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Abstract

In this paper we show that the Cahn-Hilliard stochastic SPDE has a function valued
solution in dimension 4 and 5 when the perturbation is driven by a space-correlated Gaussian
noise. This is done proving general results on SPDEs with globally Lipschitz coeflicients
associated with operators on smooth domains of R? which are parabolic in the sense of
Petrovskii, and do not necessarily define a semi-group of operators. We study the regularity
of the trajectories of the solutions and the absolute continuity of the law at some given time
and position.

Keywords: Parabolic operators, Cahn-Hilliard equation, Green function, SPDEs, Malliavin
calculus.
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1 Introduction - Weak solution

Let Q be a compact subset of R?, o and b; 1 <4 < N be real-valued functions defined on [0, 7] x
@ x R and (k;,1 < i < N) be multi-indices. Let F' denote a one-dimensional (d+1)-parameter
Gaussian noise (either a space-time white noise, or a space correlated noise), A(t,z, D,) denote
a differential operator of order 2n. Consider the following stochastic partial differential equation

N
%u(t, z) = A(t,z, Dp)u(t,z) + o(t,z, u(t,z)) F(t,z) + Z DFi (bi(t,z,u(t, x))) , (1.1)
i=1

with some homogeneous boundary conditions, denoted by (BC), defined for 1 < g < n by

By(t,xz, Dy)u(t,z) = Z Byi(t,z) DPu(t,z) =000 [0,T] x 8Q, ry < 2n — 1,
|k|<rq

and the initial condition u(0,.) = up. We suppose that the operator L = % — A(t,z,D,) is
uniformly parabolic in the sense of Petrovskii and that the boundary conditions are complemen-
tary and satisfy the normality assumption (for the complete definition see e.g. S.D. Eidelman
and N.V. Zhitarashu [13], p. 2-17). The most important class of uniformly strongly parabolic
operator in the sense of Petrovskii is defined by:

A(t,z,D,) = Z ak(x,t)Dlg,
kl<2n

where there exists a positive constant dy such that for any (z,t) € Q x [0,7], £ € R?,

(07 ( D anla) e ) < —dolg

|k|=2n



In this particular case, the definitions can be found in [[[§], p.113-121. A simple example is
provided by A(t,x, D,) = a1(t,x)Dy(az(t, z)D,), where D, is a differential operator of order n,
and (—1)"sup{(aja2)(t,x) : (t,z) € [0,T] x @} < 0. When n = 2 and Dy = A, the Dirichlet
boundary conditions (v = Au = 0 on [0,7] x 0Q) or Neumann boundary conditions (a%u =

%Au =0 on [0,7] x 9Q, where v denotes the outer normal) are normal and complementary.

A similar equation has been studied by Z. Brzezniak and S. Peszat [f] when Q = R? for
smooth bounded coefficients a; which do not depend on the time parameter ¢. Using time-
homogeneous semi-group techniques, these authors prove the existence and uniqueness of a mild
solution to ([[.])) in some weighted LP spaces (or the set of continuous functions having some
decay property at infinity), depending on the hypothesis on the initial condition ug. Unlike
this paper, we allow the case where the differential operator does not yield a time-homogeneous
semi-group and work with martingale-measures as in J.B. Walsh [2§].

Let [ > 0 be an integer and A €]0, 1[. According to S.D. Eidelman and N.V. Ivasisen [1], if
dQ is of class C?"HH2 the coefficients ay(t,z) are of class C2*(HNHX([0,T] x Q) for |k| < 2n,
the coefficients By 1,(t,z) are of class C(2n—7a++N)2n.2n=rq+1+A([0 T| x 9Q), then if G denotes the
Green function associated with L and the boundary conditions (BC), for |a| 4+ 2nb < 2n + [,
one has for every t > s > 0 and z,y € Q

a _3b —(otad+b |z — y‘ﬁ
Dx otb G(t’xa Say) < C(t - S) ( ) exXp —Cm s (12)
d 2n 1 1
itha=—, 3= = 6=—andn=1. 1.
with o = A= o T 1= g1 0 = g 0 (1.3)

Note that in some cases, it is possible to extend this upper estimate on G to the case the
subset @ is not smooth (see e.g. [[] for the case A = —A? on Q = [0, 7T] and homogeneous
Neumann’s boundary conditions). Therefore, for d < 2n, the integral fo fQ G2 (t,x;5,y) dyds
converges, so that the stochastic integrals of G(t,x;s,y) with respect to the space-time white
noise F'(ds,dy) are well-defined. Usual arguments show that in the particular case of selfadjoint
operators A(t,z, D,), such as A = ay(t)Dy(as(t,x)D,) with appropriate normal and comple-
mentary Dirichlet boundary conditions, the Green function G(t,.;s,.) is symmetrical in z and
y, so that DyG(t,z;s,y) = DgG(t,x;s,y) with |a| = |a|; then ([.J) holds for Dy instead of Dy.

We now generalize the setting of Pg], in order to define a ”weak” solution to ([[.1)), which is
an alternative to mild solutions. Return time, and consider the adjoint operator L* = —g —
A*(t,x, D;) and the adjoint boundary conditions B; = 0, 1 < ¢ < n, on [0,] x 9Q; then for
fixed ¢ > 0, exchanging the role of (¢, z) and (s,y), G(t x; 8,y) is the fundamental solution to the
adjoint problem on the time interval [0,¢]. Thus, for any smooth function ¢ on @, the function

o) = [ Glt.ais.y) ola) do (14)

Q
is the solution to the equation L*v = 0 on [0,¢] x Q, with adjoint boundary conditions (Bjv =
0,1 < g <mn)on [0,t] x 0Q, and such that v(t,.) = ¢. Then for Dirichlet’s systems (r, = ¢ — 1,

1 < ¢ <n) or in particular cases (see e.g. example [[.1]), for v defined by ([[.4) and “regular” u,
the following Green formula holds (see e.g. [[J, p. 231 or [[§], p. 133):

/Ot/Q(Lu)(S,y)v(s,y) dyds—l—/@u(o,y)v(o,y) dy:/Qu(t,w)v(t,x)dm.

Furthermore, if integration by parts yields

/0 /QDsi(bi(&y7u(s7y))v(s7y)) dyds = (_1)“%/0 /Qbi(s,y,?}(s,y))DZiU(S,y) dyds



and if fot fQ o(s,y,u(s,y))v(s,y)F(ds,dy) is defined as the stochastic integral with respect to
a worthy martingale measure, then even if u is not ”"regular”, we can define the weak solution
to ([L.1), by requiring that the following form of equation ([L.g) holds for every function v in
c*1([0,T] x Q):

N

/ /Q [cf(s,y,u(s,y))v(s,y>F<ds,dy>+Z(—n"“'bi(s,y,u<s,y>>D’;iv<s,y>dyds

=1

—l—/@u(O,y)v(O,y)dy:/Qu(t,x)v(t,x)dm. (1.5)

Using (stochastic) Fubini’s theorem we obtain the following evolution equation, which is equiv-

alent to ([L.H):

u(t,x) = /Q G(t, 30, ) uo(y) dy + /0 /Q G(t, 53 ,) o5, 3, u(s, ) F(ds, dy)
N ot
H;(t,x;s,9)b;(s,y,u(s,y))dyds, 1.6
*;/O/Q“ ) bi(5, 1 u(s, y)) dy (1.6)

where H;(t,x;s,y) = (—1)|ki‘D§iG(t,x; s,y); if G(t,x;s,y) is symmetric in z and y, the upper

|8
estimate ([[.J) implies that |H;(t, x;s,y)| < C (t — s)~(@FFl) exp <—c ‘5_3%) . We give an ex-
ample where all the requirements (except that on the existence of the stochastic integral) are

fulfilled.

Example 1.1 The boundary of the set Q is of class C*HF2, the functions ay(t) € C*HN([0,T7),
as(t,z) € CHHNIN(0, TIxQ), A(t,z, Dy) = ay(t) Aaz(t,x) A) and  sup  ai(t)ag(t,z) < 0.
t,x)€[0,T]x

Case 1 Dirichlet’s boundary conditions: uw = Au =0 on [0,T] x E?Q)L [ez'tf]LefO <|ki| <1, or
|ki| =2 and bi(s,y, z) = bi(z) for some function b; of class Cy such that b;(0) = 0.

Case 2 Neumann’s boundary conditions: let v denote the outer normal, %u = a%Au =0,
%ag(t,m) =0 on [0,T] x Q, ki = 0 or |k;| = 2, k; has even components and b;(s,y,z) = b;(z)
for some function b; of class Cs.

For d > 2n, the function G?(s, z; 5,%) need not be in L2([0, 7] x @, dsdy), so that the Gaussian
noise F' need not be the space-time white noise; we require the noise F' to be a Gaussian process
which is white in time, but has a space correlation defined in terms of a function f depending
on the difference of two vectors of R? (or such that when |z —y| — 0, the product f(z,y) |z —y|®
remains bounded for some a > 0). We just mention a few previous papers on this subject,
stressing the type of noise which is used. A particular case of this noise (where the function f
only depends of the norm |z — y|, such as f(x —y) = |z — y|~® for 0 < a < d) has been used
in C. Mueller [R], R. Dalang and N. Frangos [ff], A. Millet and M. Sanz-Solé¢ 1] in the case
QQ = R? for the wave operator. In these papers, the existence and uniqueness of a continuous
solution is proved by precise estimates of integrals involving the corresponding Green function.
A more general covariance structure (depending on the radon measure p with Fourier transform
f, or more generally a tempered distribution I' = 1) has been used in [{], [L6], [17], [26],[24] for
the wave and heat operators on R%: in the last references, the existence of a solution is proved in
some weighted LP-space, or in the space of continuous functions with some decay at infinity, and
the method uses the Fourier transform of the Green function G (see e.g. S. Peszat and J. Zabczyk
[B6] for a detailed account of existence and uniqueness results to parabolic SPDEs with a semi-
group structure in any dimension). This general covariance was also used by R. Dalang [{],
who proves the existence of continuous processes solutions to the heat and wave stochastic



SPDEs by means of an extension of stochastic integrals with respect to martingale measures for
distribution-valued integrands. In these references, the coefficients of the differential operator A
do not depend on (¢, ).

