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Delia Kesner

October 9, 2006

Abstract

Calculi with explicit substitutions are widely used in different areas of com-
puter science such as functional and logic programming, proof-theory, theorem
proving, concurrency, object-oriented languages, etc. Complex systems with ex-
plicit substitutions were developed these last 15 years in order to capture the good
computational behaviour of the original system (with meta-level substitutions) they
were implementing.

In this paper we first survey previous work in the domain by pointing out the
motivations and challenges that guided the developement ofsuch calculi. Then we
use very simple technology to establish a general theory of explicit substitutions
for the lambda-calculus which enjoys all the expected properties such as simulation
of one-step beta-reduction, confluence on meta-terms, preservation of beta-strong
normalisation, strong normalisation of typed terms and full composition. Also, the
calculus we introduce turns out to admit a natural translation into Linear Logic’s
proof-nets.
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1 Introduction

This paper is about explicit substitutions (ES), an intermediate formalism that - by
decomposing theβ rule into more atomic steps - allows a better understanding of the
execution models ofλ-calculus.

We first survey previous work in the domain, by pointing out the motivations that
were guided the developement of such calculi as well as the main challenge behind
their formulations. The goal of our work is to move back to previous works and results
in the domain in order to establish a general and simple theory of explicit substitutions
being able to capture all of them by using very simple technology.

Explicit substitutions

In λ-calculus, the evaluation process is modelled byβ-reductionand the replacement of
formal parameters by its corresponding arguments is modelled bysubstitution. While
substitution inλ-calculus is ameta-leveloperation described outside the calculus it-
self, in calculi with ES it is internalised and handled by symbols and reduction rules
belonging to the proper syntax of the calculus. However the two formalisms are still
very close: lets{x/u} denote the result of substituting all thefreeoccurrences ofx in
s by u, then one definesβ-reduction as

(λx.s) v →β s{x/v}

where the operations{x/v} can be defined moduloα-conversion1 by induction on
s as follows:

x{x/v} := v
y{x/v} := y if x 6= y
(t u){x/v} := (t{x/v} u{x/v})
(λy.t){x/v} := λy.(t{x/v}) if x 6= y andy 6∈ fv(v)

Then, the simplest way to specify aλ-calculus with explicit substitution is to ex-
plicitly encode the previous definition, so that one still works moduloα-conversion,
yielding the calculus known asλx which is shown in Figure 1.

(λx.t) v → t[x/v]
x[x/v] → v
x[y/v] → x if x 6= y
(t u)[x/v] → (t[x/v] u[x/v])
(λx.t)[y/v] → λx.(t[y/v]) if x 6= y andx 6∈ fv(v)

Figure 1: Reduction rules for theλx-calculus

1Definition of substitution moduloα-conversion avoids to explicitly deal with the variable capture case
as one obtains it for free. Thus, for example(λx.y){y/x} =α (λz.y){y/x} =def λz.y{y/x} = λz.x.
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This reduction system corresponds to the minimal behaviourthat can be found in
most of the well-known calculi with ES appearing in the literature: substitutions are
incorporated into the language and manipulated explicitly, β-reduction is implemented
in two stages, first by the application of the first rule, whichactivates the calculus of
substitutions, then by propagation of the substitution until variables are reached. More
sophisticated treatment of substitutions considers also acomposition operator allowing
interactions between them.

Related Work

In these last years there has been a growing interest inλ-calculi with explicit substitu-
tions. They were defined in de Bruijn notation [ACCL91, HL89,Les94, KR95, Kes96,
FKP96], or level notation [LRD95], or via combinators [GL99], or simply by named
variables notation as shown above [Lin86, Lin92, Ros92, BR95].

An abstract presentation of such calculi can be found in [Kes96, Kes00], where a
(syntactic) axiomatisation is used to define and study them.

In any case, all these calculi were all introduced as a bridgebetween the clas-
sical λ-calculus and concrete implementations of functional programming languages
such as CAML [Oca], SML [MTH90], Miranda [Tur85], Haskell [HPJP92] or proof-
assistants such as Coq [Coq], PVS [PVS], HOL [HOL], LEGO [LEG], Maude [Mau]
and ELAN [ELA].

Now, the implementation of the atomic substitution operation by several elementary
explicit steps comes at a price. Indeed, whileλ-calculus is perfectlyorthogonal2,
calculi with ES suffer at least from the well-known diverging example

t[y/v][x/u[y/v]] ∗← ((λx.t) u)[y/v]→∗ t[x/u][y/v]

Different solutions were adopted by the calculi in the literature in order to close this
diagram. If no new rewriting rules are added to those in Figure 1, then reduction turns
out to be confluent on terms but not onmetaterms3. If naive rules for composition are
also considered, then one recovers confluence on metaterms but paying an important
price: there exist terms which are strongly normalisable inλ-calculus but not in the
corresponding explicit version of theλ-calculus. This phenomenon, known as Melliès’
counter-example [Mel95], shows a flaw in the design of calculi with ES in that they are
supposed to implement their underlying calculus (in our case theλ-calculus) without
losing its good properties. More precisely, let us callλZ aλ-calculus with ES and let us
consider a mappingtoλ from λ-syntax toλZ-syntax (sometimes this mapping is just
the identity). We identify the following list of properties:

(C) The refined reduction relationλZ is confluent on terms: Ifu ∗
λZ
← t →∗

λZ
v, then

there ist′ such thatu→∗
λZ

t′ ∗
λZ
← v.

(MC) The refined reduction relationλZ is confluent on metaterms.

2Does not have critical pairs.
3Terms with metavariables used to represent incomplete proofs
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(PSN) The reduction relationλZ preservesβ-strong normalisaion: Ift ∈ SN β , then
toλ(t) ∈ SN λZ

.

(SN) Strong normalisation holds forλZ-typed terms: Ift is typed, thent ∈ SN λZ
.

(SIM) Any evaluation step inλ-calculus can be implemented byλZ: If t →β t′, then
toλ(t)→∗

λZ
toλ(t′).

(FC) Full composition can be implemented byλZ: t[x/u] λZ-reduces tot{x/u} for an
appropriate (and natural) notion of substitution onλZ-terms.

The result of Melliès has revived the interest in ES since after his counterexample
there was a clearchallengeto find a calculus having all the good properties mentioned
above.

There are several propositions that give (sometimes partial) answers to this chal-
lenge, they are summarised in Figure 2.

Calculus C MC PSN SN SIM FC
λυλsλtλuλx Yes No Yes Yes Yes No
λσλσSP Yes No No No Yes Yes
λσ⇑λseλL Yes Yes No No Yes Yes
λζ , λweak Yes Yes Yes Yes No No
λws Yes Yes Yes Yes Yes No
λlxr Yes ? Yes Yes Yes Yes

Figure 2: Summarising previous work in the field

In other words, there are many ways to avoid Melliès’ counter-example in order
to recover the PSN property. One of them is to simply forbid the substitution oper-
ators to cross lambda-abstractions [LM99, For02]; anotherconsists of avoiding com-
position of substitutions [BBLRD96]; another one imposes asimple strategy on the
calculus with explicit substitutions to mimic exactly the calculus without explicit sub-
stitutions [GL98]. The first solution leads toweak lambda calculi, not able to ex-
pressstrong beta-equality, which is used for example in implementations of proof-
assistants [Coq, HOL]. The second solution is drastic as composition of substitutions
is needed in implementations of HO unification [DHK95] or functional abstract ma-
chines [HMP96]. The last one exploits very little of the notion of explicit substitutions
because they can be neither composed nor even delayed.

In order to cope with this problem David and Guillaume [DG01]defined a calculus
with labelscalledλws, which allowscontrolledcomposition of explicit substitutions
without losing PSN and SN [DCKP00]. But theλws-calculus has a complicated syntax
and its named version [DCKP00] is even less readable.

The strong normalisation proof forλws given in [DCKP00] reveals a natural seman-
tics for composition of explicit substitutions via Linear Logic’s proof-nets, suggesting
that weakening (explicit erasure) and contraction (explicit duplication) can be added
to the calculus without losing termination. These are the starting points of the ideas
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proposed by theλlxr-calculus [KL05], which is in some sense a (complex) precursor
of theλes-calculus that we present in this work. Indeed,λ-terms can not be viewed
directly asλlxr-terms, so that we prefer to adoptλx-syntax forλes, thus avoiding
special encodings in order to explicitly incorporate weakening and contractions inside
λ-terms. Moreover, the reduction system ofλlxr is defined via6 equations and19
rewriting rules, thus requiring an important amount of combinatory reasoning when
showing its properties.

Another calculi with safe notions of compositions appear for example in [SFM03,
Sak]. The first of them lacks full composition and confluence on metaterms. The sec-
ond of them specifies commutation of independent substitutions by a rewriting rule
(instead of an equation), thus leading to complicated notions and proofs of its under-
lying normalisation properties. Here, we choose to make a minimal (just one) use of
equational reasoning to axiomatise commutation of independent substitution. This will
turn out to be essential to achieve the definition of a simple language being easy to un-
derstand, which can be projected into another elementary system like proof-nets, and
whose properties can be proved with simple and natural prooftechniques.

Last but not least, confluence on metaterms of both calculi in[KL05] and [Sak] on
metaterms is only conjectured but not yet proved.

The logical meaning of explicit substitutions

Cut elimination is a logical evaluation process allowing torelate explicit substitution
to a more atomic process. Indeed, the cut elimination process can be interpreted as the
elimination of explicit substitutions. For example, let usconsider the following sequent
proof:

D

Γ ⊢ A Γ, A ⊢ A (axiom)
(cut)

Γ ⊢ A

If we want to eliminate the last cut rule used in this proof, itis sufficient to take the
proof

D

Γ ⊢ A

which proves exactly the same sequentΓ ⊢ A but without the last cut rule. That is,
in the cut elimination process, the first proof reduces to thesecond one. Now, let us
interpret proofs by terms and propositions by types as suggested by the Curry-Howard
correspondence. We then get

Γ ⊢ v : A Γ, x : A ⊢ x : A (proj)
(subs)

Γ ⊢ x[x/v] : A

which suggests that the process of cut elimination consistsin reducing the termx[x/v]
to the termv, exactly as in theVar rule of the calculusλx written as

(Var) x[x/v]→ v
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These remarks put in evidence the fact that explicit substitution is a term nota-
tion for the cut rule, and that reduction rules for explicit substitutions behave like cut
elimination rules. However,λ and λx basic (typed) syntax are taken from a natu-
ral deduction logical system, where application annotatesimplication elimination and
abstraction annotates implication introduction. That means thatλx (typed) syntax is
based on a logical system mixing natural deduction with sequent calculus such that
the meta-level operation in the normalisation process is replaced by a more elementary
concept of cut elimination.

It is worth noticing that one can either define an explicit substitution calculus inter-
preting cut-elimination, in such a way to have a perfect Curry-Howard correspondence
between them, as is done by Hugo Herbelin in [Her94]: there terms encode proofs,
types encode propositions and reduction encodes cut-elimination in intuitionistic se-
quent calculus. So that the ideas we present in this paper canalso be adapted to se-
quent calculus notation. We refer the reader to [Len06] for asystematic study of cut
elimination in intuitionistic sequent calculus via proof-terms.

Linear logic and proof-nets

Linear Logic decomposes the intuitionistic logical connectives, like the implication,
into more atomic, resource-aware connectives, like the linear implication and the ex-
plicit erasure and duplication operators given by the exponentials which provide a more
refined computational model that the one given by theλ-calculus. However, sequent
presentations of Linear Logic can contain a lot of details that are uninteresting (or bu-
reaucratic). The main idea of proof-nets is to solve this problem by providing a sort
of representative of an equivalence class of proofs in the sequent calculus style that
differ only by the order of application of some logical or structural rules. Cut elimina-
tion over proof-nets is then a kind of normalisation procedure over these equivalence
classes. Using different translations of theλ-calculus into Proof Nets, new abstract
machines have been proposed, exploiting the Geometry of Interaction [Gir89, AJ92],
culminating in the works on optimal reduction [GAL92, Lam90].

Some calculi with explicit substitutions [DCKP03, KL05] have been already put in
relation with natural extended notions of proof-nets. In particular, one defines a typed
version of the calculus and shows how to translate it into Proof Nets and how to estab-
lish, using this translation, a simulation of the reductionrules for explicit substitutions
via cut elimination in Proof Nets. As an immediate consequence of this simulation,
one proves that a simply typed version of the calculus is strongly normalizing. An im-
portant property of the simulation is that each step in the calculus with ES is simulated
by aconstantnumber of steps in proof-nets: this shows that the two systems are very
close, unlike what happens when simulating theλ-calculus. This gives also a powerful
tool to reason about the complexity ofβ-reduction.

We apply this idea to theλes-calculus that we introduce in this paper so that we
obtain strong normalisation for typedλes-terms via simulation of reduction in proof-
nets.
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Summary

We present a calculus with ES using the named variable presentation, which makes
some essential properties of explicit substitutions more apparent, by abstracting out the
details of renaming and updating of de Bruijn notation. The main ideas and results of
the paper can be summarised by the following points:

• Named variable notation and concise/simple syntax is used to define a calculus
with explicit substitutions calledλes. There is no use of explicit contraction or
weakening.

• The calculus enjoys simulation of one-stepβ-reduction, confluence on metaterms
(and thus on terms), preservation ofβ-strong normalisation, strong normalisation
of typed terms and implementation of full composition.

• We establish connections with untypedλ-calculus and typedλ-calculus.

• We give a natural translation into Linear Logic’s proof-nets.

• We give some ideas for future work and applications.

The rest of the paper is organised as follows. Section 2 introduces syntax forλes-
terms as well as appropriate notions of equivalence and reduction. We show there
some fundamental properties of the calculus such asfull compositionand termination
of the substitution calculus alone. In Section 3 we develop aproof of confluence for
metaterms. This proof uses an interpretation method based on the confluence property
of a simpler calculus that we define in the same section. Preservation of β-strong
normalisation is studied and proved in Section 4. The proof is based on the terminating
properties of other calculi that we introduce in the same section. Relations between
reduction inλes andλ-calculus are established in Section 5. The typing system for λes
is presented in Section 6 as well as the subject reduction property. Relations between
typing in λes andλ-calculus are established in Section 7. Section 8 introduces proof
nets and gives the translation from typedλes-terms into proof nets that is used to obtain
strong normalisation of typedλes. Finally, a simpler proof of strong normalisation
based on the main result of Section 4 is given in Section 9.

