductively given by the following rules:

tZT tZT uwZU tZT uwZIU
xZx Ax.t T Axe.T tuZITU tlz/u] T T{z/U}

tI7T tIT

m Mis aA]'term W x € fV(T)

The relationZ enjoys the following properties.

29

Lemma 4.9 Lett be alesw-term andM be aA;-term. Ift Z M, then
1. fv(t) C £v(M)
2. M € Ay
3. x ¢ fv(t) andN € A;impliest T M{x/N}

Proof. Property (1) is a straightforward induction on the prooétas well as Prop-
erty (2) which also uses Lemma 4.7. Property (3) is also mtdmeinduction on the
tree, using Lemma 4.7. .

Remark that property 1 in Lemma 4.9 holds since we work \sitiict terms :
indeed, the rule for substitution does not imphky(t[z/u]) C £v(T{z/U}) whenz ¢
fv(t) U £v(T). This is also an argument to exclude from our calculus ravgitules
not preserving strict terms like

(App) (tu)z/v] — (t[z/v] u[z/v])
(Comp) t[z/ully/v] — tly/v][z/uly/v]] ifyefv(u)

Reduction in\esw related to reduction itk ; by means of the following simulation
property.

Theorem 4.10 (Simulation inA;) Lett be alesw-term andT be aA-term.
1. IfsZ Sands =g, ', thens’ 7 S.
2. IfsZ Sands —g, s, thens’ 7 S.
3. IfsZ S ands —g ', then there isS” € A; such thats’ Z S’ andS —>2;T S’

Proof. By induction on the reduction/equivalence step.

We can thus immediately conclude
Corollary 4.11 If t Z T andT € SN s, thent € SN yesu-

Proof. We apply the abstract theorem A&is =g_,, R4 iS sw, R2 iS —3, K is the
relation Z andS is — 3, which is well-founded orf” by hypothesis.

4.5 Solving the puzzle

In this section we put all the parts of the puzzle togetherdeoto obtain preservation
of B-strong normalisation.

Since we want to relate and Aes-reduction, we first need to encodeerms into
one of the calculi of this section. We proceed as follows.

30

Definition 4.5 ([Len05]) Encoding of\-terms intoA; is defined by induction follows:

I(x) =z

I(Az.t) = Az.I(t) x € fv(t)
I(Az.t) = Az[I(t),z] x ¢ £fv(t)
I(tu) = I(t)I(w)

Theorem 4.12 (Lengrand[Len05]) For anyA-termt, if t € SN g, thenI(t) € W Ng,.

Theorem 4.13 (Nederpelt[Ned73])For any A-termt, if I(t) € W Ng, thenI(t) €
SNgx.

Theorem 4.14 For any A-termu, K(u) Z I(u).

Proof. By induction onu:
e 1 7 x trivially holds.

o If u = Aa.t,thenk(¢) Z i(t) holds by thei.h. Therefore, we obtain . X(¢) Z A\x.i(¢)
in the caser € fv(t) and\z. W, (K(t)) Z Az.[i(t), z] in the caser ¢ fv(¢).

o If u = (tv),thenk(t) Z i(t) andK(v) Z i(v) hold by the i.h. and thus we can
concludek(t) K(v) Z i(t) i(v).

Corollary 4.15 (\esw preservess-strong normalisation) For any A-termt, if ¢t €
SN 3, thenk(t) € SN resu-

Proof.If t € SN, thenI(t) € SNs. by Theorems 4.12 and 4.13. K¢t) Z 1(t)
by Theorem 4.14, then we conclullg) € SN »esy by Corollary 4.11. .

Corollary 4.16 (\es preservess-strong normalisation) For anyA-termt, ift € SN g,
thent € SN yes.

Proof. If ¢ € SN, thenK(t) € SN xesw by Corollary 4.15 and € SN »es by
Corollary 4.6. .
5 Recovering the untyped\-calculus

We establish here the basic connections betweand Aes-reduction. As expected

from a calculus with explicit substitutiong-reduction can be implemented bgs
(Theorem 5.1) andes-reduction can be projected infb(Corollary 5.3).

31

5.1 From M-calculus to \Aes-calculus

We start by a simple lemma stating that explicit substitutan be used to implement
meta-level substitution on pure-terms.

Definition 5.1 The encoding oA-terms intoAes-terms is given by the identity func-
tion.

The full compositionresult obtained in the previous lemma enables us to prove a
more general property concerning simulatiorfafeduction in\es.

Theorem 5.1 (Simulatings-reduction) Lett¢ be aA-term such that —4 ¢'. Then
t—t .

Proof. By induction onS-reduction using Lemma 2.3.

5.2 From)\es-calculus to A-calculus

We now show how to encodelas-term into a\-term in order to projectes-reduction
into #-reduction.

Definition 5.2 Let¢ be a\es-term. We define the functiar{¢) by induction on the
structure oft as follows:

L(z) = =z

L(Az.t) = AzL(t)

L(t u) = (L(t) L(u))
L(tle/u]) = L(t){z/L(u)}

The translatior. enjoystv(L(t)) C fv(t).
Lemma 5.2 (Simulating Aes-reduction)

1. Ift =g, u, thenL(t) = L(u).

2. Ift —5 u, thenL(¢) = L(u).

3. Ift —p u, thenL(t) —7% L(u).

Proof. By induction on\es-reduction.

1. This is obvious by the well-known [Bar84] substitutionmima of A-calculus
stating that for any-termst, u, v, t{z/u}{y/v} = t{y/vH{z/{u{y/v}}.

2. All the es-reduction steps are trivially projected into an equality.

3. A B-reduction step at the root efcorresponds exactly to @reduction step at
the root ofL(¢) using the Definition of the translation.

We can finish this part with the following conclusion.

Corollary 5.3 If t —)es u, thenL(t) —7 L(u).

32

6 The typedJes-calculus

In this section we present ttemply-typedies-calculus for which we show Subject
Reduction in Section 6.2 and Strong Normalisation in Sest®and 4.5.

In contrast to standard systems for typedalculus [] and typed\x-calculus],
for which typing judgementE + ¢ : A are built in such a way that the free variables
of ¢ belong toI', we define here more precise typing rules which ensures teay e
environment’ in atyping judgemenit + ¢ : A containseexactlythe set of free variables
of the termt it types. This property turns out to be essential to obtaa gimple
translation ofAes-terms into proof-nets that we given in Section 8.

Simply typesre built over a countable set of atomic symhdisby means of the
following grammar;

Az=0c|A— A

whereo € At.

An environments a finite set of pairs of the form : A. Two environment$' and
A are said to beompatibleiff forall x : A € T'andy : B € A, x = y implies
A = B. We denote theinion of compatible contextsy I' & A. Thus for example
(x:Ay:B)W(z:A,2:C)=(z:A,y:B,z:C).

Set properties on environments are:

Remark 6.1
1. fTCIMandA C A’ thenTWA CTV W A,
2. IfT', A andII are all compatible, ther & (A WII) = (T' W A) WII.