On the other hand, several attempts have been made to find function-valued solutions to
"highly non-linear” stochastic SPDEs, namely PDEs with a polynomial forcing term b; (such as
the Burgers PDE (d =1, A=A, N =1, a; = 1 and by (t,z,y) = y?), or the Cahn-Hilliard’s PDE
(d <3, A= —A? and 3, DFib;(t,z,u(t,r)) = AR(u(t,z)), where R is a polynomial of odd
degree with positive dominant coefficient) and with a stochastic perturbation driven by the space-
time white noise. Thus, G. Da Prato A. Debussche and Temam [J] and then I. Gyongy [[§] have
proved the existence of a function-valued solution to the stochastic Burgers equation in dimension
1. G. Da Prato and A. Debussche [§] have proved the existence of a function-valued solution to
the stochastic Cahn-Hilliard equation in dimension 1 (up to 3) when the perturbation is driven
by a space-time white noise (a Gaussian noise with some spatial correlation). C. Cardon-Weber
[H] and [B] has proved the existence of a function-valued solution to the stochastic Cahn-Hilliard
equation in dimension d < 3 when R is a polynomial of degree 3 and when the stochastic
perturbation is driven by the space-time white noise. The method used in these papers is the
following: using a truncation procedure and the existence and uniqueness results proved in the
case of globally Lipschitz coefficients, one proves the existence and uniqueness of a solution to
the SPDE where the polynomial coefficients have been changed. Then the uniqueness property
of the solution allows to use concatenation to obtain the existence of a solution up to some
stopping time. Finally, a priori estimates for a deterministic PDE obtained by isolating the
stochastic integral (whose behavior is controlled by means of the Garsia lemma), prove that
this stopping time is the terminal time 7. These last estimates use methods of analysis which
heavily depend on the specific form of the PDE, and no general scheme can be given. Let us
finally mention that, using semi-group techniques, Z. Brzezniak and S. Peszat [[J] have proved
the existence of solutions to some SPDE with a polynomial drift term (when N = 1, a; = 0,
and when the operator A is of order 2 and yields a semi-group of operators). Also in [(], the
existence of the solution to a stochastic wave equation in dimension 2 with a non-uniformly
Lipschitz drift has been proved, while the existence to the stochastic KDV equation has been
shown by A. Debussche and A. de Bouard [[L1]).

The aim of this paper is two-fold. On one hand, we prove that in this general context
with time and space dependent coefficients, the upper estimates ([L3) of the Green function G
and its time and space derivatives are sufficient to ensure the existence and uniqueness of the
solution u to ([L.f), provided that some integrability condition of the covariance function f on a
neighborhood of 0 is required. We prove that, when the Green function G has a lower estimate
by t~% on the diagonal (which can be the case when it admits an explicit eigenvectors-eigenvalues
expansion), this condition is necessary to be able to consider stochastic integrals of G. As in
Y and [f], we use stochastic integrals with respect to martingale measures. We give sufficient
conditions on the covariance function f for the trajectories of u to be Holder-continuous. We
then use these results to extend the existence and uniqueness of a function-valued solution to
the stochastic Cahn-Hilliard equation when @ = [0,7]% or a bounded ”smooth” subset of RY,
d = 4,5. We give necessary and sufficient conditions on the covariance function f to ensure
that the stochastic integral of the corresponding Green function G is well-defined. We study
regularity properties of the trajectories of u and prove that, if @ = [0,7]? and the diffusion
coefficient o is strictly elliptic, the law of u(t, z) has a density for ¢ > 0 and = € Q. This extends
the results proved in [§] and [H] to higher dimensions. For the sake of simplicity, we mostly
restrict ourselves to the case F' is a space-correlated noise; this could be avoided in ”small”
dimension for arbitrary Petrovskii’s parabolic SPDEs. Also note that the proof of the existence
of a solution to the stochastic Cahn-Hilliard equation extends directly to the more general



situation described in Example [[.I], when R is a polynomial of degree 3 with positive dominant
coefficient (which has no constant term in the case of the Dirichlet boundary conditions).

The paper is organized as follows. Section 2 gives necessary and sufficient conditions to
ensure that stochastic integrals of a function G which satisfies ([L.2)) are well defined, and sufficient
conditions to ensure Hélder properties of stochastic integrals appearing in ([[.]), provided that
the process u has bounded moments. In section 3, we prove both the existence of solutions
to ([L.) either in C([0,T], L4(Q)) or C([0,T] x Q) when the coefficients are globally Lipschitz
functions. We then concentrate on the proof of the a priori estimates which allow to deduce
the existence and uniqueness of a solution to the stochastic Cahn-Hilliard equation in dimension
4 and 5. Section 4 establishes Holder regularity of the trajectories, while section 5 shows the
absolute continuity of the law of u(¢,x) for ¢ > 0 and = € @ and the solution u to the Cahn-
Hilliard equation.

All the constants C appearing in the statements can change from one line to the next one.
When we want to stress the fact that C' depends on some parameter k, we denote it by Cl.

2 Stochastic integrals with respect to a space correlated noise

Let Q be a compact subset of R?, D(R. x Q) denote the space of functions ¢ € (R x Q) with
compact support, endowed with the topology defined by the following convergence: @, — ¢ if:

(i) There exists a compact subset K of RT x @ such that support(y, — ¢) C K for all n.
(ii) limy,— 400 D%, = D% uniformly on K for every multi-index a.

Let F = (F(¢), ¢ € D(Ry x Q)) be an L?(P)-valued centered Gaussian process, which is
white in space but has a space correlation defined as follows: given ¢ and ¢ in D(R; x @), the
covariance functional of F(¢) and F'(v) is

+o0o
J(p. ) = B(F(g) F()) = /0 dt /Q dy /Q o(ty) Fy — 2)b(t, ) dz (2.1)

where (Q—Q) " ={y—z2 :y,2€Q,y# z}and f : (Q—Q)* — [0,40c0] is a continuous function.
According to [R7)], the bilinear form .J defined by (R.I])is non-negative definite if and only if f
is the Fourier transform of a non-negative tempered distribution g on ). Then F' defines a
martingale-measure (still denoted by F'), which allows to define stochastic integrals (see [Rg]).
In this section, we consider fairly general functions H : ([0,7] x Q)?> — R, including Green
functions associated with parabolic operators in the sense of Petrovskii: more precisely, we
suppose that H satisfies the following upper estimate for some 8 > 1, some strictly positive

parameters « and vy and some positive constants ¢ and C: for any ¢t > 0, z,y € Q:

v ol
|H(t,x;s,y)| <C(t—s)"% exp <—c%> . (2.2)

Then the change of variables u = (y — x) (t — s)f% yields
/Q |H(t,x;s,y)|dy < C(t— s)_a+%d. (2.3)

We now give a sufficient integrability condition on the space-correlation function f of the
Gaussian noise F' to ensure that the stochastic integral of a bounded adapted process multi-
plied by a kernel satisfying (R.9) is a well-defined stochastic process. Under some additional
assumptions on H we prove that this condition is necessary.



Lemma 2.1 . (i) Let H : ([0,T] x Q)? — R satisfy (2.3) and suppose that either

/ f(w) In (|v|_1) dv < oo, if d= é(20z -1), (2.4)
Bd(ovl) Y
or
8
/ F) I E@ D gy < 0o, if d# E(204 —1). (2.5)
Bq(0,1) v
Then for any t € [0,T],
T
10 = [ [ [ 1wl fo- o) Hews ) dydsde < v (20)
0 JQJQ
(ii) Let H : ([0,T] x Q)% — R satisfy
inf{H(t,z;s,x) : € Q} > Co(t —s)™“ (2.7)
and for every multi-index k with |k| = 1:
sup {|D§H(t,x; s,y)| DX,y € Q} <Oyt — s)*(aw) , (2.8)

for a,6 >0, some constant C > 0 and any t > s > 0. Then if ([2.4) holds for every x € Q and
t €]0,T], one has either or (B.10) depending on d, where:

/ F@) (o] ™Y) do < oo, if d==(2a-1), (2.9)
B4(0,1) 0

or

/ F) o] 5@ D" gy < oo if  d# 1(za —-1). (2.10)
By(0,1) 0

Remark 2.2 . When H is the Green function of the operator % + A% on Q = [0,7]¢ with

homogeneous Neumann’s or Dirichlet’s boundary conditions, condition (B.]) holds with o =

%. We only sketch the proof for Neumann’s boundary conditions; in that case, G(t,z;s;x) >

> pensa exp(—|k[1(t — s)) (ngz‘gd COS2(]€Z'1'Z‘)). Set T =]5 — 0,5 + 0 for some 0 > 0 small
enough; then for k € N* and x €)0, x|, kx € Z implies that (k+ 1)z ¢ Z. Skipping at most every
other term and using the monotonicity of (exp(—k*(t—s));k > 1), we deduce that G(t,x;s,x) >

CY penraexp(—clkl*(t — s)) = C(t — 5)7% for some positive constants ¢ and C (see Remark
3.5 in [Q] for a similar argument). Since in the case of Green functions of parabolic operators,

5= %, the conditions (2.4) and ([2.9) (respectively (B.3) and (2.14)) are identical.