We refer the reader to [BN98] for standard notions from rewriting that we will use
throughout the paper.

2 Syntax

We introduce here the basic notions concerning syntax,α-conversion, reduction and
congruence.

The set ofλes-terms can be defined by the following grammar

t ::= x | (t t) | λx.t | t[x/t]

A termx is called avariable, (t u) anapplication, λx.t anabstractionandt[x/u]
a closure. The syntactic object[x/u], which is not a term itself, is called anexplicit
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substitution. We do not write the parenthesis of applications if they are clear from the
context.

The syntax can also be given as a HRS [Nip91], with typesV andT for variables
and (raw)terms respectively, and four function symbols to be used as constructors:

var: V → T sub: (V → T )→ (T → T )
lam: (V → T )→ T app: T → (T → T )

Thus, for example theλes-term (x y)[x/λz.z] is represented as the HRS-term
sub(x.app(var(x), var(y)), lam(z.var(z))). We prefer however to work with the syn-
tax given by the grammar above which is the one usually used for calculi with ES.

A term is said to bepure if it has no explicit substitutions.
The termsλx.t andt[x/u] bind x in t. Thus, the set offree variablesof a termt,

denotedfv(t), is defined in the usual way as follows:

fv(x) := {x}
fv(t u) := fv(t) ∪ fv(u)
fv(λx.t) := fv(t) \ x
fv(t[x/u]) := (fv(t) \ x) ∪ fv(u)

As a consequence, we obtain the standard notion ofα-conversion on higher-order
terms which allows us to use Barendregt’s convention [Bar84] to assume that two dif-
ferent bound variables have different names, and no variable is free and bound at the
same time.

Besidesα-conversion we consider the equations and reduction rulesin Figure 3.

Equations :
t[x/u][y/v] =C t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)

Reduction Rules:
(λx.t) u →B t[x/u]
x[x/u] →Var u
t[x/u] →Gc t if x /∈ fv(t)
(t u)[x/v] →App

1
(t[x/v] u[x/v]) if x ∈ fv(t) & x ∈ fv(u)

(t u)[x/v] →App
2

(t u[x/v]) if x /∈ fv(t) & x ∈ fv(u)
(t u)[x/v] →App

3
(t[x/v] u) if x ∈ fv(t) & x /∈ fv(u)

(λy.t)[x/v] →Lamb λy.t[x/v] if y /∈ fv(v)
t[x/u][y/v] →Comp

1
t[y/v][x/u[y/v]] if y ∈ fv(u) & y ∈ fv(t)

t[x/u][y/v] →Comp
2

t[x/u[y/v]] if y ∈ fv(u) & y /∈ fv(t)

Figure 3: Equations and reduction rules forλes

Therewriting systemcontaining all the previous rewriting rules exceptB is denoted
by s. We writeBs for B ∪ s. Theequivalence relationgenerated by the conversions
α andC is denoted byEs. The reduction relationgenerated by thereduction ruless
(resp. Bs) modulo the equivalence relationEs is denoted by→s /Es or→es (resp.
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→Bs /Es or→λes (for equationals substitution), thee is for for equational and thes
for substitution. More precisely

t→es t′ iff there ares, s′ s.t. t =Es s→s s′ =Es t′

t→λes t′ iff there ares, s′ s.t. t =Es s→Bs s′ =Es t′

The equivalence relation preserves free variables and the reduction relation does
not increase them. Indeed, one can easily show by induction on terms the following
property.

Lemma 2.1 (Free variables do not increase)If t→λes t′, thenfv(t′) ⊆ fv(t). More
precisely,

• If t =Es t′, thenfv(t) = fv(t′).

• If t→Bs t′, thenfv(t′) ⊆ fv(t).

The (sub)calculus of substitutionses, which is intended to implement (meta-level)
substitution can be shown to be terminating.

Lemma 2.2 (Termination ofes) The reduction relationes (and thus alsos) is termi-
nating.

Proof. For each terms we define a size and a multiplicity by structural induction.

S(x) := 1 Mx(z) := 1
S(λx.t) := S(t) Mx(λy.t) := Mx(t) + 1
S(t u) := S(t) + S(u) Mx(t u) := Mx(t) + Mx(u) + 1
S(t[x/u]) := S(t) + Mx(t) · S(u) Mx(t[y/u]) := Mx(t) If x /∈ fv(u)

Mx(t[y/u]) := Mx(t) + My(t) · (Mx(u) + 1) If x ∈ fv(u)

Remark thatMx(s) ≥ 1 andS(s) ≥ 1 for every terms and every variablex.

We can now show, by induction on the definition of=Es and→s, that size is com-
patible withα andC equality and eachs-reduction step strictly decreases the size:

1. If s =Es s′, thenS(s) = S(s′).

2. If s→s s′, thenS(s) > S(s′).

We then conclude thates-reduction is terminating on allλes-terms by application
of the abstract theorem A.1 :E is Es, R1 is the empty relation,R2 is→s, K is the
relation given by the functionS( ) andS is the standard well-founded order> on
natural numbers.

We now address the property of full composition. For that, weintroduce the fol-
lowing notion of substitution onλes-terms.

Givenλes-termst andu, the result ofsubstitutingall the freeoccurrences ofx in
t by u is defined by induction, and moduloα-conversion, as follows:
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x{x/v} := v
y{x/v} := y if x 6= y
(t u){x/v} := (t{x/v} u{x/v})
(λy.t){x/v} := λy.(t{x/v}) if x 6= y andy 6∈ fv(v)
t[y/u]{x/v} := t{x/v}[y/u{x/v}] if x 6= y andy 6∈ fv(v)

It is easy to show by induction onλes-terms thatt{x/u} = t if x /∈ fv(t).

Lemma 2.3 (Full Composition) Lett andu beλes-terms. Thent[x/u]→∗
λes t{x/u}.

Proof. By induction ont.

3 Confluence on metaterms

Metatermsare terms containingmetavariableswhich are usually used to denoteincom-
pleteprograms and/or proofs in higher-order unification [Hue76]. Each metavariable
should come with a minimal amount of information in order to guarantee that some
basic operations such as instantiation (replacement of metavariables by metaterms) is
sound. Thus, we now consider a countable set ofraw metavariablesX, Y, . . . that we
decorate them with sets of variablesΓ, ∆, . . ., thus yieldingdecoratedmetavariables
denoted byXΓ, Y∆, etc.

We now extend the primitive grammar forλes-terms to obtain theλes-metaterms:

t ::= x | X∆ | (t t) | λx.t | t[x/t]

From now on, we may usêy to denote, indistinctly, a variabley or a metavariable
Y∆.

We add to the definition of free variables in Section 2 the casefv(X∆) = ∆. Even
if this new definition is used to completely specify the free variables of a metaterm,
which may sound contradictory with the concept of metaterm,it is worth noticing
that the partial specification of the set of (free) variablesof an incomplete proof says
nothing about the structure of the incomplete proof itself as this structural information
remains still unknown. The minimal information inside metavariables given by deco-
ration of set of variables guarantees that different occurrences of the same metavariable
inside a metaterm are never instantiated by different metaterms. Indeed, given the (raw)
metatermt = λy.y X (λz.X), the instantiation of the (raw) metavariableX by a term
containing a free occurrence ofz would be unsound (see [Muñ97, DHK00, FdK] for
details).

We also extend the notion ofsubstitutionto metaterms as follows:

X∆{x/v} := X∆ if x /∈ ∆
X∆{x/v} := X∆[x/v] if x ∈ ∆

Observe thatt{x/u} = t if x /∈ fv(u). Also, α-conversion is perfectly well-
defined on metaterms by extending the renaming of bound variables to the decoration
sets. Thus for exampleλx.Yx =α λz.Yz.
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Towards confluence by composition of substitutions The idea behind calculi with
explicit substitutions having composition is to implementwhat is known inλ-calculus
as thesubstitution lemma: for all λ-termst, u, v and variablesx, y such thatx 6= y and
x /∈ fv(v) we have

t{x/u}{y/v} = t{y/v}{x/u{y/v}}

It is well-known that confluence on metaterms fails for calculi with ES without
composition as for example the following critical pair inλx shows

s = t[y/v][x/u[y/v]] ∗← ((λx.t) u)[y/v]→∗ t[x/u][y/v] = s′

Indeed, while this diagram can be closed inλx for termswithout metavariables[BR95],
there is no way to find a common reduct betweens ands′ whenevert is or contains
metavariables since no reduction rule is allowed inλx to mimic composition. Remark
that this is true not only for raw but also for decorated metavariables.

Let us now see how to close some of the interesting critical pairs in λes. For that,
let us consider the ones created from a mateterm((λx.t) u)[y/v].

If y ∈ fv(t) & y ∈ fv(u), then

t[y/v][x/u[y/v]] ∗← ((λx.t) u)[y/v] → t[x/u][y/v]
t[y/v][x/u[y/v]] ← t[x/u][y/v]

If y ∈ fv(t) & y /∈ fv(u), then

t[y/v][x/u] ∗← ((λx.t) u)[y/v] → t[x/u][y/v]
t[y/v][x/u] ≡ t[x/u][y/v]

If y /∈ fv(t) & y ∈ fv(u), then

t[x/u[y/v]] ∗← ((λx.t) u)[y/v] → t[x/u][y/v]
t[x/u[y/v]] ← t[x/u][y/v]

If y /∈ fv(t) & y /∈ fv(u), then remark that((λx.t) u)[y/v] cannot be reduced
further by an→Appi

rule so that the only possible case is

((λx.t) u) Gc← ((λx.t) u)[y/v] → t[x/u][y/v]
((λx.t) u) → t[x/u] Gc← t[x/u][y/v]

Proof techniques to show confluence While most of the calculi with explicit sub-
stitutions in the literature are only specified by rewritingrules,λes-reduction is de-
fined by a notion of reduction modulo an equivalence relation. We then need to prove
confluence of anon-terminating reduction relation modulo, for which the published
techniques [Hue80, Ter03, Ohl98, JK86] known by the author fail. More precisely, the
untypedλes-calculus is trivially non-terminating (as it is able to simulateβ-reduction),
so these techniques cannot be applied to our case since they require the reduction rela-
tion to be terminating.

We now present two different proofs of confluence for metaterms. The first of
them (Section 3.1) uses the technique due to Tait and Martin-Löf [Bar84] which can be
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summarised in four steps: define a simultaneous reduction relation denoted⇛es; prove
that⇛∗

es and→∗
es are the same relation; show that⇛

∗
es has the diamond property; and

use this to conclude.
The second solution (Section 3.2) consists in using a powerful version of thein-

terpretation technique[Har87]. Thus, we infer confluence ofλes from confluence of
λnss, a calculus withflattened or simultaneous substitutionswhose reduction process
does not make use of any equivalence relation.

3.1 Confluence by simultaneous reduction

We first remark that the systemes can be used as a function onEs-equivalence classes
thanks to the following property:

Lemma 3.1 Thees-normal forms of metaterms are unique moduloEs-equivalence.

Proof. We apply the proof technique in [JK86]. For that, termination of es can be
shown for metaterms by extending the definitions ofS andM in the proof of Lemma 2.2
as follows: S(X∆) := 1 andMx(z) := 1. Also, es can be checked to be locally
confluent and locally coherent.

A direct consequence of this lemma is thatt =Es t′ implieses(t) =Es es(t
′).

Lemma 3.2 A metatermt in es-normal form has necessarily one of the following
forms:

• t = x, or

• t = t1 t2, wheret1 andt2 are ines-normal form.

• t = λy.t1, wheret1 is in es-normal form.

• t = X∆[x1/u1] . . . [xn/un], wheren ≥ 0 and everyui is in es-normal form and
xi ∈ ∆ andxi /∈ fv(uj) for all i, j ∈ [1, n].

Lemma 3.3 Let t andu bees-normal forms. Thent{x/u} is anes-normal form.

Proof. The proof is by induction ont using Lemma 3.2.
Let considert = X∆[x1/u1] . . . [xn/un]. By the i.h. everyui{x/u} is anes-

normal form and byα-conversion we can suppose thatxi /∈ fv(u). Thus, Lemma 3.2
allows to concludet{x/u} = X∆{x/u}[x1/u1{x/u}] . . . [xn/un{x/u}] is in es-
normal form.

All the other ones are straightforward.

Lemma 3.4 Lett, u, v bees-normal forms and supposex /∈ fv(v). Thent{x/u}{y/v} =Es

t{y/v}{x/u{y/v}}.

Proof. By induction on thees-normal formt using Lemma 3.2.

13



Lemma 3.5 Let t, u, v beλes-terms. Thenes((t u)[x/v]) = es(t[x/v]) es(u[x/v]).

Proof. By cases.
If x ∈ fv(t) & x ∈ fv(u), then(t u)[x/v]→App

1
t[x/v] u[x/v].

If x /∈ fv(t) & x ∈ fv(u), then(t u)[x/v]→App
2

t u[x/v] Gc← t[x/v] u[x/v].
If x ∈ fv(t) & x /∈ fv(u), then(t u)[x/v]→App

3
t[x/v] u Gc← t[x/v] u[x/v].

If x /∈ fv(t) & x /∈ fv(u), then(t u)[x/v]→Gc t u ∗
Gc← t[x/v] u[x/v].

Thus, in all cases the property holds.

Lemma 3.6 Lett, u, v beλes-terms. Thenes(t[x/u][y/v]) =Es es(t[y/v][x/u[y/v]]).

Proof. By cases.
If y ∈ fv(t) & y ∈ fv(u), thent[x/u][y/v]→Comp

1
t[y/v][x/u[y/v]].

If y /∈ fv(t) & y ∈ fv(u), thent[x/u][y/v]→Comp
2

t[x/u[y/v]] Gc← t[y/v][x/u[y/v]].
If y ∈ fv(t) & y /∈ fv(u), thent[x/u][y/v] =Es t[y/v][x/u] Gc← t[y/v][x/u[y/v]].
If y /∈ fv(t) & y /∈ fv(u), thent[x/u][y/v]→Gc t[x/u] ∗

Gc← t[y/v][x/u[y/v]].