6.1 Typing Rules

Typing judgementsave the fornT" - ¢ : A wheret is a term,A is a type and” is an
environment.Derivationsof typing judgements can be obtained by application of the
Typing Rules given in Figure 9.

] I'tt:A— B AFu:A
S— (axion) , (app)
z:AFz: A FTwAF(tu):B
Fx:AkFt: B '+t:B andz ¢ T
) (absy) : (abss)
'Xxt:A— B 'XMet:A— B
I'tu:B Axz:BFt: A (subs:) I'+tu:B AFt: A (subs»)
subs subs
TWAFtz/u]: A ' FTWAFtz/u]: A 2

Figure 9: Typing Rules fohes-calculus

33

In contrast to standard typing rules forcalculus [Bar92] andx-calculus [LLDT04],
our axiom rule types a variable insingletonenvironment. Variables which do not
appear free in terms may be introduced by means okt or subs, rule. As a
consequence, the typing system enjoys the following ptgper

Lemma 6.2 If T kg5 t: A, thenl = £v(t).

Proof. by induction on typed derivations. .

6.2 Subject Reduction

As expected, the calculus enjoys the subject reductiongotepMore precisely, the
calculus enjoys #ocal subject reduction property, that is, no meta-theorem isleée
to show preservation of types.

Lemma 6.3 (Subject Reduction) If T Fyes s : Aands =g, s, thenl' by " : A.

Proof. By induction on=g_.

Lemma 6.4 (Subject Reduction Il) If IT Fyes s : Aands —yes ', thenIl’ Fyes s’ :
A for somell’ C II.

Proof. By induction on— yes.

7 Recovering the typedA-calculus

We established in Sections 5.1 and 5.2 the connexion betthecthe two notions of
reduction in\ and\es which gives aruntypedunderstanding of one calculus into the
other one. We define here natural translations from type@alculus to typedies-
calculus and vice-versa, thus completing the connectibmden and es in a type
setting.

We first recall in Figure 10 the typing rules farcalculus.

I'z:AF\t: B T'bxt:A— B T kFyv:A

Tx:AFyz: A 'ty Aet:A— B Phky(tv): B

Figure 10: Typing Rules fok-calculus

A straightforward induction on typing derivations allows o show the soundness
of the projection of\ into \es:

34

Lemma7.1lIftisalterms.tT Fyt: A, thenl N£v(t) Faes t: A.
Proof. By induction on the typing derivationl - ¢ : A.

The type derivations are also preserved in the other sensedrTo show that, we
first state the following known properties of typed lambdeglus (they can be shown
by a straightforward induction on typing derivations).

Lemma 7.2
1. fTkyt: A thenl,z: By t: A.
2. fTz: BFyt: Aandl by u: B, thenI' -y t{x/u} : A.
We can now conclude with the following.

Lemma 7.3 L preserves types)If ¢ is a Aes-term such thal Fy.s ¢ : A, thenD
L(¢) : A.

Proof. By induction on the typing derivationl Fyes ¢ : A.

8 Strong normalisation of typed Aes-terms

In this section we present a translation of the typed-calculus into proof nets. To
do so, we will translate simply types into MELL formulae, g\es-terms into typed
proof-nets, then we will show thakes-reduction can be simulated by a corresponding
reduction relation on proof-nets which is known to be noigady.

This same technique has been already applied to other icaitiulexplicit substi-
tutions and resources [DCK97, DCKPO03, KLO5].

8.1 Linear Logic’s proof-nets

We recall here some classical notions from Linear Logicsofinets. We refer the
interested reader to [Gir87] or [Laf95] for more details.

Let At be a set ohtom symbolsThe set of formulae of the multiplicative expo-
nential fragment of linear logic (called MELL) is defined thetgrammar:

Au=0|7| ARA | A9A|7A 1A

where the atomic symbel in the formulaer andz belongs to the setit.
The linear negationof a formulaA, denoted4 is defined by the following De
Morgan equations:

(o)t = & (A®B)*+ := AbsgBt (7A)L = 1A
@+ = o (A9B)+ = AleBt (1At = 74

If T" is the sequencdy, ... A,,, we denote byT the sequenceA,,...,?A,, and by
I'l the sequence ..., 4.t .

35

The set of proof-nets, that we denote BW, is defined inductively in Figure 11
where we use rectangles having rounded corners to denetalgldefined nets used in
the inductive constructions.

(Axiom) (Cut) (Dereliction) (Contraction)

S O D | Y A G

74

(Par) (Times) (Weakening) (Box)
—J I Cle [

Figure 11: MELL Proof-nets

The traditional reduction system for MELL consists in thé glecut elimination
rulesappearing in Figure 12.

36

?ax-cut

At m
i |
74 1AL T

[I—
T

cut —w-b

iy [-

A
+ 7
I

|
f A A
24 144 T AL or
cut —)d_b cut
T T T
AL T AL
! ! !
? ? T T T
A mra A 74 74 1AL T 1AL
a o | ! | |
; ; n
74 1AL T
cut —c-b
‘ B A 24
AL
|
T T T T T 1AL
B 2A ?A AL T 1A
! ! I I I
T T T T T
'B 28 7A 1AL T cut
[E— T T
cut —b-b B 24

Figure 12: Cut elimination rules for MELL Proof-nets
37

We also consider an equivalence relationfaN, as in [DCG99], where two equa-
tions~, and~yg are introduced (see Figure 13).

2

5 \é
,‘ A

A
?A 2 ? 2
~p ?A 74 B ~p 2 A
T i
?;5 74 74
B

?

?B 74 A B ?7A 728!

I TILT) S

Figure 13: Equations for MELL proof-nets

Finally, we shall also use the two extra reduction rules guFé 14 :U is used to
simplify weakening linked to contraction nodes anallows weakening links to go
outside boxes in order to bring them together at the top optbef-nets.

?

%EJE 9]~ [

A B
| |
I I

A B

B

7B

Figure 14: Extra reduction rules for MELL proof-nets

W call R the system made of rules-cut, ®-®, w-b, d-b, c-b, b-b andU and
V. We shall write~ g for the congruence (reflexive, symmetric, transitive, etbby
proof-net contexts) relation on proof-nets generated lmaggnsA, B. We shall write
R/ E for the reduction relation generated by the ruleiand the equations ir g,
given byr —p/p s if and only if there exist’ ands’ such that ~g " —g s’ ~p s.
The following result is well-known [Pol04] (see also [KLO&Jr details).

Theorem 8.1 The reduction relatioR/ E' on typed proof-nets is strongly normalising.

38

8.2 From \es-terms to Proof-nets

We now present the natural translation froms-terms to proof-nets. For that, let's
start by the usual translation of intuitionistic types [&f into MELL formulae given

by :

A* = A if A is atomic
(A= B)" = ?2(A")7")» B*

Now we can give our translatiofi from typedes-terms to proof-nets, which is
defined by induction on the derivation of typing judgemergshown in Figure 15.
Every proof-nefl(T' - ¢ : A) has one wire labelled with(D*)* for everyD € T and
one unique wire labelled witi*. We shall often writel'(¢) instead of’'(I" - ¢ : A)
whenI’ and A are clear from the context.