Proof of Lemma [2.3: (i) Since 8 > 1, |y — 2|? < 2871 (|z — y|? + |x — 2/%), so that for A €]0,1]

and ?o € [0, 7],
g —ylB
I(to) < C/ t2adt/ exp <—c(1_)\)u> dy

0 Q 2

1-8 \y—z\ﬁ
X/ exp | —c2 P P f(y—z)dz
Q tY
T Y s
< C'/ tQth/ exp <—5%> dy/ exp <_5 ly mz| > fly—2)dz. (2.11)
0 Q 0



k]
Set tPn =x —y, v =y — z and then u = |n|; there exist positive constants C, ¢ and R such that

+oo B
I(ty) < C/ ¢rd=2ay / exp (—cuﬁ) ud? du/ exp (—0M> f(v)dv
B4(0,R) t

< C/ p(t)dt, (2.12)
0
where for any 0 < t < T one sets
1d—2a ‘U‘ﬁ
P(t) =tP / exp | —c— | f(v)dv. (2.13)
B4(0,R) t
For fixed v # 0, set r = |v|®¢~7; then Fubini’s theorem yields
T +o0
/ P(t)dt < C f(v) |v|d+%(172a) dv/ P4 (2e1=) exp(—cr)dr.
0 B4(0,R) [o]8 T—

We now distinguish three cases:

Case 11f 2a > 1 + , then the second integral is bounded by a constant independent of |v|
and fo t)dt <C [ or [ ]v[d+v(1 29) qu , which yields (23).

Case 21f 2a = 1 4+ 22, since for 0 < |v| < R,

+oo
/ r!exp(—er) dr < C'|1 = In(jo)) 1<y,
o} T

we have fOTl/J(t) dt < Cde(QR) f(@) [T+ (Jo| 1) 1fj<13] dv, which yields (£.4)

Case 3 Finally, if 2a < 1 + 22, then for 0 < lv| <R,

+oo 1 d i
/ pity (Ge1=) exp(—cr)dr < C <1 + ]vﬁ(za_l)_d) ,
[ol8 T

so that fo t)dt < C’fB (0.R) f(v)dv, which yields (2.).

Note that for small T', the following computation gives a more precise upper estimate of
fo t)dt, which will be used in the sequel. Indeed, for v €]0,v], the decomposition of the
1ntegral over By(0, R) into {|v|’T~" > T~¥} and its complement yields

r Z(1-2a) Foo _1+1(2 _1_:@)
/ Yt)dt < C N A )\v\ ¢ dv/ r AT exp(—er) dr
0 Bd<O,T 7 ) ]8T

+C T exp(—cT™).

Thusfor0<u<7and2a7él+%donehas

T
/ Y(t)dt < C
0

Whilef0r0<u<7and2a:1+%donehas

T
/ Y(t)dt < C
0

exp(—cT ™% v[ 5 @a—1)- d]+ )
p(—eT >+/Bd(O,T NCL d], (2.14)

N -1
exp(—cT )+/Bd(O,T _,,) f(v) In (|v| )dv] . (2.15)

7



(ii) The assumptions (P-7) and (B-§) imply that for |z — y| < 2Cyt° with Cy < 40701 small
enough, one has

H(t,x;s,y) > H(t,x;s,x) — |H(t,z;8,2) — H(t,2;8,y)|
> (00—20102)(t—8)_a2%(t—s)_a.

Let a > 0 be such that Q, = {z € Q : d(x,0Q) > a} # 0; then for 0 < 2Cyt} < a,
0<s<ty<T,x¢c Q202t37 y € By(z,Cy %) and z € By(y,Cs5%), one has y,z € Q. Thus
Fubini’s theorem implies for z € Qy ¢, 8 =+ ():

to
I(ty) > / ds/ dy/ |H (to, z;8,9)| fy — 2z) |H(to, z; s, 2)|dz
0 QNBy(z,C28%) QNBy(y,C25%)

to to
C/ 5™ 2akdo ds/ fv)dv>C f(v) dv/ L sT2atdd g
0 By(0,Cas°) B4(0,R) (&)

for R = Cs tg. Again we have to study three cases depending on the power of s.
Case 1Ifd6+1 < 2a, let R = %; then one has

Y

1

st g5 > f(w) v ot dv, (2.16)

2
1
e Ba(0.R)

I(tg) > C B0 f(v) dv/(

which yields (B10).
_ _ 1
Case 21f d§ +1 = 2a, let v > 0 and let R = RA1A(CyVR1Y)); then |v| < R and ty < Cy

1
imply ('C—v2|> (s <ty and |v|% C’;l < 1; hence Cy |v|_1 > |v|_% and
(\Cﬂ) (1+1u)6
I(ty) > C - fv) dv/ ? 1 slds>C ~ f(v) In (\v\_l)dv, (2.17)
By4(0,R) (‘%) 3 B4(0,R)

which yields (.9).
Case 3 Finally, if dd + 1 > 2«, one has I(ty) > C de(o R) f(v) dv, which yields (2.10). O

The following lemma gives sufficient conditions on the covariance function f to obtain mo-
ment estimates of stochastic integrals which yield Holder regularity of the corresponding process.
For this, we impose an upper estimate of the space and time partial derivatives of the kernel H:
there exist positive constants d,7, ¢, C' such that for any ¢ > 0, z,y € Q and k € N with |k| = 1,

- 9 _ |z —y|’
k . < _ o) (a+d) v ) < _ g)(atn) _ ]
DyH(t,xz;8,y)| < C(t —s) ; '(%H(t,x,s,y)‘ <C(t-s) eXp < sy

(2.18)
In order to deal with time increments, we impose also that f satisfies the following ”monotonic-
ity” condition:
(C1) There exist strictly positive constants Cy and ¢; such that

flu) <Cif(v) for |v| <eplul. (2.19)

Note that (C1) holds if f(u) = |u|~® for some a > 0.



Lemma 2.3 . Suppose that Q is conver and let H : ([0,T] x Q)* — R satisfy the condition
(2-3). Let F be a Gaussian noise with spatial covariance defined by ([2.1) such that the correlation
function f satisfies (C1) and either ([2.4) or (B.4). Fizp € [1,+o0[, let u : Q — R be an adapted
process such that sup  E(|u(t,z)|*’) < 4+00 and fort € [0,T] and x € Q, let

(t,z)€[0,T]xQ
t
) = [ [ Htass) s, Flas.dy). (2.20)
0 J@Q
(i) Suppose that H satisfies (2.18) and let a €]0,1[; if either
/ f() In (|v|_1) dv < 400 for d= A 2a+ad—1), (2.21)
B4(0,1) Y
or .
8 (9a-tab—1)—
/ f) v [72+51) d] dv < 400 for d;éé(Qa—i—aé—l); (2.22)
Bg4(0,1) Y
then there exists C, > 0 such that for every z,z’ € Q,
A(z,2') = sup E(|I(t,z) — I(t,x')|2p) < Cplz —2|%P. (2.23)
t€[0,T]

(ii) Suppose that H satisfies ([[.3)and and let b €]0,1[ ; if either
/ f() In (|v|71) dv < 400 for d= s (2o +bn—1), (2.24)
B4(0,1) Y

or
/ f) |~ (5 (2atbn—1)—dJ* dv < 400 for d# s (2a+bn—1); (2.25)
B4(0,1) Y

then there exists Cp, > 0 such that for every 0 <t <t' <T,

H(t,z;5,y) H(t’,w;&y)} u(s, y) F(ds, dy)

2p
B(t,t') _supE< ) <C,lt—t|,

z€Q

and

C(t,t')=sup F
Tz€Q

< Cplt -t (2.26)

/Ht x; 8,y) u(s,y) (dsdy)

Proof: (i) Burkholder’s inequality implies that for every p € [1, +o0],

Az, z') sup E(/ dS/ dy/ [H(t, z;5,y) — H(t,2"s 5,9)| |u(s, y)]

tEOT

X fly—2) |H(t,x;8,2) — H(t,2';8,2)| |u(s, 2)| dz :

We prove that for A(x,z') = SUDye[0;7] fot ds fQ dy fQ dz |H(t,z;s,y) — H(t,2';8,9)| fly — 2)
X|H(t,x;s,z) — H(t,a';s,z)|, one has

Az, 2') < Cp |z — 2|, (2.27)



provided that H satisfies either (R21)) or (R.23). Assuming that (R.27) holds, Holder’s and

Schwarz’s inequalities yield

Az, ') < Cp A(z,2')P~" sup /ds/dy]Htx s,y)— H(t,2';s,v)]
t€[0,7)

X/sz(y—Z)lH(t,x;s,Z)—H(t,x';S,Z)IE(W(S,y)l” |u(s, 2)[") dz

< CAwEY s E(ulsy)®) < Cplo— 2|
(5,9)€[0,T]xQ
In order to prove (R-27), we use Taylor’s formula, the convexity of @ and the inequalities (£.9)
and (R.1§); thus for any a €]0,1[, A(x,2') < |z — 2| (T} + T3) , where

T _ |8 _ |8
T = sup/ g~ (2atad) ds/ dy/ exp <—cu) fly—2) exp (—c’x i > dz,
2€Q Jo Q Q s7 s7
T _ |8 I _ B
T, = / s~ (2a+ad) ds/ dy/ exp <—cu> fly—2z) exp <—cu> dz.
0 Q Ja s7 57

Replacing 2« by 2a + ad, the arguments used to prove part (i) of Lemma P.]] show that if either
(2:21) or (B.22) holds, then T} < +oo. To study T», we have to distinguish several cases. Let

k

0<62<1,k:Z1besuchthatc”§<%amdsete—c/;hLl Ezlc—kﬂ,then—>6and6<1

We study three cases:

Case 11f |x —y| > e|a’ —y| or |2/ — 2| > €]z — 2|, we have (changing the constant in the
exponential functions) Ty < C(g) T1, and the proof is complete.

lz—a']|
1+e

Case 21f |z —y| <elx' —vy|, |2/ —z| <e|r— 2| and |y — 2| < E|z — /|, then |x — z| >
and we have

1 1
—yl >z =z =y -2l > -z —2 > — -1 —zl|.
o312 [lo =2l =y > (132 —2) lo =1 = (g5~ 1) -

This implies for ¢ = cmin (1, 04y ) which is positive by the choice of k:

|8 118
T2§/ ~(2atad) g /dy/ eXp< ‘|y Z' )f(y—Z) exp <—Eu> dz,
0 S

and since this is the upper estimate of (R.11]), the proof is again concluded by an argument
similar to that in Lemma R.] (i), with 2a 4+ ad instead of 2a.