Lemma 3.7 Let t andu be metaλes-terms. Thenes(t[x/u]) = es(t){x/es(u)}.

Proof. The proof is by induction ont using Lemmas 3.5, 3.6 and 3.3.

Lemma 3.8 Let t, t′, u, u′ be es-normal forms. Ift =Es t′ and u =Es u′, then
t{x/u} =Es t′{x/u′}.

Proof. By induction ont.

The simultaneous reduction

We now introduce the simultaneous reduction relation⇛es ones-normal forms which
is given by a simpler relation⇛ moduloEs-equivalence.

Definition 3.1 (The relations⇛ and ⇛es) The relation⇛ is defined on metaterms
in es-normal forms:

• x ⇛ x

• If t ⇛ t′, thenλx.t ⇛ λx.t′

• If t ⇛ t′ andu ⇛ u′, thent u ⇛ t′ u′

• If t ⇛ t′ andu ⇛ u′, then(λx.t) u ⇛ es(t′[x/u′])

• If ui ⇛ u′
i andxi /∈ fv(uj) for all i, j ∈ [1, n], thenX∆[x1/u1] . . . [xn/un] ⇛

X∆[x1/u′
1] . . . [xn/u′

n]

Now we define the following reduction relation

t ⇛es t′ iff there ares, s′ s.t. t =Es s ⇛ s′ =Es t′

14



The following properties are straightforward.

Remark 3.9

• t ⇛ t for everyes-normal formt.

• ⇛es is closed by contexts: ifti ⇛es t′i for i ∈ [1, n], thenu = C[t1, . . . , tn] ⇛es

C[t′1, . . . , t
′
n] = u′ wheneveru andu′ arees-normal forms.

• If t ⇛ t′, then thenes(t) ⇛ es(t′).

Lemma 3.10 ⇛
∗
es⊆→

∗
λes.

Proof. It is sufficient to show⇛
∗⊆→∗. This can be done on induction on the

number of steps in⇛∗, then by induction on the definition of⇛.

A consequence of this lemma is thatt ⇛es t′ impliesfv(t′) ⊆ fv(t).

Lemma 3.11 If t1 ⇛es t′1 andt2 ⇛es t′2, then(λx.t1) t2 ⇛es es(t
′
1[x/t′2]).

Proof. Let considert1 =Es u1 ⇛ u′
1 = Est

′
1 and t2 =Es u2 ⇛es u′

2 =Es

t′2. We haveu′
1[x/u′

2] =Es t′1[x/t′2] so thates(u′
1[x/u′

2]) =Es es(t′1[x/t′2]). Then
(λx.t1) t2 =Es (λx.u1) u2 ⇛ es(u′

1[x/u′
2]) =Es es(t

′
1[x/t′2]).

Lemma 3.12 If t ⇛ t′ andu ⇛ u′, thenes(t[x/u]) ⇛es es(t
′[x/u′]).

Proof. By induction ont ⇛ t′.

• If x ⇛ x, thenes(x[x/u]) = es(u) ⇛ es(u′) = es(x[x/u′]) holds by Re-
mark 3.9.

• If y ⇛ y, thenes(y[x/u]) = y ⇛ y = es(y[x/u′]) holds by definition.

• If t1 t2 ⇛ t′1 t′2, wheret1 ⇛ t′1 andt2 ⇛ t′2, then

es((t1 t2)[x/u]) = (L. 3.5)
es(t1[x/u]) es(t2[x/u]) ⇛es (i.h.)
es(t′1[x/u′]) es(t′2[x/u′]) = (L. 3.5)
es((t′1 t′2)[x/u′])

• If λy.v ⇛ λy.v′, wherev ⇛ v′, then

es((λy.v)[x/u]) =
λy.es(v[x/u]) ⇛es (i.h.)
λy.es(v′[x/u′]) =
es((λy.v′)[x/u′])

15



• If (λy.t1) v ⇛ es(t′1[y/v′]), wheret1 ⇛ t′1 andv ⇛ v′, then

es(((λy.t1) v)[x/u]) = (L. 3.5)
es((λy.t1)[x/u]) es(v[x/u]) =
(λy.es(t1[x/u])) es(v[x/u]) ⇛es (i.h. andL. 3.11)
es(es(t′1[x/u′])[y/es(v′[x/u′])]) =
es(t′1[x/u′][y/v′[x/u′]]) =Es (L. 3.6)
es(t′1[y/v′][x/u′]) =
es(es(t′1[y/v′])[x/u′])

• If X∆[x1/u1] . . . [xn/un] ⇛ X∆[x1/u′
1] . . . [xn/u′

n], whereui ⇛ u′
i andxi /∈

fv(uj) for all i, j ∈ [1, n], then we reason by induction onn.

– Forn = 0 we have two cases.

If x /∈ ∆, thenes(X∆[x/u]) = X∆ ⇛ X∆ = es(X∆[x/u′]).

If x ∈ ∆, thenes(X∆[x/u]) = X∆[x/es(u)] ⇛ X∆[x/es(u′)] = es(X∆[x/u′]).

– Forn > 0 we consider the following cases.

If x /∈ fv(X∆[x1/u1] . . . [xn/un]), then alsox /∈ fv(X∆[x1/u′
1] . . . [xn/u′

n])
and thus

es(X∆[x1/u1] . . . [xn/un][x/u])
=

X∆[x1/u1] . . . [xn/un] ⇛ X∆[x1/u′
1] . . . [xn/u′

n]
=

es(X∆[x1/u′
1] . . . [xn/u′

n][x/u])

If x ∈ fv(X∆[x1/u1] . . . [xn/un]), then leti be the greatest number such
that x ∈ fv(ui) so thatx /∈ fv(ui+1) . . . fv(un) and thus alsox /∈
fv(u′

i+1) . . .fv(u′
n). Two cases are possible.

If x /∈ fv(X∆[x1/u1] . . . [xi−1/ui−1]), then alsox /∈ fv(X∆[x1/u′
1] . . . [xi−1/u′

i−1])

es(X∆[x1/u1] . . . [xn/un][x/u]) =Es

es(X∆[x1/u1] . . . [xi/ui][x/u][xi+1/ui+1] . . . [xn/un]) =
es(X∆[x1/u1] . . . [xi/ui[x/u]][xi+1/ui+1] . . . [xn/un]) =
X∆[x1/u1] . . . [xi/es(ui[x/u])][xi+1/ui+1] . . . [xn/un] ⇛es (first i.h.)
X∆[x1/u1] . . . [xi/es(u

′
i[x/u′])][xi+1/u′

i+1] . . . [xn/u′
n]) =Es

es(X∆[x1/u′
1] . . . [xn/u′

n][x/u′])

If x ∈ fv(X∆[x1/u1] . . . [xi−1/ui−1]), then

es(X∆[x1/u1] . . . [xn/un][x/u]) =Es

es(X∆[x1/u1] . . . [xi/ui][x/u][xi+1/ui+1] . . . [xn/un]) =
es(X∆[x1/u1] . . . [xi−1/ui−1][x/u][xi/ui[x/u]][xi+1/ui+1] . . . [xn/un]) =
es(X∆[x1/u1] . . . [xi−1/ui−1][x/u])[xi/es(ui[x/u])][xi+1/ui+1] . . . [xn/un]
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By the first i.h. we havees(ui[x/u]) ⇛es es(u
′
i[x/u′]) and by the second

i.h. we havees(X∆[x1/u1] . . . [xi−1/ui−1][x/u]) ⇛es es(X∆[x1/u′
1] . . . [xi−1/u′

i−1][x/u′]).
Thus,

es(X∆[x1/u1] . . . [xi−1/ui−1][x/u])[xi/es(ui[x/u])][xi+1/ui+1] . . . [xn/un] ⇛es

es(X∆[x1/u′
1] . . . [xi−1/u′

i−1][x/u′])[xi/es(u
′
i[x/u′])][xi+1/u′

i+1] . . . [xn/u′
n] =

es(X∆[x1/u′
1] . . . [xi−1/u′

i−1][x/u′][xi/u′
i[x/u′]])[xi+1/u′

i+1] . . . [xn/u′
n] =Es (L. 3.6)

es(X∆[x1/u′
1] . . . [xi−1/u′

i−1][xi/u′
i][x/u′])[xi+1/u′

i+1] . . . [xn/u′
n] =Es

es(X∆[x1/u′
1] . . . [xi−1/u′

i−1][xi/u′
i][xi+1/u′

i+1] . . . [xn/u′
n][x/u′])

Corollary 3.13 If t ⇛es t′ andu ⇛es u′, thenes(t[x/u]) ⇛es es(t
′[x/u′]).

Proof. Let t =Es t1 ⇛ t2 =Es t′ andu =Es u1 ⇛ u2 =Es u′ so thatt[x/u] =Es

t1[x/u1] andt2[x/u2] =Es t′[x/u′]. By Lemma 3.12 we have

es(t[x/u]) =Es es(t1[x/u1]) ⇛es es(t2[x/u2]) =Es es(t
′[x/u′])

Thus we concludees(t[x/u]) ⇛es es(t
′[x/u′]).

Lemma 3.14→λes⊆⇛es

Proof. If s →es s′, thens =Es t →es t′ =Es s′ so thates(s) =Es es(t) =Es

es(t′) =Es es(s
′) holds by Lemma 3.1. By definitiones(s) =Es es(t) ⇛ es(t) =Es

es(t′) =Es es(s
′). Thus,es(s) ⇛es es(s

′) by definition.
Now one shows thats →B s′ implies es(s) ⇛es es(s′) by induction ons and

using Remark 3.9 and Corollary 3.13. We then have thats =Es s1 →B s2 =Es s′

implieses(s) =Es es(s1) ⇛es es(s2) =Es es(s
′).

Finally, one concludes thats→λes s′ implieses(s) ⇛es es(s
′).

Lemma 3.15 The relation⇛es has the diamond property, that is, ift1 es⇚ t ⇛es t2,
then there ist3 such thatt1 ⇛es t3 es⇚ t2.

1. We first provet ⇚ u =Es u′ impliest =Es t′ ⇚ u′.

Proof. By induction ont ⇚ u.

• x ⇚ x =Es x

• λx.t ⇚ λx.u =Es λx.u′, wheret ⇚ u =Es u′.

• t1 t2 ⇚ u1 u2 =Es u′
1 u′

2, wheret1 ⇚ u1 =Es u′
1 andt2 ⇚ u2 =Es u′

2

• X∆[x1/t1] . . . [xn/tn] ⇚ X∆[x1/u1] . . . [xn/un] =Es X∆[xπ(1)/u′
π(1)] . . . [xπ(n)/u′

π(n)],
whereti ⇚ ui =Es u′

i. By the i.h. we haveti =Es t′i ⇚ u′
i so that we close

the diagram by

X∆[x1/t1] . . . [xn/tn] =Es

X∆[x1/t′1] . . . [xn/t′n] =Es

X∆[xπ(1)/t′π(1)] . . . [xπ(n)/t′π(n)] ⇚

X∆[xπ(1)/u′
π(1)] . . . [xπ(n)/u′

π(n)]
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• es(t1[x/t2]) ⇚ (λx.t1) t2 =Es (λx.t′1) t′2 wheret1 =Es t′1 andt2 =Es t′2.
We havet1[x/t2] =Es t′1[x/t′2] so that we close the diagram by

es(t1[x/t2]) =Es es(t
′
1[x/t′2]) ⇚ (λx.t′1) t′2

2. We provev es⇚ v′ =Es u′ impliesv =Es t′ ⇚ u′.

Proof. If v es⇚ v′ =Es u′, thenv =Es t ⇚ u =Es v′ =Es u′ so thatv =Es

t ⇚ u =Es u′. By the previous pont there ist′ such thatt =Es t′ ⇚ u′. Then
v =Es t′ ⇚ u′.

3. We provet1 ⇚ t ⇛ t2 impliest1 ⇛es t3 es⇚ t2.

Proof. The proof is by induction on the definition of⇛.

• Let us consider

(λx.t1) u1 ⇚ (λx.t) u ⇛ es(t2[x/u2])

wheret ⇛ t1 andt ⇛ t2 andu ⇛ u1 andu ⇛ u2. By the i.h. we know
there aret3 andu3 such thatt1 ⇛es t3 andt2 ⇛es t3 andu1 ⇛es u3 and
u2 ⇛es u3 so that in particulart1 =Es w1 ⇛ w3 =Es t3 andu1 =Es w′

1 ⇛

w′
3 =Es u3. We have

(λx.t1) u1 =Es (λx.w1) w′
1 ⇛ es(w3[x/w′

3]) =Es es(t3[x/u3])

and Corollary 3.13 gives

es(t2[x/u2]) ⇛es es(t3[x/u3])

• Let us consider

es(t1[x/u1]) ⇚ (λx.t) u ⇛ es(t2[x/u2])

wheret ⇛ t1 andt ⇛ t2 andu ⇛ u1 andu ⇛ u2. By the i.h. we know
there aret3 andu3 such thatt1 ⇛es t3 andt2 ⇛es t3 andu1 ⇛es u3 and
u2 ⇛es u3. Then, Corollary 3.13 gives

es(t1[x/u1]) ⇛es es(t3[x/u3]) es⇚ es(t2[x/u2])

• All the other cases are straightforward using Remark 3.9.
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4. We provet1 es⇚ t ⇛es t2 impliest1 ⇛es t3 es⇚ t2.

Proof. Let t1 es⇚ t =Es u ⇛ u′ =Es t2. By the second point there isu1 such
thatt1 =Es u1 ⇚ u and by the third point there ist3 such thatu1 ⇛es t3 es⇚ u′.
We concludet1 ⇛es t3 es⇚ t2.

Corollary 3.16 The reduction relation→∗
es is confluent.

Proof. Any relation enjoying the diamond property can be shown to beconflu-
ent [] so that the reduction relation⇛∗

es does. We also remark that⇛
∗
es and→∗

λes

are the same relation so that→∗
λes turns to be also confluent. Indeed,⇛

∗
es⊆→

∗
λes by

Lemma 3.10 and→∗
λes⊆⇛

∗
es by several applications of Lemma 3.14.