39

Tx:AkFx: A TALT,AF tu: A) where
TILTF¢:B— A)&TT,AFu:B)

[T(U)]
ax

I
A*L B* oL 2A*L
L ek 7Brlgax | f '
@ | | |
1B* * T* 7A>«L
74%L A*
A* ek
T(THAzt: B— C)wherel',z: B+t:C T(TH Azt: B— C)wherel'F¢:C
ﬁ@
et B* 7t L B* 20t
Bosrcr L BogrC L
T(L,T,AF tlx/u] : A) where T(II,T, A & t[x/u] : A) where
IT,e:BFt: A&T,A+u:B Ir-t: A&T,A+u:B
T(® T(H
0
‘ ‘ B oL 2A*L ‘ ‘ B ot PA*L
A* ek oLl Bl y y , A* ek opxdk opel , y y
| | | | | |
\B* et A 1B* et A
I _1
et oL

Figure 15: Encoding typedles-terms into MELL proof-nets

Now we can state the main theorem of this section. The praofjaktifies the use
of the additional equationsandB as well as the additional reduction rufeandu. In
the following statement, we writ€/[p] the proof-net obtained fromby adding a finite
number of weakening wires on the top levelafoutside all the boxes).

Theorem 8.2 Let s be a)es-typed term.

40

1. If s =g, &', thenT(s) ~g T(s).
2. If s —ppp, Lamb 8’5 thenT'(s) ~g T(s").
3. If s — e\ {4pp,,Lamv) S’ theNT'(s) —>;/E ClT(s")].

Proof. The proof proceeds by induction en .s. We first show that cases where
5 —xes S is an external reduction step, for which we consider all et reduc-

tion/equivalence cases.

o Fors = tx/ully/v] =¢ tly/v][z/v] = ¢, wherey ¢ fv(u) & = ¢ fv(u),
we show here the casee fv(t) & y € fv(t), all the other ones begin similar.
ThusT' + s : A comes froml'yyy, T, T, T,z : B,y : Dt : Aand
Tiwws Do, T, T B u : B andTyyy, Ty, T, T B v 0 D, wherel'y,, =
fv(t)NEv(u)NEv(u), Ty, := £fv(t)NEv(u)\Ev(v), Ty := £v(t)NEv(v)\fv(u),
Ty = fv(u) NEv(v) \ £v(t), Ty = fv(t) \y \ = \ fv(u) \ fv(v), Ty =
fv(u) \ £v(t) \ £v(v) andl’, := fv(v) \ £v(t) \ £v(u).

The proof-nefl’(s) = T'(s') is given by

o
T(u) T(v)

Bk omi: ik oot DYk ik it it

apL sk i ok tDL 2Bt A s s ;) N
v u uy I I I | | T T T T T
IB* ML ML wLE it ID* ML ML kot

]

® |
2wyt I WS

rrrrrrrr

o Fors = (Az.t) u —p t[z/u] = s with ILT, A F (Az.t) u : A coming from
ILT - At : B — AandTl',;A F u : B, wherel' := fv(Az.t) N fv(u),
IT := fv(Az.t) \ fv(u) andA := fv(u) \ fv(Az.t). We show here the case
x € fv(t), the case: ¢ £v(t) being similar.

We can verify thafl'(s) (on the left) reduces t@'(s’) (on the right) in exactly
two steps so thaf'[_] is empty, i.eT(s) —9-g—ax-cut 1(5).

41

e Fors = z[z/u] —var u=s',coming fromz : AF z: AandA F u : Awhere
A := fv(u). We can verify thaf'(s) (on the left) reduces t&'(s’) (on the right)
in exactly two steps so that[_| is empty, i.7'(s) =iy ax-cur 1'(5)-

®
|

N
| i As NS
a

Fyen
1a*

rart

e Fors = t[x/u] —¢. t, withz ¢ £v(t), coming fromI,LT'F¢: Aandl', A+ u:
B, wherel := fv(t) N fv(u), IT:= £v(t) \ £v(u) andA := fv(u)\fv() We
can verify thatT'(s) —.,y C[T'(s")], whereC[_] contains all the weakenings

wires for? A*-+.

ﬁ@ ﬁ@
A+ e ‘ “ - opel 7axd

e Fors = (t u)[z/v] —app, (tlx/v] ulz/v]) =5, withx € fv(t) & € fv(u),
coming fromlyy,, Ty, Ty, T,z : DEt: B — Aandl e, Ty, Tww, D, @
Dt w:Bandliyy, iy, Tyw, Ty B v 2 D, wherel'y,,, := £v(t)Nfv(u)Nfv(u)
T, = fv(t) Nfv(u) \ o \ £v(v), Ty = £v(t) N £v(v) \ £v(u), Ty =
fv(u)NEv(v) \ £v(t), Ty = £v(t) \ fv(u) \ £v(v), Ty := £v(u) \ £v(t) \ £v(v)
andl', := fv(v) \ fv(t) \ £v(u). The proof-nefl’(s) is given by

o
| T(u) I T(v)

| I I I I I I I I I I 1
B* FE PR NS W) e S D* Lok ik ot
Myl oarik i sk 1Dl 7B lwar })))) N L | | | |

| | | T T T
1B AL| epeboemid ok oomik oot 1D M, R it it
1B 9 AL

c

T o Ty

which reduces by- .-, to the proof-net

42

‘ T

ot ik ik

T

I
B*

VAR S 0 ¢ e d

I
B AL
1B g A*L

A"

2D ML, ML My MEt

T(V)

I i B I B
| | | |
T T

(V)

LT i Tt

T
B2 Wi Pl B

O
(o)
N\

T T T T
ID* A ML ik it

o

)

FpFL gpEL

tuv Ltu

i

which reduces by--, to the proof-net

‘ T

T(v)

wL opal pprl oprl
?Ftuu?rmr ?Ful‘ ?Fv

T T T
L ogprl gpsl opsl
tuv 7rtv 'Fuv 'Fu

l T(u) (V)
T T 1T T T
‘ B 2Dk kot Wk syt
oyt ot koo } } } } }
1D L, ik gt
wyt
© ©
© ©
S /)
B AT @)
1BrgArt A ° Cc\
-/
c) |
mig it ()
i
ot Tyt

v

which is equivalent via- g to the proof-nef’(s’)

43

T

sl gpsl
oyt ory

T(u)