Case 3 Suppose finally that [z —y| < e ]w'—y[ |2/ —z| < e|z—2| and |y— 2| > E|x —2'|. Then
|z’ —y| < ‘xl;_i‘ and [z —y| < 15 |z —2'| < (1 3

Since f satisfies (R.19), we have f(y — z) < Cy f <5( —x)) Set y = x4+ ¢ (y — z) and
¢ = ¢ min (Cl 1) then

_ |8 I _ 18
T, < C/ —(2atad) ds/ dy/ exp( y’ > fly—x) exp <—5M> dz,
s

and again the proof is complete, since the right hand-side is similar to (.11]).
(i) For 0 <t <t/ <T, set

]y z| = ¢ ly—z|, so that o ]m yl <eily—=z|.

A(t,t') = sup
z€Q

/dS/ dy |H(t, z;s,y) — H(t', 255, y)]

10



P
< [ F=2) w8, 2) - H(E s, )| ds
Q
Again we prove that under either condition (R.24) or (R.25) we have
A, )y <Clt -1, (2.28)
If (2.29) holds, using again Burkholder’s, Holder’s and Schwarz’s inequalities, we deduce that

B(t,t") < C, A(t,t')?  sup  E(ju(s,y)|?) < Cplt —t'|".
(ty)El0,T]xQ

We now prove (R.2§). Using (R.9), (R.18) and Taylor’s formula, we obtain for h = t' — ¢: for any
b €0, 1], A(t,t') < |t —'|° (T} + T4), where

_ylB _ |8

T, = sup/ —QRactbn) g /dy/ exp( y| > fly—2) exp (—c =~ 2] ) dz,

zeQ s7

! b |z — y|ﬁ

T, = sup/ s+t (g 4 p)— ds/ dy exp <—07>

zeQ JO Q 7

_ 4|8
/f —z exp(—c}x+;|) )dz
Clearly, T7 is similar to T} with bn instead of ad; thus the proof of (i) yields (R.2§) if either

(2:24) or (B.29) holds. To estimate T3, we distinguish two cases.
Case 11f |z — y| < ¢ |y — 2|, condition (B-19) on f yields

' b |z —y|”
T, < O / sTlatbn) (g 4 p)= ds/ exp <—07> flx—y)dy
0 Q

s
|z — 2|°
e gz
></Qexp< c(s—i—h)V z

Set v = x — y; then since a > %d, we have for some R > 0,

t B
T, < / st (4 p)Tts dds/ exp <—cﬂ> fw)dv
0 Ba(0,R) s7

B
C’/ ~(@attn)+3 d/ exp(—cﬂ> fv)dv.
B4(0,R) 7

This last upper estimate is similar to the right hand side of (R.13) with 2« + b instead of 2a;
thus the end of the proof of Lemma R.1 (i) concludes the proof.

IN

Case 21f |x — y| > ¢1 |y — z|, then for ¢ = min(c,ccf)7 we have

t
T, < Sup/ s+t (g 4 p)= ds/ dy
Q

€@ JO
_ 4|8 _ 4|8
X/Qexp <—5%> fly—2) exp (—E%) dz .

Since (s + h)~ a+pd <s a+%d, the change of variables ( =  — z and v = y — z shows that T}
is dominated by the right hand side of (R.12) with 2« + b instead of 2« and ¢ instead of c; this
concludes the proof of (2.24)

11



Finally, using again Burkholder’s inequality and (2.9), we have C(¢,t') < C, T% sup
(s,9)€[0,71xQ
E(Ju(s,y)|*), where

t'—t .18 _ 1B
T35 = sup/ s ds/ dy/ exp <—cu> fly—z) exp <—c u) dz .
2€QJo Q Q s7 s7

Computations similar to those in the proof of Lemma R.1 (i) imply that for some R > 0,

T3 < g’—t ¥ (s) ds, where v is defined by (2.13). Fubini’s theorem and Holder’s inequality with

respect to ds with the conjugate exponents A = (bn)~! and p imply

1
T 8 m
T3 < |t — t|b/ fv)dv (/ exp (—cﬂ> sHFI-2) ds)l .
B4(0,R) 0 57

For v # 0 set 7 = |v|? s77; then since % = 1— b, we obtain

m

T3 §C|t’—t|b/
B4(0,R)

+oo
f(v) |U|d+%(1_2a_b) dv </ T_1+%[2a_%d_1+b] exp(—cr) dr)
|

U‘ﬁ T

As in the proof of Lemma R.1], we distinguish three cases, according to the power of  in the last
integral, with 2a + b instead of 2q; this concludes the proof of (2.24). O

3 Existence of solutions

3.1 The case of Lipschitz coefficients

Let 0: [0, 7] x @ xR —=Rand b; : [0,7] x @ xR — R, 1 <i< N be continuous functions such
that the following boundness and Lipschitz conditions hold:

(L1) Uniform linear growth with respect to the last variable: for every y € @

N
sup <|0(t,:c,y)| +> Ibz(t,x,y)|> < C+ly)). (3.1)
(t,{L’)E[O,T]XQ 2:1

(L2) Uniform Lipschitz condition with respect to the last variable: for any y,z € Q

N
sup (]a(t,x,y) —o(t,z,2)| + Z |bi(t, z,y) — bi(t,z, z)]) <Cly—=z|. (3.2)
(t,2)€0,T]xQ i=1

We then consider the following non-linear evolution equation for ¢ € [0,7] and = € Q:
t
uto) = [ Gltaso)u)dy+ [ [ Gltoassy)ols,yuls,) Fds.dy)
Q 0 JQ

N oot
+> Hi(t,28,y) bi(s,y,u(s,y)) dy ds, (3-3)
i=170 J@Q

for a function ug : Q — R € L*(Q).

In this section we will make the following assumptions (restricting ourselves to the case G is
the Green function of an operator which is parabolic in the sense of Petrovskii, and the functions
H; are partial derivatives of G with respect to the space variable y):

12



(C2) The continuous function G : ([0,7] x Q)*> — R (respectively for i = 1,--- , N each
continuous functions H; : ([0, T] x Q)? — R) satisfies (B.3) with constants 3,7 and a = %d
(respectively a;, 8 and 7).

(C3) The covariance of the Gaussian process F is defined in terms of f by (R.1), and the
constants «, 3,7 in (C2) satisfy either

/ f) In(jv] ) dv<oo, if d= g , (3.4)

or

g

—. 3.5
B4(0,1) Y ( )

(C4) The constants «;, 3,7 in (C2) satisfy «; < o+ 1 for every i € {1,--- ,N}.

Condition (C3) will allow to define stochastic integrals of G(¢,x;.) with respect to the noise F,
while (C4) will allow to define deterministic integrals involving H; (¢, x;.).

We at first study moment estimates of deterministic integrals. Let A\, p € [1,+o0]; for
ve LMN[0,T],LP(Q)), and 0 < tg <t < T, x € Q set

J(v)(to,t,w):/t A}H(t,x;s,y)v(s,y)dyds. (3.6)

The following lemma provides L? estimates of J(v)(to,t,.) in terms of L estimates of v(s,.). It
extends similar results proved in I. Gyéngy [[LJ] and C. Cardon-Weber [H].