3.2 Confluence by interpretation

We present a second proof of confluence for metaterms. For that, we first define a
calculus with simultaneous substitution whose reduction process does not make use of
any equivalence relation.

3.2.1 A calculus with simultaneous substitution

We consider here adense orderon the set of variablesX . Renaming is assumed to be
order preserving.

We then definess-metaterms as metaterms withn-ary substitutions used to denote
simultaneoussubstitutions. The grammar can be given by:

t ::= x | X∆ | (t t) | λx.t | t[xk1
/t, . . . , xkn

/t]

where substitutions[xk1
/uk1

. . . , xkn
/ukn

] are non-empty (so thatn ≥ 1) and
xk1

, . . . , xkn
are alldistinctvariables.

Remark that no order exist in the general syntax between the distinct variables of a
simultaneous substitution.

We use lettersI, J, K to denote non-empty lists of indexes for variables andI@J
to denote concatenation of the listsI andJ . If I is the listk1 . . . kn, then we write
[xi/ui]I for the list [xk1

/uk1
, . . . , xkn

/ukn
]. We might also use the notation[lst]

for any of such (non-empty) lists and[cs[[x/t]]i]I for a simultaneous substitution of
I elements containingx/t at positioni ∈ I. Given [xi/ui]I , we use the notation
[xi/ui]I+ to denote the substitution where an element has been added atthe end of the
list xk1

/u1, . . . , xkn
/un and[xi/ui]+I to denote the substitution where an element has

been added at the beginning of the list.
If j ∈ I and|I| ≥ 2, we write[xi/ui]I\j for the list[xk1

/uk1
, . . . , xkn

/ukn
] whose

elementxj/uj has been erased. Thus for examplex[x2/z, x3/w] can be written as
x[xi/ui][2,3] with k1 = 2, k2 = 3, u2 = z andu3 = w andx[xi/ui][2,1]\2 denotes the
termx[x3/w].

For any permutationπ(I), the notation[xi/ui]π(I) denotes the (permutated) list
[xπ(k1)/uπ(k1), . . . , xπ(kn)/uπ(kn)]. Thus for example, ifI = k1 . . . kn andsort(I) =
j1 . . . jn, [xi/ui]sort(I) means[xj1/uj1 , . . . , xjn

/ujn
].
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Definition 3.2 (Free and bound variables)Free and bound variables ofss-metaterms
are defined by induction as follows:

fv(x) := {x}
fv(X∆) := ∆
fv(t u) := fv(u) ∪ fv(u)
fv(λx.t) := fv(t) \ {x}
fv(t[xk1

/uk1
, . . . , xkn

/ukn
]) := fv(t) \ {xk1

, . . . , xkn
} ∪ fv(uk1

) . . . ∪ fv(ukn
)

bv(x) := ∅
bv(X∆) := ∅
bv(t u) := bv(u) ∪ bv(u)
bv(λx.t) := bv(t) ∪ {x}
bv(t[xk1

/uk1
, . . . , xkn

/ukn
]) := bv(t) ∪ {xk1

, . . . , xkn
} ∪ bv(uk1

) . . . ∪ bv(ukn
)

As before, we work modulo alpha conversion so we assume all bound variables are
distinct and no variable is bound and free at the same time. Asa consequence, for any
term of the formt[xk1

/uk1
, . . . , xkn

/ukn
] we havexki

/∈ fv(ukj
) for all 1 ≤ i, j ≤ n.

The following reduction systemF is used to transform successive depending unary
substitutions into one single (flattened) simultaneous substitution.

(t u)[lst] →fl1 t[lst] u[lst]
(λx.t)[lst] →fl2 λx.t[lst]
t[xi/ui]I [yj/vj ]J →fl3 t[xi/ui[yj/vj ]J , yj/vj ]I@J

t[xi/ui]I →fl4 t[xi/ui]sort(I) if I is not sorted

Figure 4: Reduction rules forF

Note that byα-conversion there is no capture of variable in the rulesfl2 andfl4.
As an example we have

(x[x4/x3, x2/z] y)[x3/w] →fl1

(x[x4/x3, x2/z][x3/w] y[x3/w]) →fl3

(x[x4/x3[x3/w], x2/z[x3/w], x3/w] y[x3/w]) →fl4

(x[x2/z[x3/w], x3/w, x4/x3[x3/w]] y[x3/w])

The systemF can be considered as a functional specification thanks to thefollow-
ing property.

Lemma 3.17 The systemF is confluent and terminating onss-metaterms.

Proof. Confluence can be shown using the development closed confluence tech-
nique in [Ter03]. Termination can be shown using for examplea semantic (for the
sorting) Lexicographic Path Ordering [Ter03].
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From now on, we denote byF(t) theF -normal form oft.
Observe thatt→F t′ impliesfv(t) = fv(t′) so thatfv(F(t)) = fv(t).
The following property will be useful in the rest of this section, it can be shown by

induction onss-metaterms.

Lemma 3.18 (F -normal forms) The setnf(F) ofss-metaterms that are inF -normal
form can be characterised by the following inductive definition.

• If ui ∈ nf(F) for all i ∈ I andŷ is a variable or a metavariable andI is sorted,
thenŷ[xi/ui]I ∈ nf(F).

• If u ∈ nf(F), thenλx.u ∈ nf(F)

• If u, v ∈ nf(F), then(u v) ∈ nf(F)

3.2.2 A calculus with normal simultaneous substitutions

Theλnss-metaterms are defined as the subset of thess-metaterms that are inF -normal
form. Theλnss-calculus is defined by the following set of reduction rules on λnss-
metaterms.

(λx.t) u →n1 F(t[x/u])
xj [xi/ui]I →n2 uj j ∈ I
t[xi/ui]I →n3 t[xi/ui]I\j j ∈ I & xj /∈ fv(t)
t[x/u] →n4 t x /∈ fv(t)

Figure 5: Reduction rules for theλnss-calculus

Note that then4 is a particular case ofn3, but we have to specify it separately
because we choose to avoid the use of empty substitutions.

Theλnss-reduction relation is defined by induction as follows.

• If t→n1,n2,n3,n4 t′, thent→λnss t′.

• If t→λnss t′, thenλx.t→λnss λx.t′.

• If t→λnss t′, then(t u)→λnss (t′ u) and(u t)→λnss (u t′).

• If u→λnss u′ andj ∈ I, theny[cs[[x/u]]j ]I →λnss y[cs[[x/u′]]j ]I andY∆[cs[[x/u]]j ]I →λnss

Y∆[cs[[x/u′]]j ]I .

As expected, the reduction system is well-defined in the sense thatt ∈ nf(F) and
t→λnss t′ impliest′ ∈ nf(F).

Lemma 3.19 F -normal forms are stable byλnss.
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Here is an example ofλnss-reduction, where we assumey < x.

(λx.x ((λy.y) w)) z →n1

x[x/z] ((λy.y[x/z]) w[x/z]) →n1

x[x/z] y[y/w[x/z], x/z[y/w[x/z]]] →n2

x y[y/w[x/z], x/z[y/w[x/z]]] →n4

x y[y/w[x/z], x/z] →n3

x y[y/w[x/z]] →n2

x w[x/z] →n4

x w

As expected, theλnss-calculus enjoys confluence

Theorem 3.20 (λnss is confluent) The relationλnss is confluent on metaterms.

Proof. Confluence can be shown using the development closed confluence theorem
in [Ter03].

3.2.3 Relatingλes and λnss

We now establish a correspondence betweenλes andλnss-reduction which will be
used in the interpretation proof of confluence forλes.

We first need the following lemma.

Lemma 3.21 Letv andui (i ∈ I) bess-terms.

1. If j ∈ I, where|I| ≥ 2 andxj /∈ fv(v), thenF(v[xi/ui]I)→
+
λnss F(v[xi/ui]I\j).

2. If x /∈ fv(v), thenF(v[x/u])→+
λnss F(v).

Proof. We can reason by induction onv.

Theλnss-reduction relation is stable by closure followed by flattening, that is,

Lemma 3.22 Letv be ass-terms andt1, t2 beF -normal forms. Ift1 →λnss t2, then

1. F(t1)→
+
λnss F(t2)

2. F(t1[x/v])→+
λnss F(t2[x/v])

3. F(v[cs[[x/t1]]i]I)→
+
λnss F(v[cs[[x/t2]]i]I).

Proof. We can show the first and second properties by induction onλnss and the
third one by induction onv.

We are now ready to simulateλes-reduction into the systemλnss via the flattening
functionF :
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Theorem 3.23 If t→λes t′, thenF(t)→∗
λnss F(t′) .

Proof. We proceed by induction. If the reduction is internal, andt is an application
or an abstraction, then the proof is straightforward. Ift = t1[x/v] is a closure and
t′ = t2[x/v], thenF(t1) →∗

λnss F(t2) by i.h. andF(t) = F(F(t1)[x/v]) →∗
λnss

F(F(t2)[x/v]) holds by Lemma 3.22:2. Ift = v[x/t1] is a closure andt′ = v[x/t2],
thenF(t1) →∗

λnss F(t2) by i.h. andF(t) = F(v[x/F(t1)]) →∗
λnss F(v[x/F(t2)])

holds by Lemma 3.22:3. If the reduction is external we have toinspect all the possible
cases.

We can then conclude

Corollary 3.24 If t→∗
λes t′, thenF(t)→∗

λnss F(t′).

3.2.4 Relatingλnss and λes

We have projectedλes-reductions steps intoλnss-reduction steps but we also need
to prove that the projection in the other way around is possible too. This will be the
second important ingredient of the interpretation proof ofconfluence that we present at
the end of this section.

In order to translateλnss into λes we define the following sequentialisation func-
tion.

seq(x) := x
seq(t u) := seq(t) seq(u)
seq(λx.t) := λx.seq(t)
seq(t[xi/ui]I) := seq(t) if everyxi /∈ fv(seq(t))
seq(t[xi/ui]I) := seq(t)[xi/seq(ui)]K

whereK is the biggest non empty sublist ofI such that for allk ∈ K the variable
xk is free inseq(t).

We remark thatfv(seq(t)) ⊆ fv(t).
As expected, the systemseq can be used to projectF -reduction (Theorem 3.25)

andλnss-reduction (Theorem 3.26) intoλes-reduction.

Theorem 3.25 If s ands′ aress-terms such thats→F s′, thenseq(s)→∗
λes seq(s

′).

Proof. By induction on the reductionF . If the reduction is internal the property is
straightforward. Otherwise we have to inspect all the possible cases.

Theorem 3.26 If s→λnss s′, thenseq(s)→∗
λes seq(s

′)

Proof. By induction on→λnss. The cases where the reduction is internal are
straightforward so we have to inspect the cases of external reductions.

We can now conclude this section with one of the main results of the paper.
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F(t) = F(t′)
seq(t2)* *

*

* * seq(F(t2))

t3

t =Es
t′

t2

F(t1)
* *

*
t1

F(t2)
*

*

*

seq(t1)

seq(F(t1))

* *
seq(t3)

*

Figure 6: Confluence proof forλes on metaterms

Corollary 3.27 The systemλes is confluent on metaterms.

Proof. Let t ≡ t′, t →∗
λes t1 and t′ →∗

λes t2. By Theorem 3.23 we have
F(t) = F(t′) andF(t) →∗

λnss F(t1) andF(t′) →∗
λnss F(t2). Theorem 3.20

gives confluence ofλnss on F -normal forms so that there is anF -normal formt3
such thatF(t1) →∗

λnss t3 andF(t2) →∗
λnss t3. Now, t1 →∗

F F(t1) and t2 →∗
F

F(t2) imply seq(t1) →∗
λes seq(F(t1)) and seq(t2) →∗

λes seq(F(t2)) by Theo-
rem 3.25. Butseq(t1) = Gc(t1) andseq(t2) = Gc(t2) so thatt1 →∗

λes seq(t1) and
t2 →∗

λes seq(t2). Theorem 3.26 allows us to concludeseq(F(t1))→∗
λes seq(t3) and

seq(F(t2))→∗
λes seq(t3) which closes the diagram.

4 Preservation ofβ-strong normalisation

Preservation ofβ-strong normalisation (PSN) in calculi with explicit substitutions re-
ceived a lot of attention (see for example [ACCL91, BBLRD96,BR95, KR95]), start-
ing from an unexpected result given by Melliès [Mel95] who has shown that there are
β-strongly normalisable terms inλ-calculus that are not strongly normalisable when
evaluated by the reduction rules of an explicit version of the λ-calculus. This is for
example the case ofλσ [ACCL91] or λσ⇑ [HL89].

This phenomenon shows a flaw in the design of these calculi with explicit substi-
tutions in that they are supposed to implement their underlying calculus without losing
its good properties. However, there are many ways to avoid Melliès’ counter-example
in order to recover the PSN property. One of them is to simply forbid the substitu-
tion operators to cross lambda-abstractions [LM99, For02]; another consists of avoid-
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ing composition of substitutions [BBLRD96]; another one imposes a simple strategy
on the calculus with explicit substitutions to mimic exactly the calculus without ex-
plicit substitutions [GL99]. The first solution leads toweaklambda calculi, not able to
expressstrongbeta-equality, which is used for example in implementations of proof-
assistants [Coq, HOL]. The second solution is drastic as composition of substitutions
is needed in implementations of HO unification [DHK95] or functional abstract ma-
chines [HMP96]. The last one exploits very little of the notion of explicit substitutions
because they can be neither composed nor even delayed.

In order to cope with this problem David and Guillaume [DG01]defined a calculus
with labels, calledλws, which allowscontrolledcomposition of explicit substitutions
without losing PSN. These labels can be also seen as special annotations induced by
a logicalweakeningrule. Another solution, calledλlxr, has been introduced latter
by Kesner and Lengrand [KL05], the idea is the complete control of resources, so
that not only for weakening, but also forcontraction. Anyway, both calculi can be
translated to Linear Logic’s proof-nets [DCKP03, KL05], underlying in this way the
key points where composition of substitutions must be controlled. The calculusλws

as well asλlxr introduces new syntax to handle composition. The claim of this pa-
per is that explicit resources as weakening and contractionare not necessary to define
composition correctly. Indeed, whileλlxr-reduction is defined via6 equations and
19 rewriting rules,λes only uses an equation for commutativity of substitutions and 9
natural rewriting rules.