Dt Mk Mk ik oyt
| | | | |

T T T T T
ID* L ML ik it

©

vl opwl opsl
T T M

I I I I I I
I B 2o RE N o v D* kit ok oyt
T S T B |
T T T T T
ID* Ty, TR ok o
ML ML, 1D 7BleAr |
©
N
c
=/
T
©
w] ©
- -/
1BpArL At <)
N
©

e Fors = (t u)[x/v] —upp, (tulz/v]) =

s, withz ¢ fv(t) & = € fv(u),

coming fromDyyy, Uiy, Ty, Te H £ 0 B — A andlyyy, T, Tww, T,z 2 D

w : B andTiyy, Tty Tuwy, Ty F v 0 D, Wherely,, := £v(¢) N fv(u) N fv(u),
T = fv(t) Nfv(u) \ o \ £v(v), Ty = £v(t) N £v(v) \ £v(u), Ty =
fv(u)NEv(v) \ £v(t), Ty = £v(t) \ fv(u) \ £v(v), Ty := £v(u) \ £v(t) \ £v(v)

andl', := fv(v) \ £fv(t) \ £v(u). The proof-nefl’(s) is given by

T

oyt wyt

kit

?B*LpA*

T(u) I

(V)

2p*L opsl opsl opsl opel
(FoRE S T W o vl

I
Br AL
1Br g ATt

A*

2D ok, ik it it

T T T T I
o R T N S
I | I | |

T T T T T
ID* M, R it it

9
(c

)

) ©

0

L
ik, ik

which reduces by-+-, to the proof-net

44

| T
L T(u) I V)

B* FO o N e VS S W DY MLkt mut
kot Mk Myh, Brbmar J } I I }
ID* A M ikt
it
© |
Dj
S
1B J L
1BogA*L A c
c) |
wi, it ()
Tk
it Tt

which is equivalent via- g to the proof-nef(s’)

[T(u) I T(v)

T(t) I I I I I I I I I T T
B 2D*L ark orpk o rrih ot PR S R T e
| | | | |
T T T T T
| [FRRN S A § W R g B
Myt ok Mk Myk 7Brbwar |
©
N
c
-/
©
it
©
c
S

B AT
1BUgATt A

ity i M

<T>
it

kivis

o Fors = (t u)[z/v] —app, (tlr/v] u) = s, withz € fv(t) & = ¢ fv(u),
coming fromDyyy, Ui, T, Ty : DEt: B — AandTyy,, Dy, Do, Ty B
uw: Bandlyyy, Ty, Do, Ty B v 0 D, wherel'y,, := £v(t) N £v(u) N £v(u),
T = fv(t) Nfv(u) \ z \ £v(v), Ty = £v(t) N £v(v) \ £v(u), Ty =
fv(u)NEv(v) \ £v(t), Ty = £v(t) \ fv(u) \ £v(v), Ty := £v(u) \ £v(t) \ £v(v)
andl’, := fv(v) \ £v(t) \ £v(u). The proof-nef(s) is given by

45

| ()
L T(u) I T(v)

kol ok ik, 1Dt BrlwAr t

(?

wy Wik M M

which is equivalent via- g to the proof-nef(s’)

S
L () I T(v)

B* FS A il el
el ek oyl Dt eBrhear t t

1
1B* AL b VR v S v
IB*pA*+

©
20)
©
®
Cc|>
)t I WS

o Fors = (A\y.t)[z/u] —ram Ay.tfz/u] = ¢, with z € £v(Ay.t), coming from
ILT,z: DF Myt: B — Candl'yA F u : D wherel' := fv(\y.t) N fv(u)
andIl := fv(Ay.t) \ « \ fv(u) andA := fv(u) \ £fv(Ay.t). We show here the
casey € fv(t), the casey ¢ fv(t) being similar. We have exactly the same
interpretatioriZ’(_) for both termss ands’ which is given by the proof-net:

T()
IR
=

S}
]

e Fors = (A\y.t)[z/u] —ram My.t[z/u] = s', wherex ¢ fv(A\y.t), coming from
ILT - Ayt : B — Candl,A + w : D wherel' := fv(\y.t) N fv(u)

46

andIl := fv(A\y.t) \ fv(u) andA := fv(u) \ £v(Ay.t). We show here the
casey € fv(t), the casey ¢ fv(t) being similar. We have exactly the same
interpretatiori’(_) for both termss; ands’ which is given by the following proof-

net.
v)
T(u)
| @P
F TR B 20l DL . oAn
\w f I
T LU

o Fors = t[z/ul[y/v] — Conp, tly/v][x/uly/v]] = ¢, withy € fv(t) & y €
fv(u). We show here the case € fv(t), the caser ¢ fv(¢) begin similar.
Thus,T' - s : A comes froml'yyy, Ty, T, ey @ Byy : D H ¢ 0 A and
o Trws Twos Tusyy : D F 4 2 B and iy, Tiws Tuos Ty F v : D, where
Tiup = £v(t) N fv(u) N fv(u), Ty = £v(t) N fv(u) \ y \ £v(v), Ty =
fv(t)NEv(v)\fv(u), Typ = fv(u)NEv(v)\fv(t), Tt := £v(¢) \ fv(u)\fv(v),
Ty :=fv(u) \ £v(t) \ £v(v) andl’, := £v(v) \ £v(t) \ fv(u).

This case is similar tapp,. The proof-nefl’(s) is given by

| T
| T(u) I T(v)

| | I I I I I I I I I I I
B 7D mpkomyl o omnk ot D* Mk R it ot
wrph ok ko rpk, Dt 7Bl A* t t t t t t }

T T T T
1B Dt AL, Mk oTnk it 1Dt gL, Mk ornk et

©® |
\CD @)
©
CCR
Tk '.71‘!1{,‘ i iy

which reduces by- .-, to the proof-net

a7

(.

1)

rsl opsl opsl ops
my i Mrs ML

1L

2D*L 2Bt A

(W

I I T I I I
B* 7D ik ik ook it
) A) i) N
|
[0z o R R Wil w S

D*
1

Tv)

fAr A YR R

D
1

Tv)

R0 I Frrild W s Rl e
| | | |

T T T T T
ID* M MR ML it

T T T T T
ID* L My ik it

>
4

T

WL

tuv Lta

whE

which reduces by--, to the proof-net

it

(.

t)

oyt s ko

sl opel gl A+

tuy

(W

T(V)

T(V)

D* LML iyt
| | | | |

I I I I I I

B Dtk oorphorptoorghort Dtk ik kot
! ! ! ! !
T T T T T
DT M, M b it

T

1B* it

T T T T T
ID* A My ik it

i ©

‘.71":,_‘l

)

WLy,

tuv - tw

i

which is equivalent via- g to the proof-nef’(s’)

48

Tyt

L " J
T() I I I I I I
B* 7Dt Tk erit oorik it D* ML MR kot T(v)
I | | | |
T T T T T
| | DAL i ekt

| Dt Mk Mk ik oyt
oyt oyt ook DLl At N } | | | |
ch ID* ML Mk kot
©
)
I
1B oyt
I
©
©
©
-/
)
©
opiL opil opel
N i i My
c
c
oyt
Tt b

o s = tlz/ul[y/v] —comp, tlr/uly/v]] = ', withy ¢ fv(t) &y € fv(u). We
show here the casec fv(t), the caser ¢ fv(t) begin similar. Thus'- s : A
comes fromlyyy, Dy, Do, Ty B ¢ 0 A @ndTyyy, T, T, Ty : D B ow
B andTyy, Ty, Tuw, Ty B v @ D, whereT'yy, = £v(t) N £v(u) N £v(u),
T, = fv(t) Nfv(u) \ y \ £v(v), Tty = £v(t) N £v(v) \ £v(u), Ty =
fv(u)NEv(v) \ £v(t), Ty == £v(t) \ fv(u) \ £v(v), Ty = fv(u) \ £v(t) \ fv(v

andl', := fv(v) \ fv(t) \ £v(u).