Lemma 3.1 . Fiz p € [1,4+00], ¢ € [p, 40|, and let r be defined by % = % — 2+ 1. Then for

0<ty<t<T

1
P
t d
[J(v)(to, L, )llg < C \ (t—s)"""5r Jlo(s, )y ds . (3.7)
Hence given any X € [0,+00], if a + % < g—f + 1, then J(0,.,.) is a bounded operator from
LA([0, 7], LP(Q)) into L>([0, T}, LYQ))-

Proof: Using Minkowski’s inequality, (B.3), then Young’s inequality with % = % +
(B.3), we obtain

17 (0)(to,t, )y < C

to

ds
q

—8) % ex —c"_y‘ﬁ v(s
[t e (e ) ot
C t (=)~ (s, )l

t o (e ’—"ﬁfs)v) H ds

d
< C (=) u(s, )l ds
to

IN

Finally, Holder’s inequality applied with A and p = ﬁ yields that

to to

Hence for ¢ty = 0, the right hand side is finite and bounded with respect to ¢ € [0,T] if and only
if pu(—a+ %) > —1; this completes the proof. O
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The following result proves that the evolution equation (B.J) has a unique solution with
moments of all finite order. However, in order to prove that, when ug € L(Q) for 2 < g < +o0,
the || ||;-norm of the solution has bounded L” moments for ¢ < p < 400, we have to reinforce
condition (C3) as follows (clearly when p = ¢, the conditions (C3) and (C’3)(q,p) coincide, while
if p < q, (C’3)(q,p) implies (C3)):

(C’3)(a,p) Let f define the covariance of the Gaussian noise according to (£])), 2 < ¢ <
p < +00; the constants «, 3,7 in (C2) satisfy one of the following conditions:

/ f) In(jv] Y dv < oo, if 6(204 -1)= qd (3.8)
Bg4(0,1) Y
or s
/ F o Fe 4] g oo ip Bloa—1) £ L4, (3.9)
B4(0,1) v p

Theorem 3.2 . Suppose that the functions G and H; , 1 < i < N satisfy the conditions (C2)
and (C4) and that the functions o and b;, 1 < i < N satisfy the assumptions (L1) and (L2).
(i) Let ug € L>®(Q), and let F denote either the space-time white noise if « < 1, or a
Gaussian process with covariance defined by (B.4) such that (C3) holds. Then the evolution
equation (B.3) has a unique solution v € L>([0,T], L=°(Q)), such that for any p € [1, 0],
sup  E(Ju(t,z)P) < +o0o. (3.10)
(t,)€[0,T]xQ
(ii) Let ug € LY(Q) for 2 < q < +o0, let p € [q, +oo[. Suppose that the following assumptions

holds:
2c

1
q
(b) F is a Gaussian process with covariance defined by (2.1) such that (C’3)(q,p) holds.
Then the evolution equation has a unique solution u € L*>([0,T], LY(Q)), such that

sup E(||lu(t,.)||?) < 4oo. (3.11)
te[0,7T

(a) F is the space-time white noise, « < 1 and p < <.

Proof: In the case of the space-time white noise, the proof which is easier and more classical
is omitted, except that of (B.11)) in case (ii). Unless specified otherwise, we assume that F is
Gaussian with a space—correlation function f. We use the following Picard iteration scheme;
uo(t,x) = Grup(z fQ (t,z;0,y) uo(y) dy and for n > 0 let

un-l—l(t?x) - uO(t?x)—i_\/0 /QG(t,x;s,y)a(s,y,un(s,y))F(ds,dy)

N o ot
#30 [ [ s, ) bl v (s.0)) dyds. (3.12)
=170 JQ
Case (ii) Let 2 < ¢ < p < 400 and suppose that condition (b) holds; set
My () = B(Jun(t, )15)

B
and let v, be the function defined by ,(t) = ta(_2+%) / exp <—c%) f(w)dv . Using
B

0,R
(C’3)(a,p), computations similar to that proving (.6) from (dm) using (R.13) show that 1, is
integrable; set I, = fo YPp(s)ds < oo and let

en(s) = Cp (ls) + fjs—%”) ;
=1

14



the assumptions (C’3)(q,p), (C4), (-3) and the proof of lemma R.1 imply that ¢, € L1 ([0,77).
Let ¢ and I be defined as in the proof of lemma R.1}; then for ¢ < p, ¥, > ¢, = and I, > I, = I.
We prove that

sup My(t) < o0, (3.13)
t€[0,T]
and for any n > 0, t € [0, 7],
t
My41(t) < / op(t — s) [1 4+ My(s)] ds;; (3.14)
then Lemma 15 in [f] shows that
sup sup B ([Jun(t,.)|[F) < +oo. (3.15)
n  0<t<T

Fubini’s theorem, (B.3), Holder’s inequality and (R.3) imply that

—a ‘.%' — y‘ﬁ !
sup My(t) < C sup up(y)t ™ exp | —c——— | dy| dz
0<t<T o<t<T [Jg|Jog 2

o[ [ ot (e [ (-2 ) ) dy]p < Clully.

We now prove (B.14); for n > 0, M,41(t) < C, { ot) + TL(t,p) + SN, T, 2t p)}, where

< )
q

(I )

Since 3 > 1, |y —z|? < 2071 [la — y|? + |2 — 2|°]. Therefore, Fubini’s theorem, Burkholder’s and
Holder’s inequalities yield the existence of a constant ¢ such that

t —2a |z = ylﬁ
i ds(t — s) /Qdy exp (—c(t_8)7> (1+|Un(5,y)|)

X/Qf(y—z) exp (-Jé:f)'f) (1 + [un(s, 2)]) dz )
c, 12 /Qde<[/0t(t—s)_20‘/Qdy exp (—c Z:i’;f) (1+\un(s,y)\ )
Y /Qf(y—z) exp <_5 'é:;'f) (1+ funs. 2)1% >dzds]_> .

Fubini’s theorem and Jensen’s inequality imply that

/Ot(t—s)MH/Qdy exp <—c L:Z';) (1+\un(8,y)]%)
/f —z exp(—cLZ:Z; ) <1+]un(3z %) dzH ds] )

15

Q3

N

IN

Th(t,p)

t,.;s (8,9, un(s,y)) F(ds,dy)

T2'(t, p)

(t, -3 S,y) bi(s’y’un(s’y)) dy ds

T (t,p) < Cp/QdacE<

N

IN

Trt,p) < CI2qE<

[CNS]



Then Young’s, Schwarz’s inequalities, (R.3), Holder’s inequality with respect to 9, (t — s) ds and
I, < I, yield

p_p t |8 q
TMt,p) < Cpl} E( /O(t—s)QaHeXp<—cﬁ) * [<1+yun(s,.)12>

SRS

ds

)

IN
0
*é\n'a'@
ato
&
VRS

18
XHf(.) exp(—a g )‘

(t—s)7

LY(Q,dx)

IN

9
’Q’\li?'d
Q I@

&
N

/0 (6 — "2 [ (flun(s ) 9) ]

< C It | Wt —s) [1+ Ma(s)] ds. (3.16)
0

For every 1 < i < N, using (C4), (L1), (.9) with p = ¢, » = 1, and Hoélder’s inequality (since
a; < a+ 1) and Fubini’s theorem, we deduce that for ¢ < p < 400,
)

2 t — g) vite un (s, . s
T2, (tp) < CE(/O“ ) (1 (s, ) d

< c/o(t—s)aﬁa (14 E([lun(s,)[?)] ds.

This concludes the proof of (B.14). Let A, (t) = F <Hun+1(t, ) — un(t, .)HZ); a similar computa-

tion using the global Lipschitz property (L2) of the coefficients with respect to the last variable
shows that

Apia(t) < Cp /0 op(t —5) Ap(s)ds (3.17)

where the function ¢, is the previous one. Using again Lemma 15 in [ff], we conclude that
Y >0 An(t) converges uniformly on [0,7]. Therefore, usual arguments show that the solution

u to (B.J) exists in L>=([0, 7], L9(Q)) and satisfies (B.11)).

We now suppose that condition (a) holds. Set M,(t) = E (|un(t,.)||5). According to the
results proved above, it suffices to check that (using the previous notations), T;}(¢,p) < Cp fg (t—
s)7* (1 + M, (s,p))ds for some a < 1. Using Holder’s and Burkholder’s inequalities, Fubini’s
theorem, then (B.7) with £ instead of ¢, 2a instead of o and p = 2 , we deduce that for
1+%:§—|—1 andaz(2—%)a<1bythechoice0fp,wehave

ya
2
dw)

Ti(tp) < cpE< /Q /0 /Q (t—5)72 exp (—%) (1+ [un(s, ) 2) dy ds

< [ @k EQluals, ) ds.

0
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The rest of the proof, similar to that of the case (ii)(b), is omitted.

Case (i) Let ug € L>®(Q), p € [1,+o0] and suppose that the covariance function f satisfies
(C3); set
M,,(t) = sup E(\un(t,m)lzp) .
Tz€Q

We again prove (B.1J) and (B.14). Since ug € L>°(Q), the inequality (2.) proves (B.13). Let ¢
be defined by (2.13) and let o(t) = (t) +Zij\i1 t~vite ¢ L1([0,T]); then Burkholder’s, Holder’s
inequalities and (L1) yield

Maattsa) < Gy | Mot + (] [ [ an [ 160025l oo, 5.9 100 -
X|G(t,x; s, 2)| |o(s,y, un (s, ))\dz‘ )
- t /Q im@-(t,x;s,y)m+Mn<s>>dyds]
i=1
<

¢

Cp (Mo(t) + / ot — 8)[1+ My,(s)] ds) .
0

This implies (B.14) and again Lemma 15 in [[] shows that

sup  sup  E(jun(t,z)|*) < 400. (3.18)
n o (t,x)e[0,T]xQ

A similar computation for A, (t) = sup E(|unt1(t,7) — un(t,2)|**) and the global Lipschitz
Q

TEe
property (L2) of the coefficients with respect to the last variable show that (B.17) holds. As in
case 2, usual arguments prove that the solution u to (B.J) exists and satisfies (B.1(0). O

3.2 Cahn-Hilliard equation in dimension d = 4,5

The following stochastic Cahn-Hilliard equation has been studied in dimension 1 up to 3 by
C. Cardon-Weber [{] and [f]; see also G. Da Prato and A. Debussche [§]. Let @ = [0,7]¢ or a
compact convex subset of R, (t,z) € [0,T] x Q and multi-indices (k;, 1 <i < N) with |k;| <3
which satisfy the conditions in Remark [[.1], the following equation is defined in a weak sense:

ou

E(t,x) + (A?%u(t,z) — AR(u)(t,z)) = o(t,z,ut,z))F + g(t,z, u(t, z))

+ZD’“ (t, 2, u(t, z))), (3.19)

with the initial condition u(0,.) = up and the homogeneous Neumann boundary conditions:

ou  O0Au
ou_ 081 o 0. (3.20)

We will also consider the homogeneous Dirichlet boundary conditions:
u=Au =0 on 0Q. (3.21)

In this section, we will suppose that d = 4,5 and make the following assumptions:
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(H.1) R is a polynomial of degree 3 with positive dominant coefficient, and such that R(0) =0
if (B.21) holds.