Preservation ofβ-strong normalisation is quite difficult to prove in calculiwith
composition (see for example [Blo97, DG01, ABR00, KL05, KOvO01]). This is
mainly because the so-calleddecentterms are not stable by reduction : a termt is
said to bedecentin the calculusZ if every subtermv appearing as body of some sub-
stitution (i.e. appearing in some subtermu[x/v] of t) is Z-strongly normalising. As an
example, the termx[x/(y y)][y/λw.(w w)] is decent inλes since(y y) andλw.(w w)
areλes-strongly normalising, but itsComp2-reductx[x/(y y)[y/λw.(w w)] is not since
(y y)[y/λw.(w w)] is notλes-strongly normalising.

In this paper we prove thatλes preservesβ-strong normalisation by using a proof
technique based on simulation. The following steps will be developed

1. We define a new calculusλesw (section 4.1).

2. We define a translationK from λes-terms (and thus also fromλ-terms) toλesw
such that

(a) t ∈ SN β impliesK(t) ∈ SN λesw (Corollary 4.15).

(b) K(t) ∈ SN λesw impliest ∈ SN λes (Corollary 4.6).

4.1 Theλesw-calculus

We introduce here theλesw-calculus, an intermediate language betweenλes andλlxr [KL05],
which will be used as technical tool to prove PSN.

The grammar ofλesw-terms is given as follows:

t ::= x | λx.t | (t t) | t[x/t] | Wx(t)
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We will only consider herestrict terms: every subtermλx.t andt[x/u] is such that
x ∈ fv(t) and every subtermWx(t) is such thatx /∈ fv(t). We use the abbreviation
WΓ(t) forWx1

(. . .Wxn
(t)) wheneverΓ = {x1, . . . , xn}. In the particular caseΓ is

the empty set the notationW∅(t) = t.
Besidesα-conversion we consider the equations and and reduction rules in Fig-

ure 7.

Equations :
t[x/u][y/v] =C t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)
Wx(Wy(t)) =WC Wy(Wx(t))
Wy(t)[x/u] =Weak1 Wy(t[x/u]) if x 6= y & y /∈ fv(u)
Wy(λx.t) =WAbs λx.Wy(t) if x 6= y
Reduction Rules:
(λx.t) u →B t[x/u]
x[x/u] →Var u
Wx(t)[x/u] →Gc Wfv(u)\fv(t)(t)
(t u)[x/v] →App

1
(t[x/v] u[x/v]) if x ∈ fv(t) & x ∈ fv(u)

(t u)[x/v] →App
2

(t u[x/v]) if x /∈ fv(t) & x ∈ fv(u)
(t u)[x/v] →App

3
(t[x/v] u) if x ∈ fv(t) & x /∈ fv(u)

(λy.t)[x/v] →Lamb λy.t[x/v] if y /∈ fv(v)& x 6= y
t[x/u][y/v] →Comp

1
t[y/v][x/u[y/v]] if y ∈ fv(u) & y ∈ fv(t)

t[x/u][y/v] →Comp
2

t[x/u[y/v]] if y ∈ fv(u) & y /∈ fv(t)
(Wy(t) u) →WPush (t u) if y ∈ fv(u)
(Wy(t) u) →WPush (Wy(t u)) if y /∈ fv(u)
(tWy(u)) →WPush (t u) if y ∈ fv(t)
(tWy(u)) →WPush (Wy(t u)) if y /∈ fv(t)
Wy(t)[x/u] →WPush t[x/u] if y ∈ fv(u)
t[x/Wy(u)] →WPush Wy(t[x/u]) if y /∈ fv(t)
t[x/Wy(u)] →WPush t[x/u] if y ∈ fv(t)

Figure 7: Equations and Reduction rules forλesw

The rewriting system containing all the previous rewritingrules exceptB is denoted
bysw. We writeBsw for B∪sw. The equivalence relation generated by all the equations
is denoted byEsw. The relation generated by the reduction rulessw (resp.Bsw) modulo
the equivalence relationEsw is denoted by→sw /Esw or →esw (resp. →Bsw /Esw or
→λesw). More precisely

t→esw t′ iff there ares, s′ s.t. t =Esw s→sw s′ =Esw t′

t→λesw t′ iff there ares, s′ s.t. t =Esw s→Bsw s′ =Esw t′

The following lemma can be proved by induction on terms.
The following property can be shown by induction on terms.

Lemma 4.1 Theλesw-reduction relation preserves strict terms.
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From now on, we only work with strict terms.
We proceed now to show thatesw is a terminating system. We will do this in two

steps: first we show that→esw minus→WPush is terminating (Lemma 4.2), then we
show that→WPush / =Esw is terminating (Lemma 4.3). All this allows us to conclude
(Corollary 4.4) that the whole system→esw is terminating.

We will need the following measure for terms.

Definition 4.1 For eachλesw-terms we define a size and a multiplicity by structural
induction.

S(x) := 1 Mx(z) := 1
S(Wx(t)) := S(t) Mx(Wy(t)) := Mx(t)

Mx(Wx(t)) := 1
S(λx.t) := S(t) Mx(λy.t) := Mx(t) + 1
S(t u) := S(t) + S(u) Mx(t u) := Mx(t) + Mx(u) + 1
S(t[x/u]) := S(t) + Mx(t) · S(u) Mx(t[y/u]) := Mx(t) If x /∈ fv(u)

Mx(t[y/u]) := Mx(t) + My(t) · (Mx(u) + 1) If x ∈ fv(u)

Remark thatMx(s) ≥ 1 andS(s) ≥ 1 for every terms and every variablex.
This measure enjoys the following property:

Lemma 4.2 Lets, s′ beλrxw-terms.

1. If s =Esw s′, thenS(s) = S(s′).

2. If s→WPush s′, thenS(s) = S(s′).

3. If s→sw\WPush s′, thenS(s) > S(s′).

Proof. The proof is by induction on→esw.

Lemma 4.3→WPush /Esw is a terminating system.

Proof. For each terms we define a measureP(s) by induction as follows:

P(x) := 1
P(t u) := 2 · P(t) + 2 · P(u)
P(λx.t) := P(t) + 1
P(Wx(t)) = P(t) + 1
P(t[x/u]) := P(t) + 2 · P(u)

Remark thatP(s) ≥ 1 for everys.
Now, givens we consider〈nbw(s), P(s)〉, wherenbw(s) is the number of weaken-

ings ins. We show thats→WPush/Esw s′ implies〈nbw(s), P(s)〉 >lex 〈nbw(s′), P(s′)〉.
The proof proceeds by induction on→WPush /Esw.
We can then conclude that{WPush}/Esw-reduction is terminating on allλesw-terms

by application of the abstract theorem A.1 :E is Esw, R1 is the empty relation,R2 is
→WPush, K is the relation given by the measure〈nbw( ), P( )〉 andS is >lex which is
the standard (well-founded) lexicographic order onN× N.
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In order to conclude with that the whole systemesw is terminating on allλesw-
terms we apply again Theorem A.1:E is Esw,R1 is the relation→WPush (so that→WPush

/Esw is well-founded by Lemma 4.3),K is the relation given by the functionS( ),R2 is
the relation→sw\{WPush} which strictly decreases the measureS( ) by Lemma 4.2 and
S is the standard well-founded order> onN.

Corollary 4.4 The reduction relationesw is terminating.

4.2 Relatingλes and λesw

The aim of this section is to relateλes andλesw-reduction in order to infer thatλesw-
normalisation impliesλes-normalisation.

We start by giving a translation fromλes-terms toλesw-terms which introduces as
many weakening constructors as is necessary to build strictλesw-terms.

Definition 4.2 (From λes-terms to (strict λesw-terms) The translation fromλes-terms
(and thus also fromλ-terms) to strictλesw-terms is defined by induction as follows:

K(x) = x
K(u v) = K(u) K(v)
K(λx.t) = λx.K(t) If x ∈ fv(t)
K(λx.t) = λx.Wx(K(t)) If x /∈ fv(t)
K(u[x/v]) = K(u)[x/K(v)] If x ∈ fv(t)
K(u[x/v]) = Wx(K(u))[x/K(v)] If x /∈ fv(t)

Remark thatfv(K(t)) = fv(t).
The relevant point to relate nowλes andλesw-reduction consists in pulling out

weakening constructors:

Lemma 4.5 If s→λes s′, thenK(s)→+
λesw Wfv(s)\fv(s′)(K(s

′)).

Proof. By induction on→λes.

It is worth noticing that we really need in this proofWeak1 andWAbs as equations
and not as rewriting rules.

We can then now conclude this part with the main result of thissection.

Corollary 4.6 If K(t) ∈ SN λesw, thent ∈ SN λes.

4.3 TheΛI-calculus

Definition 4.3 The setΛI of terms of theλI-calculus [Klo80] is defined by the follow-
ing grammar:

M ::= x | (M M) | λx.M | [M, M ]
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We only considerstrict terms: every subtermλx.M satisfiesx ∈ fv(M).
We use[N, 〈M〉] or [N, M1, M2, . . . , Mn] to denote the term[. . . [[N, M1], M2], . . . , Mn]

assuming that this expression is equal toN whenn = 0. The termM and the notation
〈M〉 inside[N, 〈M〉] must not be confused.

As in the λ-calculus, the following property is straightforward by induction on
terms.

Lemma 4.7 (Substitutions [Klo80]) For all ΛI-termsM, N, L, we haveM{x/N} ∈
ΛI andM{x/N}{y/L} = M{y/L}{x/N{y/L}} provided there is no variable cap-
ture.

In what follows we consider two reduction rules onΛI -terms:

(λx.M) N →β M{x/N}
[M, N ] L →π [M L, N ]

Figure 8: Reduction rules forΛI

The reduction relationβπ onΛI -terms preserves free variables.

Lemma 4.8 (Preservation of free variables)Let t ∈ ΛI . Thent →βπ t′ implies
fv(t′) = fv(t).

Proof. By induction ont using the fact that any abstraction int is of the formλx.u
with x ∈ fv(u).

As a consequenceβπ-reduction preserves strictΛI -terms.

4.4 Relatingλesw and ΛI

We now introduce a translation fromλesw to ΛI by means of the relationI . The
reason to use a relation (and not a function) is that we want totranslate theλesw-term
into ΛI-syntax by adding somegarbageinformation which is not uniquely determined.
Thus, eachλesw-term can be projected in differentΛI -terms, this will essential in the
simulation property (Theorem 4.10).

Definition 4.4 The relation I betweenstrict λesw-terms andstrict ΛI -terms which
is inductively given by the following rules:

x I x

t I T

λx.t I λx.T

t I T u I U

t u I T U

t I T u I U

t[x/u] I T {x/U}

t I T

t I [T, M ]
M is aΛI -term

t I T

Wx(t) I T
x ∈ fv(T )

The relationI enjoys the following properties.
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Lemma 4.9 Let t be aλesw-term andM be aΛI-term. Ift I M , then

1. fv(t) ⊆ fv(M)

2. M ∈ ΛI

3. x /∈ fv(t) andN ∈ ΛI impliest I M{x/N}

Proof. Property (1) is a straightforward induction on the proof tree as well as Prop-
erty (2) which also uses Lemma 4.7. Property (3) is also proved by induction on the
tree, using Lemma 4.7.

Remark that property 1 in Lemma 4.9 holds since we work withstrict terms :
indeed, the rule for substitution does not implyfv(t[x/u]) ⊆ fv(T {x/U}) whenx /∈
fv(t) ∪ fv(T ). This is also an argument to exclude from our calculus rewriting rules
not preserving strict terms like

(App) (t u)[x/v] → (t[x/v] u[x/v])
(Comp) t[x/u][y/v] → t[y/v][x/u[y/v]] if y ∈ fv(u)

Reduction inλesw related to reduction inΛI by means of the following simulation
property.

Theorem 4.10 (Simulation inΛI ) Let t be aλesw-term andT be aΛI -term.

1. If s I S ands =Esw s′, thens′ I S.

2. If s I S ands→sw s′, thens′ I S.

3. If s I S ands→B s′, then there isS′ ∈ ΛI such thats′ I S′ andS →+
βπ S′.

Proof. By induction on the reduction/equivalence step.

We can thus immediately conclude

Corollary 4.11 If t I T andT ∈ SN βπ, thent ∈ SN λesw.

Proof. We apply the abstract theorem A.1:E is =Esw ,R1 is sw,R2 is→B, K is the
relation I andS is→βπ which is well-founded onT by hypothesis.

4.5 Solving the puzzle

In this section we put all the parts of the puzzle together in order to obtain preservation
of β-strong normalisation.

Since we want to relateλ andλes-reduction, we first need to encodeλ-terms into
one of the calculi of this section. We proceed as follows.
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Definition 4.5 ([Len05]) Encoding ofλ-terms intoΛI is defined by induction follows:

I(x) := x
I(λx.t) := λx.I(t) x ∈ fv(t)
I(λx.t) := λx.[I(t), x] x /∈ fv(t)
I(t u) := I(t) I(u)

Theorem 4.12 (Lengrand[Len05]) For anyλ-termt, if t ∈ SN β , thenI(t) ∈ WNβπ.

Theorem 4.13 (Nederpelt[Ned73])For anyλ-term t, if I(t) ∈ WNβπ thenI(t) ∈
SNβπ.

Theorem 4.14 For anyλ-termu, K(u) I I(u).

Proof. By induction onu:

• x I x trivially holds.

• If u = λx.t , thenK(t) I i(t) holds by the i.h. Therefore, we obtainλx.K(t) I λx.i(t)
in the casex ∈ fv(t) andλx.Wx(K(t)) I λx.[i(t), x] in the casex /∈ fv(t).

• If u = (t v) , thenK(t) I i(t) andK(v) I i(v) hold by the i.h. and thus we can
concludeK(t) K(v) I i(t) i(v).

Corollary 4.15 (λesw preservesβ-strong normalisation) For any λ-term t, if t ∈
SN β, thenK(t) ∈ SN λesw.