This case is similar tapp,. The proof-nefl’(s) is given by

| T®
| () I T(v)

I I I I I I I I I I I
B D L orE T it DML TR i
iyt wpk ik L, Bt At t t } } } } }
1B* ?D*h L, ML Tk it (V2R WS WS o G
@
©
C
S CC\
-/
Cc
; |
i i, W T

which reduces by-+-, to the proof-net

49

| | I I I I I I
B* DL koot wryb ot
Myt My Mk ML Brhoaf
T
1 0L
1B* P
©
(<) C\
© Y
c
® |
e ML, ML MLk oyt

which is equivalent via- g to the proof-nef’(s”)

L T(u) | ™

‘ T(t) ’ T T I I I I I I I I I

B* ?D*h ML Tk erid it D* ML ek it et
I | | | I
T T T T
| ID* Tk, ML o it
Wk owpt MW ML 7Bt Ar N |
c
©
©
)
I
1B* Ty
e — |
©
(T)
c) |
Tk Mrh, i ok it

We now consider the cases where- . s’ is an internal reduction step.

If s =g, 8" Or's —ppp, Lanw 5" then the property trivially holds sincer is a
congruence.

If s —Bs\ {app, .Lamp} S IS Azt — Azt’ ortu — t' wortlz/ul — ¢'[z/ul
coming from¢ — ', then we obtairll’(¢) —»Jlg/E C[T(¢")] by i.h. and the
property holds by the fact that the contéXt] of weakening wires surrounding
T(t') can also be considered as a context of weakening wires sudirogil"(s’).

If 5 —Bs\ {app,.Lamb} S’ ISut — wt’ Orufz/t] — ulz/t'] coming fromt — ',
then we obtain?’(t) —>J1;/E C[T(¢")] by i.h. and the property holds by the
fact that the context’| | of weakening wires surroundirifj(¢') can be pushed
outside the box containirifj(¢') by using the rule—y in order to obtain a context
of weakening wires surroundirif(s’).

50

Remark that the only case where we get a non empty contexnimmae8.2 is when
simulating the rulec. This is becauséc is the only rule which looses free variables,
all the other ones preserve the same set of free variables.

Corollary 8.3 (SN for \es-typed terms) If T o5 : A, thent € SN jes.

Proof. We can apply the abstract theorem A&IsEg, R is the relation—pp. Lamb
(for which we can trivially show that- . Lamb / =¢ is well-founded),R, is the
relation— ¢\ {app, Lamn}» K IS the relation given by the translatiai(-) in Figure 155
is the reduction relatio®/ E on proof-nets which is well-founded on typed proof-nets
by Theorem 8.1 and propertiésS), (WS), (SShold by Lemma 8.2.

8.3 Discussion

In this section we want to discuss some other alternativiegypeduction rules appear-
ing in the litterature for calculi with ES.

As mentioned in Section 2 one is tempted to replace r{dg$, , App,, App; } by
the single rule

(App) (tu)[z/v] — (t[x/v] u[z/v])

where no condition is used to distribute the explicit subsiin [x/u] w.r.t the ap-
plication (¢).

In the typing system presented in Section 6.1 this rule wbeldound, i.e. subject
reduction holds. HowevefApp) could not be translated anymore to proof-nets. In-
deed, suppose is free inu but not int. Then the proof-net obtained by translating
theles-term(¢ u)[x/v] contains a cut between the wire representimghich is coming
out from the box containin@'(u) and the singlé-wire coming out from the box con-
tainingT (v). Itis evident that does not reduce to the proof-nét= T'(t[z/v] u[z/v])
since the box containing(v) in s cannot be duplicated at all to obtaih

However, this problem could be solved by using a more stahadditive typing
system for explicit substituions [Blo97] where the axiome weakenedthere is a
single rule for abstraction and rules for application anokssituion areadditive :

) '+t:A— B TFu:A
(axion) (app)
Mx:Abz: A ' (tu):B
I'z:AFt: B I'u:B I'z:BFt: A
(abs) (subs)
'Xxt:A— B PhHtz/u]: A

Now, the Lamb-rewrite rule in Figure 3 cannot be translated anymorerjd-
reduction in proof-nets as subject reduction becomes rzai:lan order to construct a
typing derivation of\y.t[z/u] from that of (\y.t)[z/u] one needs a weakening meta-
theorem saying thdt - « : B impliesT',y : A+« : B. Itis evident that this kind of
manipulation on proof-nets is not possible duriRgE-reduction.

A third possible typing system coming up which makes poedi translation of
the App andLamb-rewrite rules into proof-nets is the one appearing in [DCK9the
subs-typing rule is replaced by

51

I'tu:B I'z:B,AFt: A
VAR tx/u] - A

Unfortunately, it is straightforward to verify that rewrig rulesComp, andComp,
(not considered in [DCK97]) do not enjoy anymore subjectstitn.

Summing up, while the standard additive typing system forgi®s a technical
solution to prove the subject reduction property fes and its more compact variants
mentioned in Section 2, it does not provide a correct tooldndlated\es into proof-
nets.

9 PSN implies SN

We give here a second proof of strong-normalisatiomkes-typed terms. The proof-
technique we use here to derive strong normalisation frof\®&s suggested by Hugo
Herbelin some years ago.

Theorem 9.1 (Strong Normalisation) Every typable\es-term M is in S Njes.

Proof. Let us define the following translatia() from Aes-terms to\-terms:

C(z) =

C(MN) := C(M)C(N)
C(Az.M) = Az.C(M)
C(M[z/N]) := (Mz.C(M))C(N)

Thus for exampleG((z[z/y] 2)[w/ (w1 w2)]) = Qw.((Az.x) y) 2) (w1 w2).

We remark that for evergies-term one hag (M) —%.. M. We also remark that
when M is typable in)es, then alsoC(M) is typable in)\es (just change the use
of subs; andsubs, by abs; andabs; followed by app). By Lemma 7.3 the term
L(C(M)) = C(M) is also typable in simply typed-calculus and thus it is ith Ng
by Strong Normalisation of typed-calculus [Bar92]. As a consequence we have that
C(M) isin SNy.s by Theorem 4.16 and thu¥ is necessarily irf N5 too. .

We remark that this proof technique, which is very simplehia tase of thes-
calculus, needs some additional work to be applied to othleut [Pol04, Arb06].

10 Conclusion

In this paper we survey some properties concerning exglidstitutions calculi and
we describe work done in the domain during these last 15 years

As we pointed out in [DCK97], "the interpretation of exptisubstitution via Lin-
ear Logic’s proof-nets suggests that there really exisgped calculus of explicit sub-
stitution with full composition, being able to simulate ange-step3-reduction and

52

yet strongly normalizing (thus avoiding Mellies’ counteample): indeed, the com-
position of substitution is already present in the prodkrreduction system, as the
box-box reduction, yet strong normalization is not lost.”