(H.2) 0:[0,7T] x @ x R+ R is bounded, and the functions ¢ and b; : [0,7] x @ X R — R are
globally Lipschitz with respect to the last variable, while the function g : [0,7] x @ x R — R
has quadratic growth with respect to the last variable uniformly with respect to the first ones,
and satisfies for y,z € Q:

sup  |g(t,z,y) —g(t,2,2)| < C(1+ |yl +|2]) [y — =] (3.22)
(t,z)€[0,T]xQ
(H.3) up belongs to L4(Q) for some ¢ > d.
(H.4) Set H;(t,x;s,y) = D¥G(t,x;s,y) for |k;| < 3, where G is the Green function associated
with the operator % + A? on @ with the homogeneous boundary conditions (B.20) or (B-21)),
and the multi-indices k; and the functions b; satisfy the assumptions in Example [L1].

The upper estimates of G stated in condition (C2) are given in the introduction: « = %,

B=3%v=3, 6=7%andn=1 Clearly for |k| <3, ¢; < a+ 3 and (C4) holds. As explained

in the introduction, the Green formula shows that the weak formulation of (B.19) is equivalent
with the evolution formulation: for x € Q,t € [0, T:

mma=Lamwm%wwﬁééamemww@WHw@>
—i—/o /QAG(t,x;s,y)R(u(s,y))dyds (3.23)

! /ot /Q [iﬁ;Hi(t’ 235, 9)bi(s, s uls,) + Gt 73.5,9)9(s,y,u(s,y)) | dyds.

The following theorem completes the existence and uniqueness of the solution to (B.19) in di-
mension 4 and 5.

Theorem 3.3 . Let QQ denote either [0,7]% or a compact subset of R? with boundary of class
CHA for X\ >0, d = 4,5 and assume that (H.1)- (H.4) hold. Let f be the covariance function of
the Gaussian noise F defined by ([2.1), which satisfies (C1) and such that for e €]0,1],

/ f () o740+ + gy < 0. (3.24)
B4(0,1)

There exists a unique adapted process u in L°°([0,T], L9(Q)) that satisfies equation ([3.23).

Remark 3.4 Under assumptions (H.1), (H.3) and (H.4), the existence result proved in [}}] in
dimension 1-3 (respectively Theorem [3.3) extends to a compact Q with boundary of class CH for
A > 0, for the differential operator a(t)A? where the function a is such that supy<,<r a(t) <0,
and when F' is the space-time white noise (respectively when (H.2) holds). o

Proof: To prove this theorem we at first prove the existence of a solution when the coefficients
are truncated. Let K, : RT — R be a C' function such that

K.(z)=1if z<n, Ku(lz)=0if z<n+1, |K, <1 and |K]|<2. (3.25)

We denote by u,, the solution to the following evolution equation with truncated coeflicients:
t
wnltn) = [ Gltavmu@is+ [ [ Gtsisy oty unso)Fdsd) (320
Q 0 /Q
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Given an adapted process u, let L(u) be defined by

L(u)(t,x):/o /QG(t,x;s,y)a(s,y,u(s,y))F(ds,dy).

The arguments used in the proof of Theorem B.2 show that u,, exists, is unique and that for any

p€lqg, 7%=,
sup E([lun(t, )|[F) < +oo.
te[0,7

Indeed, let K denote the set of adapted L9(Q)-valued processes such that for ¢ < p < 1%5’
[ull: = supg<i<r E([Jult, )I[g) < 400 . For any u € K, (t,2) € [0,T] x Q, set

.mmw@>=‘Azfmmm&wKaw@NMRwawmwa

%mmmztéémmmwmwwmmm%m@wwm

N ot
MWM%=ZALEWWMMMMWMW-
=1

Since o is bounded and (B.24) implies (R.5), Burkholder’s inequality and Lemma R.1] yield that
for any adapted process u and 2 < p < 400, sup{ E(|L(u)(t,z)|P) : (t,z) € [0,T] x Q} < 400, so
that | L(u)||x < oco. Furthermore, given u,v € K, (H.2), the fact that (B.24) implies (C’3)(q,p)
forg<p< 1;15 and the argument used to show (B.16) in the proof of Theorem B.3 yield

T 5
E (IL(u)(s,.) = L(v)(s.)|]F) < C </0 Yp(s) dS) OESETE(HU(S,-) — (s, )IF)-

Since v, is integrable, L is a contraction of K for small enough 7". For the polynomial term H,,
we just need to notice that if w and v belong to L>([0,T7], L4(Q))

| Kalluts, o) Reu(s, ) = Kalllo(s, Vg B(os, )|, < Calluts, ) =v(s, Mg (3:27)
3
Using (B.7), (B-27) and Holder’s inequality, we obtain that for d < ¢ < p < +o0,

T
sup |[Hyo(u)(t,.) — Hy(v)(t, )% < ch(”‘”(%—%)/ (t—s) & t30-0)
0<t<T 0
xE(|[u(s,) —v(s,.)|[7) ds
_a

< )y

A similar computation based on the quadratic growth and increments property of g with respect
to the third variable shows that for % <qg<p<+oo,

_d
sup [ u(w)(t, ) = Ju(v)(t, )l < Cu T30 u =]
0<t<T
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Finally, the estimation of 72 made in the proof of Theorem shows that

sup_ [[Bw)(t,.) ~ B)(t, )k <O sup T fu — o
0<t<T 1<i<N
Hence, there exists Ty > 0, independent of the initial condition ug, such that for 0 < T < Tj,
L+ H,+J,+ B is a contraction of IC, and hence admits a unique fixed point such that u(0,.) = ug.
A concatenation argument implies that (B.2d) has a unique solution on [0, 7] for an arbitrary
terminal time 7.

To prove the existence and uniqueness of u we follow the proof in C. Cardon-Weber [[I]. Let 7,
be the stopping time defined by: 7, = inf{t > 0, ||u,(¢,.)||; > n}. By uniqueness of the solution
to (B-29), the local property of the stochastic integrals yields for m > n, wun(t,.) = un(t,.) if
t < 7,, so that we can define a process u by setting u(t,.) = up(t,.) on t < 7,. Set 7o, = lim,, 7.
Then u is the unique solution of (B.19) on the interval [0,7,). We just need to prove that
Too = 00 a.s.

Set v, = uy, — L(uy,); then for every T > 0, v, is the weak solution on [0, 7] to the SPDE (with
the same boundary conditions as (B.19)):

%u(t2) + A% (t,2) = A[Kn(llon(t, ) + Lwn) (&, )l R(on(t @) + Lun) (t,2))| =
Kn(llon(t,.) + L(un)(t, )llq) 9(t, @, vn (¢, 2) + L(uy)(t, x))
+ N DEbi(t 2, va(t, @) + Llu)(t, ),
vn(0,.) = up(.),
Gon — 0B — () (resp. v, = Av, = 0) on 0Q.
(3.28)
Since o is bounded, the Garsia-Rodemich-Ramsay Lemma (cf. eg. [14]), (B.24) and lemma P.J
yield that for any p € [2, +o0],

Slrlpr(llL(un)ll’éo) <oo. (3.29)

Since ug belongs to LI(Q),
sup [|Gruollg < [luollq- (3.30)
t<T

We need to prove a uniform upper estimate for the drift terms H,, (u,,) and Jy, (u,,) (the estimation
of the other drift term B(u,), which is easier, will be omitted and to lighten the notations, we
will assume that b; = 0, 1 < ¢ < N). Since the function AG has a regularizing effect, we first
show that w,, belongs to the sets L*([0,7T], L?(Q)) for some well-chosen a.

Let us introduce some notations: set A = —A, let < .,. > denote the usual scalar product
in L2(Q), let (e, , n € N%) be a basis of L?(Q) made of eigenfunctions of A (namely e, (z) =

¢ e, (z;) and either eq = % , en(T) = \/g cos(nz) for n > 0 in the case of the Neumann

boundary conditions (B.2(), or e,(x) = \/g sin(nz) for n > 0 in the case of the Dirichlet

boundary conditions (B:21) if @ = [0,7]¢). The corresponding eigenvalues are A2, where \, =
2?21 n?. For pp# 0 and u € Dom(AH), let

Aty = E N <ep,u>ep;
keNd*

Aty exists for every u such that ), nax )\Z“ < ep,u >2< oo0. In the sequel, for a function
u:[0,T] x Q@ — R, we will set (if ey is a constant eigenfunction):

m(u)(t) =< eg,u(t,.) >= e /Qu(t,x)dx and u(t,y) = u(t,y) — m(u)(t).
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Apply A~! to the equation (B.33)) and take its scalar product in L?(Q) with @, (t,.); this leads
to

A= 28, (8, )13 = 147 25a(0,.) 13 +/0 1A 20, (s, )3 ds (3.31)
/ Kallon(s:) + Lun)(5: o) [ [Roalo.2) + Lun)(5,2)) (5. 2)
Q
+9(s,z,vn(s, ) + L(un(s, z)) .Aflf)n(s,x)} dzxds = 0.