Proof. If t ∈ SN β, thenI(t) ∈ SNβπ by Theorems 4.12 and 4.13. AsK(t) I I(t)
by Theorem 4.14, then we concludeK(t) ∈ SN λesw by Corollary 4.11.

Corollary 4.16 (λes preservesβ-strong normalisation) For anyλ-termt, if t ∈ SN β ,
thent ∈ SN λes.

Proof. If t ∈ SN β , thenK(t) ∈ SN λesw by Corollary 4.15 andt ∈ SN λes by
Corollary 4.6.

5 Recovering the untypedλ-calculus

We establish here the basic connections betweenλ andλes-reduction. As expected
from a calculus with explicit substitutions,β-reduction can be implemented byλes
(Theorem 5.1) andλes-reduction can be projected intoβ (Corollary 5.3).
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5.1 From λ-calculus toλes-calculus

We start by a simple lemma stating that explicit substitution can be used to implement
meta-level substitution on pure-terms.

Definition 5.1 The encoding ofλ-terms intoλes-terms is given by the identity func-
tion.

The full compositionresult obtained in the previous lemma enables us to prove a
more general property concerning simulation ofβ-reduction inλes.

Theorem 5.1 (Simulatingβ-reduction) Let t be aλ-term such thatt →β t′. Then
t→+

λes t′.

Proof. By induction onβ-reduction using Lemma 2.3.

5.2 From λes-calculus toλ-calculus

We now show how to encode aλes-term into aλ-term in order to projectλes-reduction
into β-reduction.

Definition 5.2 Let t be aλes-term. We define the functionL(t) by induction on the
structure oft as follows:

L(x) := x
L(λx.t) := λx.L(t)
L(t u) := (L(t) L(u))
L(t[x/u]) := L(t){x/L(u)}

The translationL enjoysfv(L(t)) ⊆ fv(t).

Lemma 5.2 (Simulatingλes-reduction)

1. If t =Es u, thenL(t) = L(u).

2. If t→s u, thenL(t) = L(u).

3. If t→B u, thenL(t)→∗
β L(u).

Proof. By induction onλes-reduction.

1. This is obvious by the well-known [Bar84] substitution lemma of λ-calculus
stating that for anyλ-termst, u, v, t{x/u}{y/v} = t{y/v}{x/{u{y/v}}.

2. All thees-reduction steps are trivially projected into an equality.

3. A B-reduction step at the root oft corresponds exactly to aβ-reduction step at
the root ofL(t) using the Definition of the translation.

We can finish this part with the following conclusion.

Corollary 5.3 If t→λes u, thenL(t)→∗
β L(u).
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6 The typedλes-calculus

In this section we present thesimply-typedλes-calculus for which we show Subject
Reduction in Section 6.2 and Strong Normalisation in Sections 8 and 4.5.

In contrast to standard systems for typedλ-calculus [] and typedλx-calculus [],
for which typing judgementsΓ ⊢ t : A are built in such a way that the free variables
of t belong toΓ, we define here more precise typing rules which ensures that every
environmentΓ in a typing judgementΓ ⊢ t : A containsexactlythe set of free variables
of the termt it types. This property turns out to be essential to obtain tha simple
translation ofλes-terms into proof-nets that we given in Section 8.

Simply typesare built over a countable set of atomic symbolsAt by means of the
following grammar:

A ::= σ | A→ A

whereσ ∈ At.
An environmentis a finite set of pairs of the formx : A. Two environmentsΓ and

∆ are said to becompatibleiff for all x : A ∈ Γ andy : B ∈ ∆, x = y implies
A = B. We denote theunion of compatible contextsby Γ ⊎ ∆. Thus for example
(x : A, y : B) ⊎ (x : A, z : C) = (x : A, y : B, z : C).

Set properties on environments are:

Remark 6.1

1. If Γ ⊆ Γ′ and∆ ⊆ ∆′, thenΓ ⊎∆ ⊆ Γ′ ⊎∆′.

2. If Γ, ∆ andΠ are all compatible, thenΓ ⊎ (∆ ⊎Π) = (Γ ⊎∆) ⊎Π.

6.1 Typing Rules

Typing judgementshave the formΓ ⊢ t : A wheret is a term,A is a type andΓ is an
environment.Derivationsof typing judgements can be obtained by application of the
Typing Rules given in Figure 9.

x : A ⊢ x : A
(axiom)

Γ ⊢ t : A→ B ∆ ⊢ u : A

Γ ⊎∆ ⊢ (t u) : B
(app)

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A→ B
(abs1)

Γ ⊢ t : B andx /∈ Γ

Γ ⊢ λx.t : A→ B
(abs2)

Γ ⊢ u : B ∆, x : B ⊢ t : A

Γ ⊎∆ ⊢ t[x/u] : A
(subs1)

Γ ⊢ u : B ∆ ⊢ t : A

Γ ⊎∆ ⊢ t[x/u] : A
(subs2)

Figure 9: Typing Rules forλes-calculus
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In contrast to standard typing rules forλ-calculus [Bar92] andλx-calculus [LLD+04],
our axiom rule types a variable in asingletonenvironment. Variables which do not
appear free in terms may be introduced by means of theabs2 or subs2 rule. As a
consequence, the typing system enjoys the following property:

Lemma 6.2 If Γ ⊢λes t : A, thenΓ = fv(t).

Proof. by induction on typed derivations.

6.2 Subject Reduction

As expected, the calculus enjoys the subject reduction property. More precisely, the
calculus enjoys alocal subject reduction property, that is, no meta-theorem is needed
to show preservation of types.

Lemma 6.3 (Subject Reduction I) If Γ ⊢λes s : A ands =Es s′, thenΓ ⊢λes s′ : A.

Proof. By induction on=Es .

Lemma 6.4 (Subject Reduction II) If Π ⊢λes s : A ands→λes s′, thenΠ′ ⊢λes s′ :
A for someΠ′ ⊆ Π.

Proof. By induction on→λes.

7 Recovering the typedλ-calculus

We established in Sections 5.1 and 5.2 the connexion betweenthe the two notions of
reduction inλ andλes which gives anuntypedunderstanding of one calculus into the
other one. We define here natural translations from typedλ-calculus to typedλes-
calculus and vice-versa, thus completing the connection betweenλ andλes in a type
setting.

We first recall in Figure 10 the typing rules forλ-calculus.

Γ, x : A ⊢λ x : A

Γ, x : A ⊢λ t : B

Γ ⊢λ λx.t : A→ B

Γ ⊢λ t : A→ B Γ ⊢λ v : A

Γ ⊢λ (t v) : B

Figure 10: Typing Rules forλ-calculus

A straightforward induction on typing derivations allows us to show the soundness
of the projection ofλ into λes:
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Lemma 7.1 If t is aλ-term s.t.Γ ⊢λ t : A, thenΓ ∩ fv(t) ⊢λes t : A.

Proof. By induction on the typing derivationΓ ⊢λ t : A.

The type derivations are also preserved in the other sense around. To show that, we
first state the following known properties of typed lambda calculus (they can be shown
by a straightforward induction on typing derivations).

Lemma 7.2

1. If Γ ⊢λ t : A, thenΓ, x : B ⊢λ t : A.

2. If Γ, x : B ⊢λ t : A andΓ ⊢λ u : B, thenΓ ⊢λ t{x/u} : A.

We can now conclude with the following.

Lemma 7.3 (L preserves types)If t is a λes-term such thatΓ ⊢λes t : A, thenΓ ⊢λ

L(t) : A.

Proof. By induction on the typing derivationΓ ⊢λes t : A.

8 Strong normalisation of typedλes-terms

In this section we present a translation of the typedλes-calculus into proof nets. To
do so, we will translate simply types into MELL formulae, typedλes-terms into typed
proof-nets, then we will show thatλes-reduction can be simulated by a corresponding
reduction relation on proof-nets which is known to be normalising.

This same technique has been already applied to other calculi with explicit substi-
tutions and resources [DCK97, DCKP03, KL05].

8.1 Linear Logic’s proof-nets

We recall here some classical notions from Linear Logic’s proof-nets. We refer the
interested reader to [Gir87] or [Laf95] for more details.

Let At be a set ofatom symbols. The set of formulae of the multiplicative expo-
nential fragment of linear logic (called MELL) is defined by the grammar:

A ::= σ | σ | A⊗A | AOA |?A |!A

where the atomic symbolσ in the formulaeσ andσ belongs to the setAt.
The linear negationof a formulaA, denotedA⊥ is defined by the following De

Morgan equations:

(σ)⊥ := σ (A⊗B)⊥ := A⊥
OB⊥ (?A)⊥ := !(A⊥)

(σ)⊥ := σ (AOB)⊥ := A⊥⊗B⊥ (!A)⊥ := ?(A⊥)

If Γ is the sequenceA1, . . . Am, we denote by?Γ the sequence?A1, . . . , ?Am and by
Γ⊥ the sequenceA1

⊥, . . . , Am
⊥.
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The set of proof-nets, that we denote byPN , is defined inductively in Figure 11
where we use rectangles having rounded corners to denote already defined nets used in
the inductive constructions.

(Axiom) (Cut) (Dereliction) (Contraction)

ax

A A⊥

A ∆A⊥

cut

Γ Γ A

?A

D

Γ ?A ?A

?A

C

(Par) (Times) (Weakening) (Box)

Γ BA

AOB

BA

A⊗B

Γ ∆ Γ ?A

W

A

!A

?Γ

?Γ

Figure 11: MELL Proof-nets

The traditional reduction system for MELL consists in the set of cut elimination
rulesappearing in Figure 12.
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cut

A

ax

AA⊥ Γ

→ax-cut A Γ

A B B⊥

AOB

cut

A⊥∆ Π

A⊥⊗B⊥

Γ

→O-⊗

A B B⊥A⊥∆ ΠΓ

cut
cut

W

cut

?A

A⊥

!A⊥

?Γ

?Γ

→w-b

W

?Γ

∆

cut

?A !A⊥

A⊥ ?Γ

?Γ

D

A

→d-b cut

∆ A

A⊥ ?Γ

!A⊥

A⊥ ?Γ

?Γ

C

?A ?A

?A

cut

∆

→c-b

C

A⊥

!A⊥

A⊥

!A⊥

?Γ

?Γ

?Γ

?Γ

?Γ

cut
cut

?A ?A∆

cut

B

!A⊥

A⊥?A

?A

?∆

?∆!B

?Γ

?Γ

→b-b

cut

B

!B

?∆

?∆

?A
A⊥

!A⊥

?Γ

?Γ

?Γ

Figure 12: Cut elimination rules for MELL Proof-nets
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We also consider an equivalence relation onPN , as in [DCG99], where two equa-
tions∼A and∼B are introduced (see Figure 13).

∆

?B

C

?B

C

∼A

?B3?B2?B1 ∆

?B

C

?B

C

?B3?B2?B1

?A ?∆

?A ?A

?A ?A

?A ?∆

?A ?A

?A

∼B

C

C

B

!B

B

!B

Figure 13: Equations for MELL proof-nets

Finally, we shall also use the two extra reduction rules in Figure 14 :U is used to
simplify weakening linked to contraction nodes andV allows weakening links to go
outside boxes in order to bring them together at the top of theproof-nets.

∆?B ∆?B?B

?B

W

C

→U

?∆

!A ?B

?∆ ?B

?B!A

W W

A

?∆?∆

A

→V

Figure 14: Extra reduction rules for MELL proof-nets

W call R the system made of rulesax-cut, O-⊗, w-b, d-b, c-b, b-b andU and
V. We shall write∼E for the congruence (reflexive, symmetric, transitive, closed by
proof-net contexts) relation on proof-nets generated by equationsA, B. We shall write
R/E for the reduction relation generated by the rules inR and the equations in∼E,
given byr →R/E s if and only if there existr′ ands′ such thatr ∼E r′ →R s′ ∼E s.

The following result is well-known [Pol04] (see also [KL05]for details).

Theorem 8.1 The reduction relationR/E on typed proof-nets is strongly normalising.
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8.2 From λes-terms to Proof-nets

We now present the natural translation fromλes-terms to proof-nets. For that, let’s
start by the usual translation of intuitionistic types [Gir87] into MELL formulae given
by :

A∗ := A if A is atomic
(A→ B)

∗
:= ?((A∗)

⊥
) O B∗

Now we can give our translationT from typedλes-terms to proof-nets, which is
defined by induction on the derivation of typing judgements as shown in Figure 15.
Every proof-netT (Γ ⊢ t : A) has one wire labelled with?(D∗)⊥ for everyD ∈ Γ and
one unique wire labelled withA∗. We shall often writeT (t) instead ofT (Γ ⊢ t : A)
whenΓ andA are clear from the context.
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T (x : A ⊢ x : A) T (Π, Γ, ∆ ⊢ t u : A) where
T (Π, Γ ⊢ t : B → A) & T (Γ, ∆ ⊢ u : B)

A∗⊥

?A∗⊥ A∗

ax

D

?B∗⊥
OA∗

!B∗ A∗⊥

?∆∗⊥?Γ∗⊥B∗

A∗ ?Γ∗⊥

?Γ∗⊥

!B∗⊗A∗⊥

?Π∗⊥ ?Γ∗⊥

?∆∗⊥

C

T(u)T(t)

T (Γ ⊢ λx.t : B → C) whereΓ, x : B ⊢ t : C T (Γ ⊢ λx.t : B → C) whereΓ ⊢ t : C

?Γ∗⊥

B∗ ?C∗⊥

B∗O?C∗⊥

T(t)

?Γ∗⊥ B∗ ?C∗⊥

B∗O?C∗⊥

T(t)

W

T(t)

W

T (Π, Γ, ∆ ⊢ t[x/u] : A) where T (Π, Γ, ∆ ⊢ t[x/u] : A) where
Π, Γ, x : B ⊢ t : A & Γ, ∆ ⊢ u : B Π, Γ ⊢ t : A & Γ, ∆ ⊢ u : B

?B∗⊥

?∆∗⊥

B∗ ?∆∗⊥

?Π∗⊥

?Γ∗⊥

?Γ∗⊥

?Γ∗⊥

A∗

!B∗

?Γ∗⊥

T(t)

T(u)

C

?B∗⊥

?∆∗⊥

B∗ ?∆∗⊥

?Π∗⊥

?Γ∗⊥

?Γ∗⊥

?Γ∗⊥

A∗

!B∗

?Γ∗⊥

C

T(u)
T(t)

W

Figure 15: Encoding typedλes-terms into MELL proof-nets

Now we can state the main theorem of this section. The proof also justifies the use
of the additional equationsA andB as well as the additional reduction rulesV andU. In
the following statement, we writeC[p] the proof-net obtained fromp by adding a finite
number of weakening wires on the top level ofp (outside all the boxes).