We propose here simple syntax and simple equations andtautasdelise a for-
malism enjoying all these good properties, specially camitie on metaterms, preser-
vation of 3-strong normalisation, strong normalisation of typed t®and implemen-
tation of full composition.

We believe however that some of our proofs can be simplifiaghalrticular, PSN
and confluence on metaterms might be proved directly witlisirtg translations of
Aes to other formalisms. We leave this for futur work.

Another interesting issue is the extension of Pure TypedBys{PTS) with explicit
substitution systems in order to improve the understandimgoof systems based on
them. Some work already done in this direction uses seqadeulc[LDMO6], some
other [KLO4, Muii97] use an intermediate formalism betweatural deduction and
sequent calculi, which is obtained by adding a system withoEScalculus. The main
contribution ofAes w.r.t these formalisms previously mentioned would be ouwmsb
notion of composition which is necessary to obtain a systeseyving types [KL04].

It is also legitimate to ask whethees is minimal w.r.t. the number of rewriting
rules as one is tempted to gather the ryl&sp, , App,, App; } (resp.{Comp,, Comp, })
into one single rule for application (resp composition).eTesulting calculus would
be given by

Equations:

ta/ully/v] =c tly/vlz/u] ify & fv(u) & ¢ fv(v)
Reduction Rules:

(Az.t) u —p t[z/u]

x|z /ul —Var U

t[z/u] —ee t if v ¢ fv(t)

(t u)[z/v] —app (t[z/v] ulz/v])

(Ay.t)[z/v] Slam AY.t[x/V] ifydgtfviv)&az#y
tle/ully/v] —comp_tly/v[x/uly/v]] ifye fv(u)

Note that\es-reduction can be translated to the correspondent notioedafction
in this calculus : thus for examplepp, can be obtained bypp followed byGc. Be-
sides that, strong normalisation of this calculus, whichoegjecture to hold, cannot
be obtained via a standard translation to Girard’s prod$-fef. discussion in Sec-
tion 8.3).

Another interesting question is whether we can extract fiem a pure rewriting
system (without equations) verifying the same propertiesfes. We believe that
simultaneous substitutions will be needed for that, evénaifslation to proof-nets will
be much more intricated. Also, a total orderon variables would be necessary in
order to obtain canonical representatives for simultassabstitutions. The first ideas
of such a solution could be found in tle-calculus defined in Section 3.2.1. A more
elementary representation of a calculus with simultansabstitutions and controlled
composition could be given by

53

Terms
tu=ua| ()| At | t[s] | t(s)

Substitutions
su=id|x/us|sos
Reduction Rules
(Ax.t) u - tlz/u)
(tu)ls] = (ts] uls])
(Az.t)[s] — Ax.t[s]
t[(z/u).s] - t[s] If © ¢ £v(t)
t[s][p] — t[sop]
(sop)ogq — so(poq)
idos — s
x[id] -
(fus)op — wfult)(sop)
u(id) - id
u(y/v.s) = uly/v](s) If y € £v(u)
u(y/v.s) - u(s) If y & fv(u)
y/v.x/u.s - z/u.y/v.s Ifz <y

Then, one can verify for example that the critical pair
tly/v.id][z/uly/v.id).id] *— ((Az.t) u)[y/v.id] =" t{z/u.id][y/v.id]

can be closed bz /uly/v.id].y/v.id] wheny € fv(u), or byt[x/u.y/v.id] when
y ¢ fv(u), if x < y holds in the dense order on variables which is necessaryt&inob
a canonical order between simultaneous substitutions.

Acknowledgements

This work has received substantial benefit from fruitfukdissions with my colleagues
E. Bonelli, R. David, R. Di Cosmo, J-P. Jouannaud, S. Lerdyr&nMufioz and V. van
Oostrom.

A Appendix: An abstract theorem

Theorem A.1 Let O andP be two sets. LeR 1, R, be two relations or® x O, S be
a relation onP x P, K a relationC O x P and& an equivalence relation o® such
thatR, /& is well-founded. Suppose also

(ES) t £t andt K T impliest’ K T
(WS) t Ryt andt K T implies there isl” such that’ K 7" andT S* T’
(SS) t Ry ¢/ andt K T implies there isT” such that’ K T’ andT S+ T’

54

Then, ift X T and S is a well-founded relation off', then(R, U R2)/€ is well-
founded ort.

Proof. SupposéR,UR>)/£ is not well-founded on. SinceR, /€ is well-founded
by hypothesis, there is an infinite sequence&bwhereR, /€ occurs infinitely many
times so it is of the form

t...(Ra/E)t1...(Ra/E) ta...(Ra/E) ty ...
that is,
t(R1/E) ER2ELLI(R1/E)* ER2Eta...(R1/E)ER2E ;...

Butt; K T; andt; (R1/€)* € Rs € t41 imply, by (ES), (WS) and(SS), that there
isTjy1 S.t.tj41 K141 andT; ST Tj14. Thus, there ar@}, Ts,...,T;, ... € P such
thatty K T1,t2 K Ty, ..., t; K T;, . .. and the following infiniteS-reduction sequence
exists

TSTTSTT,ST ..8TT; ...

This leads to a contradiction with the fact tifats well-founded oril". .

References

[ABROO] A. Arbiser, E. Bonelli, and A. Rios. Perpetuality & lambda calculus
with explicit substitutions and composition. Workshop angino de In-
formatica Teorica (WAIT), JAIIO, 2000.

[ACCL91] M. Abadi, L. Cardelli, P. L. Curien, and J.-J. LéWgxplicit substitutions.
Journal of Functional Programmingt(1):375-416, 1991.

[AJ92] S. Abramsky and R. Jagadeesan. New foundations éogéometry of
interaction. InLogic in Computer Science (LIC$ages 211-222,1992.

[Arb06] A. Arbiser. Explicit Substitution Systems and SubsysteRtsD thesis,
Universidad Buenos Aires, Argentina, 2006.

[Bar84] H. BarendregfThe Lambda Calculus: Its Syntax and Semantiokime
103 of Studies in Logic and the Foundations of Mathematidsorth-
Holland, 1984. Revised Edition.

[Bar92] H. Barendregt. Lambda calculus with types. In S.aghsky, D. Gab-
bay, and T. Maibaum, editorslandbook of Logic in Computer Science
volume 2, pages 117-309. Oxford University Press, 1992.

[BBLRD96] Z.-E.-A. Benaissa, D. Briaud, P. Lescanne, anBduyer-Degli. \v, a
calculus of explicit substitutions which preserves stroogmalisation.
Journal of Functional Programming(5):699-722, 1996.