This equation is justified because v, belongs to L*([0,7] x Q). Using the properties of the
polynomial R, computations made to obtain (2.19)-(2.21) in [f], we obtain that for some b > 0,

HA*”mma@+/WMV%M&N@@
/Iflw )+ L) (5, ) [on(s,) + L(un)(s, )|l ds
sAcu+mwwf+MWMam®w+Mﬁﬁmma (3.32)

Let us find a second “a priori” estimate. Denote by v, the Galerkin approximation of v, and
let P, be the orthogonal projector on Span{ey, ..., e, }. For every w, v} is the “strong* solution
to the following PDE:

T (. x) + A% (¢, )
A Kl (t, ) + L) (b ) P (R (8, 2) + L) (2, 2)) (3.33)
— K (|[of (¢ ) + L) (¢, llg) Pan gt 2, 032 () + Lun) (¢,2))) = 0.

The solution v to (B.33) is unique on some random time interval [0,#"[ and we prove that
= +00. The boundary conditions satisfied by v;"* and the Green Formula yield

/Nwmmem@mzmwmm@
Q

We now take the scalar product in L?(Q) of (B.33) with v/; using once more the Green formula,
we obtain

S+ [ AR ) do = K+ L))
X /Q [R(U,T(t, x) + L(uy)(t,z))) Av)t (t, x) + g(t, z, v (t, ) + L(uy)(t, x)) v, (¢, x) | de.

Using the local Lipschitz property of R and g(¢,z,.) and the fact that f m(t x))3Av™(t, x) do
is negative, that the leading coefficient of R is positive and that || K, Hoo § 1 we obtain:

lom (¢, 113 +/0 [HM?{L(S, I3 +m(vy(s,.))?| ds < |uoll3 + Cr (1 + [|L(un) || + m(uo)?)
+C(1+\|L(un)||§o)/0 lon (s, MaKn (o' (s,.) + Lun)(s, )lg) ds. (3.34)

The norm (||A e H%Q(Q) + m(o)Q)% is equivalent with the Sobolev norm of W?22(Q) (cf. eg.
Da Prato and Debussche (1996) p. 245). The sequence (v"),, is bounded in L2([0, T], W22(Q)).

n
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Thus, ™ = oo and this sequence converges as m — -+oo in the weak* topology of L?([0,T],
W22(Q)) . Its weak limit is the weak solution to (B-2§) and hence is equal to v,. Therefore v,
belongs to L2([0, T], W%2(Q)), and we can repeat the above computation with v,, instead of v
which yields

Jentes DB + [ [13eno, V13 + mlens, 1)%] ds < ol + €t + L)% + (o))
0
FO( A+ (L (un) %) L/n\hm DAEA(on(5, ) + Ln)(5, ) ds

Thus, (B.39) and Schwarz’s inequality imply that

MM)M+/MNM&%+m%@wﬂ@SMM
+Cr(1+ | E(un) %) + Cr (14 | E(un) ) | Ao ]13 + mo(uo)?

Inequality (B.29) yields that for 3 €]1, +o0],

SﬁpE(t:fé%]Hv"( D) < oo, (3-35)
sng([/T{HAvn( I3 4 m(va(t,.))? }dt] ) < 00. (3.36)

Moreover, by Sobolev’s embedding theorem (Adams 1975, Corollary 5.16) there exists C' > 0
such that for d > 4 and 2 < r < 24 if u € W22(Q), ullr @) < Cllullw22(g)- Thus, (B.36)

a—a
becomes for 2 < r < 24 3 € [1,+o0],
T

sup Y / Up, - < 00. 3.37
wB([ [ lloa(t. )1 @)’ (3.37)

The inequalities (B.29), (B-38) and (B-37) imply for 2 < r < d 4, B € [1,+o0],
sup E( sup [[un(t,.)[|3”) < oo, (3.38)

n te[0,T)
T

supE([/O (£, )]|2 dt} ) < . (3.39)

Let us use the interpolation method to prove that u, belongs a.s. to L%([0,T], LR(Q)) for
20 > r>R>2a>1V2 Set R=(1-)\)2+ \r for A € [0,1]; Hélder’s inequality implies

that
T T 2a(1-X) A
AH%(HmﬁSAHw(HbMA)W dt.

Let A = 22, we obtain

T 24(1-3) T
; [[un(t, )HRdt< sup ||un(t, )3 <. (2, )II7 dt

t€[0,T]

(B:39) and (B:39) imply that for R € [2, 2% [ and a > 2,

sng([/OTHun( Il d } ><oo. (3.40)
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Using lemma with p = ?, so that % =1+ % — 2 we obtain

=

| H () (1 )lly < © /0 (t = ) T3 (fun(s, )% + 1) ds

Let 7,7 €]1, +00] be conjugate exponents, with ~ close enough to one to ensure (—dle—Q + 4%,) >
—1; this is possible (choosing R close enough to %) if 3 + 4 > 3(d—4), ie., (2 - é)d < 2.
Since g > d, this yields d < 5 for any ¢ €]d, +00[. Then Holder S mequahty 1mphes
t ire 1t L
)t )y < €[ [ 6= 9 F 87 as] [ [ (sl + 17 ds]
0 0
Using (B.4(), we obtain
SupE( sup HHn(un)(t,.)Hg) < 0 (3.41)
n te[0,T)

A similar computation (using the quadratic growth of g) yields for p = g, ==1-% —|— L and
7 close enough to one to ensure that yd(—1 + ;%) > —1 (i.e., for d < 8 and R Close to T)
yields
supE( sup HJn(un)(t,)Hqﬁ) < 4o00. (3.42)
n te[0,7

The equations (B.29)-(B-30), (B-41]) and (B.47) imply that for 8 € [q, +o0[, d < ¢:

sup B(_sup [lun(t, )] < o,
n t€[0,T]

We can now conclude that 7., = 400 a.s.; indeed, for every T" > 0,

P(ra <) = P(sup fun(t: )y = ) < B sup fun)17)

so that lim,, .o, P(1, < T) = 0. Therefore, we can construct the solution to the SPDE (B.23)
on any interval [0, 7. O

4 Regularity of the solution

The following lemma studies the Holder regularity of the term involving the initial condi-
tion. There are many possible situations, depending on the boundary conditions, whether
fQ (t, z; O ,y)dy = 1 or not, which requires two different arguments. For (¢,x) €]0,7] x @Q,

set Gyug(x fQ (t,2;0,y) up(y) dy and set Goug = up.

Lemma 4.1 . Suppose that Q is convex and that G satisfies ([.3) with a,b € {0,1}.
1) (i) Let ug € LY(Q) for some q € [1,+00[; then Gug € C(]0,T], L1(Q)).
(ii) Let ug be bounded; then for 0 < XA <1 and 0 < to < T, Gug € C*([to, T] x Q).
2) Assume furthermore that fQ G(t,z;s,y)dy =1 for all (s,t,x) €)0,T)? x Q with s < t.

(i) Let ug be continuous; then Gug € C([0,T] x Q).
(ii) Let ug € LY(Q); then Gug € C([0,T], L1(Q)).

(i4i) Let ug € CMNQ) for some X €]0,1[; then for 0 < s <t < T, sup |Gug(z) — Gug(z)]
z€eQ

<C(t-s)7.
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8) Let Q = [0, M]%, ug € CMNQ) for some X €]0,1[ and suppose that for every 1 < i < d, if
&= (x1,  ,Ti 1, Tit1, - ,2q), there exists a function ¢; : [0,T] x R x [0, M]4~1 x [0, M]¢!
such that

G(t,z;0,y) = ¢i(t, xi + yi, 24, 9i) + €idi(t, T3 — Y3, Tis 0i)
with €; € {—1,1}, with Supy 2)c(0.77xQ fQ |i(t, xi + eys, i, 0;)| dy < +oo for e € {—1,+1}, and
suppose that either one of the conditions (a) or (b) holds:
(a) i =41 and ¢i(t,r + 2M, &, 9;) = ¢i(t,r, T4, 7;) for every r € R.
(b) up(z) =0 for x € 0Q).

Then for any x,x' € Q one has sup |Gyuo(z) — Grug(x')| < C |x — 2|
t€[0,T]

Remark 4.2 . This proposition can be used for any convexr compact subset Q; in (1), G need
not to be a semi-group. If Q = [0, 7| and G is the Green function of the operator %—l—A? =0, for
ug € CMQ), 0 < X < 1, the function G ug(.) € C%’)‘([O,T] X Q) under the homogeneous Neumann
boundary conditions ([3.2Q), while under the homogeneous Dirichlet boundary conditions ([3.21),
one has supy<;<p |Grug(x) — Grug(x')| < C'loz — 2’|}, and for 0 <ty < s <t < T, one has for
any 0 < p < 1, sup,eq |Gruo(z) — Gsuo(w)| < C(to) [t — s|*.