Theorem 8.2 Lets be aλes-typed term.
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1. If s =Es s′, thenT (s) ∼E T (s′).

2. If s→App
3
,Lamb s′, thenT (s) ∼E T (s′).

3. If s→Bs\{App
3
,Lamb} s′, thenT (s)→+

R/E C[T (s′)].

Proof. The proof proceeds by induction on→λes. We first show that cases where
s →λes s′ is an external reduction step, for which we consider all the root reduc-
tion/equivalence cases.

• For s = t[x/u][y/v] =C t[y/v][x/v] = s′, wherey /∈ fv(u) & x /∈ fv(u),
we show here the casex ∈ fv(t) & y ∈ fv(t), all the other ones begin similar.
ThusΓ ⊢ s : A comes fromΓtuv, Γtu, Γtv, Γt, x : B, y : D ⊢ t : A and
Γtuv, Γtu, Γuv, Γu ⊢ u : B andΓtuv, Γtv, Γuv, Γv ⊢ v : D, whereΓtuv :=
fv(t)∩fv(u)∩fv(u), Γtu := fv(t)∩fv(u)\fv(v), Γtv := fv(t)∩fv(v)\fv(u),
Γuv := fv(u) ∩ fv(v) \ fv(t), Γt := fv(t) \ y \ x \ fv(u) \ fv(v), Γu :=
fv(u) \ fv(t) \ fv(v) andΓv := fv(v) \ fv(t) \ fv(u).

The proof-netT (s) = T (s′) is given by

?Γ∗⊥
tuv ?Γ∗⊥

tu

?Γ∗⊥
t ?Γ∗⊥

tv ?Γ∗⊥
tu

?Γ∗⊥
u

?Γ∗⊥
tuv ?Γ∗⊥

uv ?Γ∗⊥
u

?Γ∗⊥
uv

?Γ∗⊥
tu

?Γ∗⊥
tv ?Γ∗⊥

tuv ?Γ∗⊥
tu ?Γ∗⊥

uv

!D∗

?Γ∗⊥
tuvD∗

?Γ∗⊥
tuv

?Γ∗⊥
tv

?Γ∗⊥
tv

?Γ∗⊥
uv

?Γ∗⊥
uv

?Γ∗⊥
v

?Γ∗⊥
v

B∗

!B∗

?D∗⊥?Γ∗⊥
tuv ?B∗⊥ A∗

C

C

C

C

C

T(v)T(u)
T(t)

• For s = (λx.t) u →B t[x/u] = s′ with Π, Γ, ∆ ⊢ (λx.t) u : A coming from
Π, Γ ⊢ λx.t : B → A andΓ, ∆ ⊢ u : B, whereΓ := fv(λx.t) ∩ fv(u),
Π := fv(λx.t) \ fv(u) and∆ := fv(u) \ fv(λx.t). We show here the case
x ∈ fv(t), the casex /∈ fv(t) being similar.

We can verify thatT (s) (on the left) reduces toT (s′) (on the right) in exactly
two steps so thatC[ ] is empty, i.e.T (s)→O-⊗→ax-cut T (s′).

?Γ∗⊥

?Γ∗⊥

T(t)

?Γ∗⊥

?Γ∗⊥

T(u)

?Π∗⊥

?∆∗⊥

?∆∗⊥

!B∗

B∗

A∗⊥

!B∗⊗A∗⊥

?B∗⊥OA∗

?B∗⊥ A∗

T(t)

?Γ∗⊥

?Γ∗⊥

T(u)

?Π∗⊥

?∆∗⊥

?∆∗⊥

?Γ∗⊥

?Γ∗⊥

B∗

!B∗

?B∗⊥ A∗

A∗

C C
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• For s = x[x/u]→Var u = s′, coming fromx : A ⊢ x : A and∆ ⊢ u : A where
∆ := fv(u). We can verify thatT (s) (on the left) reduces toT (s′) (on the right)
in exactly two steps so thatC[ ] is empty, i.e.T (s)→∗

d-b,ax-cut T (s′).

T(t)

A∗

!A∗

?∆
∗⊥

?∆
∗⊥

D

A∗

A∗⊥

?A∗⊥

T(t)

A∗
?∆

∗⊥

• Fors = t[x/u]→Gc t, with x /∈ fv(t), coming fromΠ, Γ ⊢ t : A andΓ, ∆ ⊢ u :
B, whereΓ := fv(t) ∩ fv(u), Π := fv(t) \ fv(u) and∆ := fv(u) \ fv(t). We
can verify thatT (s) →∗

w-b,U C[T (s′)], whereC[ ] contains all the weakenings
wires for?∆∗⊥.

?Π∗⊥ ?Γ∗⊥A∗ ?∆∗⊥?Π∗⊥ ?Γ∗⊥

!B∗

?B∗⊥

B∗

A∗

?Γ∗⊥

?Γ∗⊥ ?∆∗⊥

?∆∗⊥

?Γ∗⊥

W

T(t)

W

C

T(u)T(t)

• For s = (t u)[x/v] →App
1

(t[x/v] u[x/v]) = s′, with x ∈ fv(t) & x ∈ fv(u),
coming fromΓtuv, Γtu, Γtv, Γt, x : D ⊢ t : B → A andΓtuv, Γtu, Γuv, Γu, x :
D ⊢ u : B andΓtuv, Γtv, Γuv, Γv ⊢ v : D, whereΓtuv := fv(t)∩fv(u)∩fv(u),
Γtu := fv(t) ∩ fv(u) \ x \ fv(v), Γtv := fv(t) ∩ fv(v) \ fv(u), Γuv :=
fv(u)∩fv(v)\fv(t), Γt := fv(t)\fv(u)\fv(v), Γu := fv(u)\fv(t)\fv(v)
andΓv := fv(v) \ fv(t) \ fv(u). The proof-netT (s) is given by

?Γ∗⊥
tuv ?Γ∗⊥

tu

?Γ∗⊥
t ?Γ∗⊥

tv

!B∗ A∗⊥

!B∗OA∗⊥

B∗ ?D∗⊥

?D∗⊥

?B∗⊥OA∗?D∗⊥?Γ∗⊥
tuv?Γ∗⊥

tu

?Γ∗⊥
u

?Γ∗⊥
tuv ?Γ∗⊥

uv ?Γ∗⊥
u

?Γ∗⊥
uv

?Γ∗⊥
tu

A∗

?Γ∗⊥
tv ?Γ∗⊥

tuv ?Γ∗⊥
tu ?Γ∗⊥

uv

!D∗

?Γ∗⊥
tuvD∗

?Γ∗⊥
tuv

?Γ∗⊥
tv

?Γ∗⊥
tv

?Γ∗⊥
uv

?Γ∗⊥
uv

?Γ∗⊥
v

?Γ∗⊥
v

T(u)

C

C

C

C

C

C

T(v)
T(t)

which reduces by→c-b to the proof-net
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?Γ∗⊥
tuv ?Γ∗⊥

tu

!D∗

?Γ∗⊥
tuvD∗

?Γ∗⊥
tuv

?Γ∗⊥
tv

?Γ∗⊥
tv

?Γ∗⊥
uv

?Γ∗⊥
uv

?Γ∗⊥
v

?Γ∗⊥
v !D∗

?Γ∗⊥
tuvD∗

?Γ∗⊥
tuv

?Γ∗⊥
tv

?Γ∗⊥
tv

?Γ∗⊥
uv

?Γ∗⊥
uv

?Γ∗⊥
v

?Γ∗⊥
v

?Γ∗⊥
t ?Γ∗⊥

tv

!B∗ A∗⊥

!B∗
OA∗⊥

B∗ ?D∗⊥

?D∗⊥

?B∗⊥OA∗?D∗⊥?Γ∗⊥
tuv?Γ∗⊥

tu

?Γ∗⊥
u

?Γ∗⊥
tuv ?Γ∗⊥

uv ?Γ∗⊥
u

?Γ∗⊥
uv

?Γ∗⊥
tu

A∗

?Γ∗⊥
tv ?Γ∗⊥

tuv ?Γ∗⊥
tu

?Γ∗⊥
uv ?Γ∗⊥

v

T(v) T(v)

C

T(u)

C

C

C

C

C

C

C

C

T(t)

which reduces by→b-b to the proof-net

?Γ∗⊥
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which is equivalent via∼E to the proof-netT (s′)
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• For s = (t u)[x/v] →App
2

(t u[x/v]) = s′, with x /∈ fv(t) & x ∈ fv(u),
coming fromΓtuv, Γtu, Γtv, Γt ⊢ t : B → A andΓtuv, Γtu, Γuv, Γu, x : D ⊢
u : B andΓtuv, Γtv, Γuv, Γv ⊢ v : D, whereΓtuv := fv(t) ∩ fv(u) ∩ fv(u),
Γtu := fv(t) ∩ fv(u) \ x \ fv(v), Γtv := fv(t) ∩ fv(v) \ fv(u), Γuv :=
fv(u)∩fv(v)\fv(t), Γt := fv(t)\fv(u)\fv(v), Γu := fv(u)\fv(t)\fv(v)
andΓv := fv(v) \ fv(t) \ fv(u). The proof-netT (s) is given by
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which reduces by→b-b to the proof-net
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which is equivalent via∼E to the proof-netT (s′)
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• For s = (t u)[x/v] →App
3

(t[x/v] u) = s′, with x ∈ fv(t) & x /∈ fv(u),
coming fromΓtuv, Γtu, Γtv, Γt, x : D ⊢ t : B → A andΓtuv, Γtu, Γuv, Γu ⊢
u : B andΓtuv, Γtv, Γuv, Γv ⊢ v : D, whereΓtuv := fv(t) ∩ fv(u) ∩ fv(u),
Γtu := fv(t) ∩ fv(u) \ x \ fv(v), Γtv := fv(t) ∩ fv(v) \ fv(u), Γuv :=
fv(u)∩fv(v)\fv(t), Γt := fv(t)\fv(u)\fv(v), Γu := fv(u)\fv(t)\fv(v)
andΓv := fv(v) \ fv(t) \ fv(u). The proof-netT (s) is given by
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which is equivalent via∼E to the proof-netT (s′)

?Γ∗⊥
tuv ?Γ∗⊥

tu

?Γ∗⊥
t ?Γ∗⊥

tv

!B∗ A∗⊥

!B∗
OA∗⊥

B∗

?B∗⊥
OA∗?D∗⊥?Γ∗⊥

tuv?Γ∗⊥
tu

?Γ∗⊥
u

?Γ∗⊥
tuv ?Γ∗⊥

uv ?Γ∗⊥
u

?Γ∗⊥
uv

?Γ∗⊥
tu

A∗

?Γ∗⊥
tv ?Γ∗⊥

tuv ?Γ∗⊥
tu ?Γ∗⊥

uv

!D∗

?Γ∗⊥
tuvD∗

?Γ∗⊥
tuv

?Γ∗⊥
tv

?Γ∗⊥
tv

?Γ∗⊥
uv

?Γ∗⊥
uv

?Γ∗⊥
v

?Γ∗⊥
v

T(u)

C

C

C

C

C

T(v)
T(t)

• For s = (λy.t)[x/u] →Lamb λy.t[x/u] = s′, with x ∈ fv(λy.t), coming from
Π, Γ, x : D ⊢ λy.t : B → C andΓ, ∆ ⊢ u : D whereΓ := fv(λy.t) ∩ fv(u)
andΠ := fv(λy.t) \ x \ fv(u) and∆ := fv(u) \ fv(λy.t). We show here the
casey ∈ fv(t), the casey /∈ fv(t) being similar. We have exactly the same
interpretationT ( ) for both termss ands′ which is given by the proof-net:
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• For s = (λy.t)[x/u] →Lamb λy.t[x/u] = s′, wherex /∈ fv(λy.t), coming from
Π, Γ ⊢ λy.t : B → C andΓ, ∆ ⊢ u : D whereΓ := fv(λy.t) ∩ fv(u)

46



andΠ := fv(λy.t) \ fv(u) and∆ := fv(u) \ fv(λy.t). We show here the
casey ∈ fv(t), the casey /∈ fv(t) being similar. We have exactly the same
interpretationT ( ) for both termss ands′ which is given by the following proof-
net.
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• For s = t[x/u][y/v] →Comp
1

t[y/v][x/u[y/v]] = s′, with y ∈ fv(t) & y ∈
fv(u). We show here the casex ∈ fv(t), the casex /∈ fv(t) begin similar.
Thus,Γ ⊢ s : A comes fromΓtuv, Γtu, Γtv, Γt, x : B, y : D ⊢ t : A and
Γtuv, Γtu, Γuv, Γu, y : D ⊢ u : B and Γtuv, Γtv, Γuv, Γv ⊢ v : D, where
Γtuv := fv(t) ∩ fv(u) ∩ fv(u), Γtu := fv(t) ∩ fv(u) \ y \ fv(v), Γtv :=
fv(t)∩fv(v)\fv(u), Γuv := fv(u)∩fv(v)\fv(t), Γt := fv(t)\fv(u)\fv(v),
Γu := fv(u) \ fv(t) \ fv(v) andΓv := fv(v) \ fv(t) \ fv(u).