55

[BI097]

[BN9S]

[BRO5]

[Coq]
[DCG99]

[DCK97]

[DCKPOO]

[DCKPO3]

[DGO1]

[DHK95]

[DHKOO]

[ELA]
[FdK]

R. Bloo. Preservation of Termination for Explicit SubstitutiorPhD
thesis, Eindhoven University of Technology, 1997.

F. Baader and T. Nipkow.Term Rewriting and All That Cambridge
University Press, 1998.

R. Bloo and K. Rose. Preservation of strong normébzrain named
lambda calculi with explicit substitution and garbage eation. InCom-
puter Science in the Netherlands (CSpgges 62—72, 1995.

The Coq Proof Assistanhtt p: // cog.inria.fr/.

R. Di Cosmo and S. Guerrini. Strong normalizatiopafof nets modulo
structural congruences. In P. Narendran and M. Rusinowéditors,
10th International Conference on Rewriting Techniques/applications
(RTA) volume 1631 of ecture Notes in Computer Scienpages 75—-89.
Springer-Verlag, July 1999.

R. Di Cosmo and D. Kesner. Strong normalization opleit substitu-
tions via cut elimination in proof nets. [t2th Annual IEEE Symposium
on Logic in Computer Science (LIGPrges 35-46. IEEE Computer So-
ciety Press, July 1997.

R. Di Cosmo, D. Kesner, and E. Polonovski. Proofsremd explicit
substitutions. In J. Tiuryn, editoFoundations of Software Science and
Computation Structures (FOSSAC®)lume 1784 of_ecture Notes in
Computer Scienc@ages 63—-81. Springer-Verlag, March 2000.

R. Di Cosmo, D. Kesner, and E. Polonovski. Proofsretd explicit
substitutionsMathematical Structures in Computer Scient®(3):409—
450, 2003.

R. David and B. Guillaume. A-calculus with explicit weakening and
explicit substitution. Mathematical Structures in Computer Science
11:169-206, 2001.

G. Dowek, T. Hardin, and C. Kirchner. Higher-ordarification via ex-
plicit substitutions. InProceedings of the Symposium on Logic in Com-
puter Science (LIC$)1995.

G. Dowek, T. Hardin, and C. Kirchner. Higher-ordanification via ex-
plicit substitutions.Information and Computatiqri57:183-235, 2000.

The ELAN system.http://elan.loria.fr/.

M. A.-R. Flavio de Moura and F. Kamareddine. Higher@ardnification:
A structural relation between Huet's method and the onedaseex-
plicit substitution. Available froniht t p: / / www. nacs. hw. ac. uk/
~f ai rouz/ papers/ .

56

[FKP96]

[For02]

[GAL92]

[Gir87]

[Gir89]

[GL9S]

[GL99]

[Har87]

[Her94]

[HL89]

[HMP96]

M. C. Ferreira, D. Kesner, and L. Puel:calculi with explicit substitu-
tions and composition which presergestrong normalization (extended
abstract). In M. Hanus and M. Rodriguez-Artalejo, editéth Interna-
tional Conference on Proceedings of International Sympuaghlgebraic
and Logic Programming (ALR)}olume 1139 ol ecture Notes in Com-
puter Sciencgpages 284-298. Springer-Verlag, September 1996.

J. Forest. A weak calculus with explicit operatass pattern matching
and substitution. In S. Tison, editdk3th International Conference on
Rewriting Techniques and Applications (RT#dlume 2378 ofLecture
Notes in Computer Sciengeages 174-191. Springer-Verlag, July 2002.

G. Gonthier, M. Abadi, and J.-J. Lévy. The geomaifyoptimal lambda
reduction. InProceedings of POPLpages 15-26, Albuquerque, New
Mexico, 1992. Association for Computing Machinery.

J.-Y. Girard. Linear logic.Theoretical Computer Sciencg0(1):1-101,
1987.

J.-Y. Girard. Geometry of interaction I: interpagibn of system F. In
R. Ferro, C. Bonotto, S. Valentini, and A. Zanardo, editbxggic collo-
quium 1988pages 221-260. North Holland, 1989.

J. Goubault-Larrecq. A proof of weak termination gpeéd lambda
sigma-calculi. In T. Altenkirch, W. Naraschewski, and B.uRgedi-
tors, Proceedings of the International Workshop Types for Preofd
Programs volume 1512 ofLecture Notes in Computer Sciengmges
134-151. Springer-Verlag, December 1998.

J. Goubault-Larrecq. Conjunctive types and SKInh. Tl Altenkirch,
W. Naraschewski, and B. Reus, editdPspceedings of the International
Workshop Types for Proofs and Programslume 1657 of ecture Notes
in Computer Scienc@ages 106—120. Springer-Verlag, March 1999.

T. Hardin. Résultats de confluence pour lexgtes fortes de la logique
combinatoire cagorique et liens avec les lambda-calcul¥hese de
doctorat, Université de Paris VII, 1987.

H. Herbelin. A\-calculus structure isomorphic to sequent calculus struc-
ture. In L. Pacholski and J. Tiuryn, editoRroceedings of the 8th Annual
Conference of the European Association for Computer Seidmgic
(CSL) volume 933 ofLecture Notes in Computer Sciencgpringer-
Verlag, September 1994.

T. Hardin and J.-J. Lévy. A confluent calculus of stiegions. InFrance-
Japan Atrtificial Intelligence and Computer Science Sympnsl 989.

T. Hardin, L. Maranget, and B. Pagano. Functionaikkands within
the lambda-sigma calculus. In R. K. Dybvig, editBrpceedings of the

57

ACM International Conference on Functional Programmipgges 25—
33. ACM Press, May 1996.

[HOL] The HOL system. http://ww. dcs. gl a. ac. uk/~tfnffnt/
hol . html .

[HPJP92] P. Hudak, S. Peyton-Jones, and Philip Wadlerqe)it Report on the
programming language Haskell, a non-strict, purely fuored language
(version 1.2). Sigplan Notices, 1992.

[Hue76] G. Huet.Résolution déquations dans les langages d’ordre2, . . . , w.
Thése de doctorat d’état, Université Paris VII, 1976.

[Hue80] G. Huet. Confluent reductions: abstract propedies applications to
term rewriting systemsJournal of the ACM27(4):797-821, 1980.

[JK86] J.-P. Jouannaud and H. Kirchner. Completion of a etles modulo a
set of equationsSIAM Journal on Computind5(4):1155-1194, 1986.

[Kes96] D. Kesner. Confluence properties of extensionalraomdextensional-
calculi with explicit substitutions. In H. Ganzinger, adtit 7th Inter-
national Conference on Rewriting Techniques and Appliceti(RTA)
volume 1103 ofLecture Notes in Computer Sciengeages 184-199.
Springer-Verlag, July 1996.

[Kes00] D. Kesner. Confluence of extensional and non-eidaat lambda-
calculi with explicit substitutionsTheoretical Computer Scienc238(1-
2):183-220, 2000.

[KLO4] R. Kervarc and P. Lescanne. Pure type systems, cuteapticit sub-
stitutions. In D. Kesner, F. van Raamsdonk, and J. Wellgpegji2nd
International Workshop on Higher-Order Rewriting (HOR)QZechni-
cal Report AIB-2004-03, RWTH Aachen, pages 72—77, June 2004

[KLO5] D. Kesner and S. Lengrand. Extending the explicitstitation paradigm.
In J. Giesl, editor,16th International Conference on Rewriting Tech-
niques and Applications (RTAyolume 3467 olecture Notes in Com-
puter Sciencgpages 407-422. Springer-Verlag, April 2005.

[Klo80] J.-W. Klop. Combinatory Reduction SystenihD thesis, Mathematical
Centre Tracts 127, CWI, Amsterdam, 1980.

[KOvOO01] Z. Khasidashvili, M. Ogawa, and V. van Oostrom. fdnim Normaliza-
tion Beyond Orthogonality. In A. Middeldorp, editdr2th International
Conference on Rewriting Techniques and Applications (R¥&ume
2051 ofLecture Notes in Computer Sciengmges 122—-136. Springer-
Verlag, May 2001.

58

[KR95]

[Laf9s]

[Lam90]

[LDMO6]

[LEG]

[Len05]

[Len06]

[Les94]

[Ling6]

[Lin92]

[LLD +04]

F. Kamareddine and A. Rios. A-calculus a la de Bruijn with explicit
substitutions. In D. Swierstra and M. Hermenegildo, editBroceed-

ings of the 7th International Symposium on Proceedingseinkterna-

tional Symposium on Programming Language Implementatiariagic

Programming volume 982 ol_ecture Notes in Computer Scienpages
45-62. Springer-Verlag, September 1995.

Y. Lafont. From proof-nets to interaction nets. Audvances in Lin-
ear Logig volume 222 ofLondon Mathematical Society, Lecture Notes
pages 225-247. Cambridge University Press, 1995.

J. Lamping. An algorithm for optimal lambda calcsilteduction. In
Procedings of POPLpages 16—30, San Francisco, California, 1990. As-
sociation for Computing Machinery.

S. Lengrand, R. Dyckhoff, and J. McKinna. A sequeatoulus for type
theory. In Z. Esik, editorProceedings of the 15th Annual Conference
of the European Association for Computer Science Logic JG&lume
4207 ofLecture Notes in Computer Scien&pringer-Verlag, September
2006.

The LEGO Proof Assistantht t p: / / ww. dcs. ed. ac. uk/ home/
| ego/ .

S. Lengrand. Induction principles as the foundatif the the-
ory of normalisation: Concepts and techniques. Technieal r
port, PPS laboratory, Université Paris 7, March 2005. |akt at
http://hal.ccsd.cnrs. fr/ccsd-00004358.

S. LengrandNormalisation and Equivalence in Proof Theory and Type
Theory PhD thesis, University Paris 7 and University of St Andrews
November 2006.

P. Lescanne. Froiy to \,,, ajourney through calculi of explicit substitu-
tions. InProceedings of the 21st Annual ACM Symposium on Principles
of Programming Languages (PORlpages 60—69. ACM, 1994.

R. Lins. A new formula for the execution of categ@icombinators.
In 8th International Conference on Automated Deductieslume 230
of Lecture Notes in Computer Scienqeges 89-98. Springer-Verlag,
August 1986.

R. Lins. Partial categorical multi-combinatorsca@hurch Rosser theo-
rems. Technical Report 7/92, Computing Laboratory, Ursitgof Kent
at Canterbury, May 1992.

S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Giglii, and
S. van Bakel. Intersection types for explicit substituioinformation
and Computation189(1):17-42, 2004.

59

[LM99]

[LRDY5]

[Mau]
[Mel95]

[MTH90]

[Mui97]

[Ned73]

[Nip91]

[Oca]

[Ohl9g]

[Pol04]

[PVS]
[R0s92]

J.-J. Lévy and L. Maranget. Explicit substitutioasd programming lan-
guages. In R. R. C. Pandu Rangan, Venkatesh Raman, dditorda-
tions of Software Technology and Theoretical Computenféei@olume
1738 ofLecture Notes in Computer Sciengages 181-200. Springer-
Verlag, December 1999.

P. Lescanne and J. Rouyer-Degli. Explicit subsiitus with de Bruijn
levels. In J. Hsiang, edito6th International Conference on Rewrit-
ing Techniques and Applications (RTAplume 914 ofLecture Notes
in Computer Scienc@ages 294—-308. Springer-Verlag, April 1995.

The MAUDE Systemht t p: / / maude. cs. ui uc. edu/ .

P.-A. Mellies. Typed\-calculi with explicit substitutions may not ter-
minate. In M. Dezani-Ciancaglini and G. Plotkin, editoPspceedings
of the 2nd International Conference of Typed Lambda Cakahd Ap-
plications (TLCA) volume 902 ofLecture Notes in Computer Science
pages 328-334. Springer-Verlag, April 1995.

R. Milner, M. Tofte, and R. HarpeiThe definition of Standard MLMIT
Press, 1990.

C. Mufioz.Un calcul de substitutions pour la repsentation de preuves
partielles en tieorie de typesPhD thesis, Université Paris 7, November
1997.

R. Nederpelt.Strong Normalization in a Typed Lambda Calculus with
Lambda Structured TypePhD thesis, Eindhoven University of Technol-
ogy, 1973.

T. Nipkow. Higher-order critical pairs. 16th Annual IEEE Symposium
on Logic in Computer Science (LIG$®ages 342—-349. IEEE Computer
Society Press, July 1991.

The Objective Caml languagett p: //cam .inria.fr/.

E. Ohlebusch. Church-rosser theorems for abstediiction modulo
an equivalence relation. In T. Nipkow, edit@th International Confer-
ence on Rewriting Techniques and Applications (RVAlume 1379 of
Lecture Notes in Computer Scienpages 17-31. Springer-Verlag, April
1998.

E. PolonovskiSubstitutions explicites, logique et normalisatidrhése
de doctorat, Université Paris 7, 2004.

The PVS systemht t p: // pvs. csl . sri.coni.

K. Rose. Explicit cyclic substitutions. In M. Rusimitch and J.-L. Rémy,

editors,Proceedings of the 3rd International Workshop on Condaion
Term Rewriting Systems (CTR8)lume 656 ofLecture Notes in Com-
puter Sciencgpages 36-50. Springer-Verlag, July 1992.

60

[Sak]

[SFMO3]

[Ter03]

[Tur85]

T. Sakurai. Strong normalizability of calculus of &gjp substitutions
with composition. Available omtt p: // ww. mat h. s. chi ba- u.
ac.j p/ ~sakurai/ papers. htm .

F.-R. Sinot, M. Fernandez, and I. Mackie. Efficisductions with direc-
tor strings. In R. Nieuwenhuis, editdr4th International Conference on
Rewriting Techniques and Applications (RT#dlume 2706 of_ecture
Notes in Computer Sciengeages 46—60. Springer-Verlag, June 2003.

TereseTerm Rewriting Systengolume 55 ofCambridge Tracts in The-
oretical Computer Scienc&€ambridge University Press, 2003.

D. Turner. Miranda: A non-strict functional langgewith polymorphic
types. Infplc85 pages 1-16, 1985.

61