This case is similar toApp1. The proof-netT (s) is given by
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which reduces by→c-b to the proof-net
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which reduces by→b-b to the proof-net
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which is equivalent via∼E to the proof-netT (s′)
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• s = t[x/u][y/v] →Comp
2

t[x/u[y/v]] = s′, with y /∈ fv(t) & y ∈ fv(u). We
show here the casex ∈ fv(t), the casex /∈ fv(t) begin similar. Thus,Γ ⊢ s : A
comes fromΓtuv, Γtu, Γtv, Γt ⊢ t : A andΓtuv, Γtu, Γuv, Γu, y : D ⊢ u :
B and Γtuv, Γtv, Γuv, Γv ⊢ v : D, whereΓtuv := fv(t) ∩ fv(u) ∩ fv(u),
Γtu := fv(t) ∩ fv(u) \ y \ fv(v), Γtv := fv(t) ∩ fv(v) \ fv(u), Γuv :=
fv(u)∩fv(v)\fv(t), Γt := fv(t)\fv(u)\fv(v), Γu := fv(u)\fv(t)\fv(v)
andΓv := fv(v) \ fv(t) \ fv(u).

This case is similar toApp2. The proof-netT (s) is given by
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which reduces by→b-b to the proof-net

49



?Γ∗⊥
t ?Γ∗⊥

tv

?D∗⊥ ?Γ∗⊥
u?Γ∗⊥

uv

!D∗

?Γ∗⊥
tuvD∗

?Γ∗⊥
tuv

?Γ∗⊥
tv

?Γ∗⊥
tv

?Γ∗⊥
uv

?Γ∗⊥
uv

?Γ∗⊥
v

?Γ∗⊥
v

?Γ∗⊥
tuv ?Γ∗⊥

tu

?Γ∗⊥
u

?Γ∗⊥
tu

B∗

!B∗

A∗?Γ∗⊥
tuv ?B∗⊥

?Γ∗⊥
tv ?Γ∗⊥

tuv ?Γ∗⊥
tu ?Γ∗⊥

v?Γ∗⊥
uv

T(u) T(v)

C

C

T(t)

C

C

C

which is equivalent via∼E to the proof-netT (s′)

?Γ∗⊥
t ?Γ∗⊥

tv

?D∗⊥ ?Γ∗⊥
u?Γ∗⊥

uv

!D∗

?Γ∗⊥
tuvD∗

?Γ∗⊥
tuv

?Γ∗⊥
tv

?Γ∗⊥
tv

?Γ∗⊥
uv

?Γ∗⊥
uv

?Γ∗⊥
tuv ?Γ∗⊥

tu

?Γ∗⊥
v

?Γ∗⊥
v

?Γ∗⊥
tu

B∗

?Γ∗⊥
tuv A∗?B∗⊥

?Γ∗⊥
tv ?Γ∗⊥

tu ?Γ∗⊥
uv?Γ∗⊥

tuv ?Γ∗⊥
v

?Γ∗⊥
u!B∗

C

T(u) T(v)

C

C

C

T(t)

C

We now consider the cases wheres→λes s′ is an internal reduction step.

• If s =Es s′ or s →App
3
,Lamb s′ then the property trivially holds since∼E is a

congruence.

• If s →Bs\{App
3
,Lamb} s′ is λx.t → λx.t′ or t u → t′ u or t[x/u] → t′[x/u]

coming fromt → t′, then we obtainT (t) →+
R/E C[T (t′)] by i.h. and the

property holds by the fact that the contextC[ ] of weakening wires surrounding
T (t′) can also be considered as a context of weakening wires surroundingT (s′).

• If s →Bs\{App
3
,Lamb} s′ is u t → u t′ or u[x/t] → u[x/t′] coming fromt → t′,

then we obtainT (t) →+
R/E C[T (t′)] by i.h. and the property holds by the

fact that the contextC[ ] of weakening wires surroundingT (t′) can be pushed
outside the box containingT (t′) by using the rule→V in order to obtain a context
of weakening wires surroundingT (s′).
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Remark that the only case where we get a non empty context in Lemma 8.2 is when
simulating the ruleGc. This is becauseGc is the only rule which looses free variables,
all the other ones preserve the same set of free variables.

Corollary 8.3 (SN for λes-typed terms) If Γ ⊢λes t : A, thent ∈ SN λes.

Proof. We can apply the abstract theorem A.1 :E isEs,R1 is the relation→App
3
,Lamb

(for which we can trivially show that→App
3
,Lamb / =E is well-founded),R2 is the

relation→es\{App
3
,Lamb}, K is the relation given by the translationT ( ) in Figure 15,S

is the reduction relationR/E on proof-nets which is well-founded on typed proof-nets
by Theorem 8.1 and properties(ES), (WS), (SS)hold by Lemma 8.2.

8.3 Discussion

In this section we want to discuss some other alternative typing/reduction rules appear-
ing in the litterature for calculi with ES.

As mentioned in Section 2 one is tempted to replace rules{App1, App2, App3} by
the single rule

(App) (t u)[x/v]→ (t[x/v] u[x/v])

where no condition is used to distribute the explicit substituton [x/u] w.r.t the ap-
plication(t u).

In the typing system presented in Section 6.1 this rule wouldbe sound, i.e. subject
reduction holds. However,(App) could not be translated anymore to proof-nets. In-
deed, supposex is free inu but not int. Then the proof-nets obtained by translating
theλes-term(t u)[x/v] contains a cut between the wire representingx which is coming
out from the box containingT (u) and the single!-wire coming out from the box con-
tainingT (v). It is evident thats does not reduce to the proof-nets′ = T (t[x/v] u[x/v])
since the box containingT (v) in s cannot be duplicated at all to obtains′.

However, this problem could be solved by using a more standard additivetyping
system for explicit substituions [Blo97] where the axioms are weakened, there is a
single rule for abstraction and rules for application and substituion areadditive :

Γ, x : A ⊢ x : A
(axiom)

Γ ⊢ t : A→ B Γ ⊢ u : A

Γ ⊢ (t u) : B
(app)

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A→ B
(abs)

Γ ⊢ u : B Γ, x : B ⊢ t : A

Γ ⊢ t[x/u] : A
(subs)

Now, theLamb-rewrite rule in Figure 3 cannot be translated anymore toR/E-
reduction in proof-nets as subject reduction becomes non local: in order to construct a
typing derivation ofλy.t[x/u] from that of(λy.t)[x/u] one needs a weakening meta-
theorem saying thatΓ ⊢ u : B impliesΓ, y : A ⊢ u : B. It is evident that this kind of
manipulation on proof-nets is not possible duringR/E-reduction.

A third possible typing system coming up which makes possible the translation of
theApp andLamb-rewrite rules into proof-nets is the one appearing in [DCK97] : the
subs-typing rule is replaced by
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Γ ⊢ u : B Γ, x : B, ∆ ⊢ t : A

Γ, ∆ ⊢ t[x/u] : A

Unfortunately, it is straightforward to verify that rewriting rulesComp1 andComp2

(not considered in [DCK97]) do not enjoy anymore subject reduction.
Summing up, while the standard additive typing system for ESgives a technical

solution to prove the subject reduction property forλes and its more compact variants
mentioned in Section 2, it does not provide a correct tool to translatedλes into proof-
nets.

9 PSN implies SN

We give here a second proof of strong-normalisation forλes-typed terms. The proof-
technique we use here to derive strong normalisation from PSN was suggested by Hugo
Herbelin some years ago.

Theorem 9.1 (Strong Normalisation) Every typableλes-termM is in SNλes.

Proof. Let us define the following translationC() from λes-terms toλ-terms:

C(x) := x
C(MN) := C(M) C(N)
C(λx.M) := λx.C(M)
C(M [x/N ]) := (λx.C(M)) C(N)

Thus for example,C((x[x/y] z)[w/(w1 w2)]) = (λw.((λx.x) y) z)(w1 w2).
We remark that for everyλes-term one hasC(M) →∗

λes M . We also remark that
whenM is typable inλes, then alsoC(M) is typable inλes (just change the use
of subs1 andsubs2 by abs1 andabs2 followed by app). By Lemma 7.3 the term
L(C(M)) = C(M) is also typable in simply typedλ-calculus and thus it is inSNβ

by Strong Normalisation of typedλ-calculus [Bar92]. As a consequence we have that
C(M) is in SNλes by Theorem 4.16 and thusM is necessarily inSNλes too.

We remark that this proof technique, which is very simple in the case of theλes-
calculus, needs some additional work to be applied to other calculi [Pol04, Arb06].

10 Conclusion

In this paper we survey some properties concerning explicitsubstitutions calculi and
we describe work done in the domain during these last 15 years.

As we pointed out in [DCK97], ”the interpretation of explicit substitution via Lin-
ear Logic’s proof-nets suggests that there really exists a typed calculus of explicit sub-
stitution with full composition, being able to simulate anyone-stepβ-reduction and
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yet strongly normalizing (thus avoiding Mellies’ counterexample): indeed, the com-
position of substitution is already present in the proof-nets reduction system, as the
box-box reduction, yet strong normalization is not lost.”

We propose here simple syntax and simple equations and rulesto modelise a for-
malism enjoying all these good properties, specially confluence on metaterms, preser-
vation ofβ-strong normalisation, strong normalisation of typed terms and implemen-
tation of full composition.

We believe however that some of our proofs can be simplified. In particular, PSN
and confluence on metaterms might be proved directly withoutusing translations of
λes to other formalisms. We leave this for futur work.

Another interesting issue is the extension of Pure Type Systems (PTS) with explicit
substitution systems in order to improve the understandingof proof systems based on
them. Some work already done in this direction uses sequent calculi [LDM06], some
other [KL04, Muñ97] use an intermediate formalism betweennatural deduction and
sequent calculi, which is obtained by adding a system with ESto λ-calculus. The main
contribution ofλes w.r.t these formalisms previously mentioned would be our sound
notion of composition which is necessary to obtain a system preserving types [KL04].

It is also legitimate to ask whetherλes is minimal w.r.t. the number of rewriting
rules as one is tempted to gather the rules{App1, App2, App3} (resp.{Comp1, Comp2})
into one single rule for application (resp composition). The resulting calculus would
be given by

Equations :
t[x/u][y/v] =C t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)

Reduction Rules:
(λx.t) u →B t[x/u]
x[x/u] →Var u
t[x/u] →Gc t if x /∈ fv(t)
(t u)[x/v] →App (t[x/v] u[x/v])
(λy.t)[x/v] →Lamb λy.t[x/v] if y /∈ fv(v) & x 6= y
t[x/u][y/v] →Comp t[y/v][x/u[y/v]] if y ∈ fv(u)

Note thatλes-reduction can be translated to the correspondent notion ofreduction
in this calculus : thus for exampleApp1 can be obtained byApp followed byGc. Be-
sides that, strong normalisation of this calculus, which weconjecture to hold, cannot
be obtained via a standard translation to Girard’s proof-nets (c.f. discussion in Sec-
tion 8.3).

Another interesting question is whether we can extract fromλes a pure rewriting
system (without equations) verifying the same properties thanλes. We believe that
simultaneous substitutions will be needed for that, even iftranslation to proof-nets will
be much more intricated. Also, a total order> on variables would be necessary in
order to obtain canonical representatives for simultaneous substitutions. The first ideas
of such a solution could be found in thess-calculus defined in Section 3.2.1. A more
elementary representation of a calculus with simultaneoussubstitutions and controlled
composition could be given by
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Terms
t ::= x | (t t) | λx.t | t[s] | t(s)

Substitutions
s ::= id | x/u.s | s ◦ s

Reduction Rules
(λx.t) u → t[x/u]
(t u)[s] → (t[s] u[s])
(λx.t)[s] → λx.t[s]
x[(x/u).s] → u
t[(x/u).s] → t[s] If x /∈ fv(t)
t[s][p] → t[s ◦ p]
(s ◦ p) ◦ q → s ◦ (p ◦ q)
id ◦ s → s
x[id] → x
(x/u.s) ◦ p → x/u(t).(s ◦ p)
u(id) → id
u(y/v.s) → u[y/v](s) If y ∈ fv(u)
u(y/v.s) → u(s) If y /∈ fv(u)
y/v.x/u.s → x/u.y/v.s If x < y

Then, one can verify for example that the critical pair

t[y/v.id][x/u[y/v.id].id] ∗← ((λx.t) u)[y/v.id]→∗ t[x/u.id][y/v.id]

can be closed byt[x/u[y/v.id].y/v.id] wheny ∈ fv(u), or byt[x/u.y/v.id] when
y /∈ fv(u), if x < y holds in the dense order on variables which is necessary to obtain
a canonical order between simultaneous substitutions.
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A Appendix: An abstract theorem

Theorem A.1 LetO andP be two sets. LetR1,R2 be two relations onO ×O, S be
a relation onP × P , K a relation⊆ O × P andE an equivalence relation onO such
thatR1/E is well-founded. Suppose also

(ES) t E t′ andt K T impliest′ K T

(WS) tR1 t′ andt K T implies there isT ′ such thatt′ K T ′ andT S∗ T ′

(SS) tR2 t′ andt K T implies there isT ′ such thatt′ K T ′ andT S+ T ′
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Then, ift K T andS is a well-founded relation onT , then(R1 ∪ R2)/E is well-
founded ont.

Proof. Suppose(R1∪R2)/E is not well-founded ont. SinceR1/E is well-founded
by hypothesis, there is an infinite sequence onO whereR2/E occurs infinitely many
times so it is of the form

t . . . (R2/E) t1 . . . (R2/E) t2 . . . (R2/E) ti . . .

that is,

t (R1/E)
∗ E R2 E t1(R1/E)

∗ E R2 E t2 . . . (R1/E)
∗ E R2 E ti . . .

But tj K Tj andtj(R1/E)∗ E R2 E tj+1 imply, by (ES), (WS) and(SS), that there
is Tj+1 s.t. tj+1 K Tj+1 andTj S+ Tj+1. Thus, there areT1, T2, . . . , Ti, . . . ∈ P such
that t1 K T1, t2 K T2, . . . , ti K Ti, . . . and the following infiniteS-reduction sequence
exists

T S+ T1 S
+ T2 S

+ . . .S+ Ti . . .

This leads to a contradiction with the fact thatS is well-founded onT .
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formática Teórica (WAIT), JAIIO, 2000.

[ACCL91] M. Abadi, L. Cardelli, P. L. Curien, and J.-J. Lévy. Explicit substitutions.
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[Muñ97] C. Muñoz.Un calcul de substitutions pour la représentation de preuves
partielles en th́eorie de types. PhD thesis, Université Paris 7, November
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