Proof of Lemma [ 1 ) Given 0 < tg < s <t <T,0 < X <1, [|Grug — Gsuplld <
Clt —s|MC(M; + Mg), Where

My = K;mhé!A%W+%1—@$_WM)wp(—%mlizfiﬁw>d0

A —yl8
My, = /dw/ 570N oxp (—cu> uo(y) dy
Q |/e s7

Clearly, My + My <t for some ¢ > 0.
(i) A similar argument for ¢ = +oo shows that for 0 < top <t <t/ <T,z,2’ € Q,0 <A< 1
and some ¢ > 0,

q

A
U ug(y) dy

1 q
/ (0t + (1 — 0)s)~ @ qg
0

|Ghug(x) — Gyu(')] < C't5° (|t’ —tP 4]z — g;'|A)

2) Since [, G(t,2;5,y)dy = 1 for every s < t, Gyuo(z) — uo(z fQ (t,2;0,9) [uo(y) —
uo (m)] dy and since G is a semi-group, for ¢t < ', Gpug(z) — Gtuo = fQ (t,2;0,y) dy
fQ t' y;t, 2)[up(2) — up(y)] dz, so that the study of the time—regularlty is completed by that
at 0.

(i) One has to check that for any x € Q, Giug(z) — up(z) converges to 0 as t — 0. The
argument, based on the continuity of ug at z, is similar to the previous one (see e.g. [}, Lemma
2.1).

(ii) Let up € LYQ), let (uf)n>1 be a sequence of continuous function converging to ug in
L9(Q). According to (i), (Gug) belong C([0,T] x @) and it suffices to check that sup, ||Gruglly <
C|lug|lq- This follows from Hélder’s inequality and (.9).

(iii) Using the Hélder continuity of ug, one has

_ 8
_ r—Yy
sup |Grug(x) — up(z)] < supC [ t7 exp (—c’ > | ) luo(y) — uo(z)| dy
TEQ z€Q Q t
_ 8 _ A
< supC [ t7%exp (—c|x Yl ) <|x 7y|> 5 dngtA%.
eeQ J@ t ts

(3) The proof of the space regularity under condition (a), which is a straightforward extension
of that of ] Lemma A.2 and [, Lemma 2.2, is omitted.
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We suppose that (b) holds and compare the function Gugy at points z = (x1,21) and 2’ =
(2}, 1) with z; < 2}; increments of other components are similarly dealt with, and provide the
required regularity. Obvious changes of variables yield Gyug(z) — Grug(z') = Sb_| Di(t, z, '),
where if we set Q = [0, M]4~1,

M—(z)—x1)
Dl(t7x7x,) = / / (bl(tw%',l + ylai.lagl) [UO(y) - uO(yl + (1./1 - x1)7y1)] d:ljl dyl )
0

DQ(t’xax,) =é1 /

xl 1

/gmxl i 1) [uo(y) — uoys — (&, — 1), 31)] i dys »

M
Dy(t, z,a) = / ( / b1 (2 + g1, 1, n) [uo(y) — wo(M, §1)] dir dyn
M—(z}—x1)

0
—/ / o1t 2y +y1, 21, 91) [wo(yr + (2] — 21),91) — wo(0,91)] dgr dy1
a:l—azl
xl—azl
Dy(t,z,a') = 1 / / o1(t, 2, — 1, &1, 1) [uoly) — uo(0, §1)] din dys

M+( :rlf:vl
—81/ /¢1 (t, 2] —y1,21,01) [wo(va — (2] — 1), 91) — uo(M, 91)] dir dy; -
M

The Hoélder regularity of ug and the integrability property of ¢ (¢, ., 21, .), uniformly with respect
to (t,21), conclude the proof. O

We suppose that ug € C*(Q) for some a €]0,1[; then ug € L1(Q) for any ¢ > d, so that by
Theorem B.3, the solution u to (B.23) belongs to L>°([0,T], L4(Q)) for every q €]d, +oo[. Remark
[:J gives the regularity of Guy depending on the boundary conditions, while Lemma P.3 gives
the regularity of the stochastic integral in (B.29). Thus it suffices to study the regularity of the
drift terms of (B.23) with coefficients which may have polynomial growth.

Lemma 4.3 . Let G be a (non-necessarily time-homogeneous) semi-group satisfying (1.3) with

= 2d, let a be a multi-index such that |ald < 1, H(t,z;s,y) = DIG(t,x;s,y). Let b :
[0,7]x Q@ xR — R be measurable such that sup{|b(t,z,y)|, (t,z) € [0,T]|xQ} < C|y|™ for some
m>1, let 0 << la‘é and 0 < p < [(1—|a|5)(§/\%)} ALl. Then ifu:Qx[0,T] xQ — R
is a process in LOO([O,T], L1(Q)) for q large enough,

t
B(u)(t,z) = /0 /QH(t,x;s,y) b(s,y,u(s,y))dyds.
the map B(u) belongs to CM([0,T] x Q).

Proof: The argument, based on the factorization method (see e.g. G. Da Prato and J. Zabczyk
[Lay) is similar to that in the proof of section 2.3 in []; it is briefly sketched.
Let § = |a| 0, € €]0, 1] and set

J)(t,x) = /O/QG(t,:c;s,y) (t —s)"“v(s,y)dyds,
Kw)(t,z) = /O/QH(t,x;s,y) (t —s)= L b(s,y,v(s,y)) dyds .

The semi-group property of G implies that for every (t,z) € [0,T] x Q, B(u)(t,z) = sin(em)

T

x J (K(u))(t,z). We prove that for ¢ > 6 +a mT_l, K maps L*([0,T], L(Q)) into itself. Indeed,
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it suffices to use Lemma B.1] with ¢ and 7?1, so that l =1- q_ , and () We then prove
that for v € L>(]0, T, L9(Q)), the trajectories of J (v ) have the required Holder regularity. Let
r,a' € Q; then |7 (0)(t,2) — T (0) (t,2')] < Ay(t,,4) + As(t, 2, 2'), where

t

Ay(t,z,2’) = /0/621{|ym|sxfx}(t—8)€ <\G(t,w;s,y)\+\G(t,w';s,y)!> lv(s,y)| dy ds,
t

Aot z,a) = /0 /Q Ltyalo e (E — )7 Gt 75 5,y) — Glt.a"s5,9)] |o(s, )| dy ds.

Holder’s inequality and a change of variables yield that for 0 < pu < 1

At,a)) < C / ~4) (s, ), ( / wexp<—c|z|ﬁ>tadz) ds
|2|<|z—a’|t B
< ]m—m]“/(t—s)e%wﬁu ds. (4.1)
0

The convergence of this last integral requires p < g (1 —€— %) and 1—e— g > 0. Furthermore,
if |z —y| > |2/ — 2|, and Z is a convex comblnatlon of x and 2/, then |Z — y| > (\2m ' —y|A

|2’ — y\) Therefore, Taylor’s formula and Holder’s inequality imply that for 0 <p<l,

t
Aot ') < Clo— o [ (0977 (s, ds, (42)
0

1o
and the last integral converges if yu < G

Similarly, for 0 <t <# <T and z € Q |T(v)(t,x) — T(v)(t',z)| < Bi(t,t',z) + Ba(t,t', ),

where

B(tta) = [ 100 O i) = ¢ =) Gl s o)y
t/
Battitx) = [ [ (¢ =) (G ais, )] (s, dy ds.
t JQ
Computations similar to the previous ones yield for A €]0, 1]
t
Bit.ts) < Cle—tP [ (0-9)7 " Juls, )l ds. (43)
0

t/
Bt 2) < c/ (' = 8)= 5 [lo(s, )y ds < Ot — #1755, (4.4)
t

o

1l
The integral in the right hand-side of ([..3) converges if A < %, while that in the right

hand-side of ([£.4) converges for ¢ < 1 — %. Thus for ¢ arbitrary large and ¢ close enough to 4,
we see that the inequalities ([L1)-(f4) conclude the proof. O

The following theorem summarizes the results proved in Lemmas .3, .3 and Remark [L.2.

Theorem 4.4 . Assume (H.1), (H.2) and (H.4), let d = 4,5, ug € C*(Q) for some a €]0,1],
F be a Gaussian process wz’th covariance define in terms of the function f by (2.1), such that
(C1) holds and de(01 v) o]~ 4 H)H dy < oo for some € > 0. Then the solution u to

[B23) belongs to CM([0,T] x Q) under the Neumann boundary conditions (B.2Q) (resp. the map
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x — u(t,r) € CH(Q) uniformly in t € [0,T] while the map t — u(t,z) € C*([to, T]) uniformly in
x € Q for 0 <ty < T under the Dirichlet boundary conditions (3.21)), where

max; k; V 2 ed < a ed
0<A 1—-—" — — d 0<p A —.
<AL ( 1 > 3’ 1 an <p<a 5
Finally, a straightforward extension of the preceding computations, using Lemmas .3 and [.3

(with «; instead of a + |a|d), provides Holder regularity for the solution to (B-J).

Theorem 4.5 Let Q be convex, suppose that G satisfies ([[L3) and that the assumptions of
Theorem [5.3 are fulfilled. Let ug be a continuous function on Q, let u be the solution to (B.3)
and set v(t,z) = u(t,x) — Gyuo(x). Then

(i) If a < 1 and F is the space-time white noise, then v € CM([0,T] x Q) for 0 < X <
infi(1+a—ai)/\1*T°‘ and 0 < p < MAIQ—;‘/\L

(i) If « > 1 and F is a Gaussmn process with covariance function f defined by (2-1) such
that (C1) holds and fB 0.1) f () |v] =4 4945 gy < 400 for some € > 0, then v € CM([0,T] x Q)

for 0 < A <inf;(14+ o —a;) A (edd) A1 and0<u<w A (ed) A 1.

5 Density of the solution to the stochastic Cahn-Hilliard PDE

In this section, we concentrate on the solution to (B.23) in dimension 4 and 5 under either the
homogeneous Neumann or Dirichlet boundary conditions on Q = [O,W]d. Thus, we prove that
under proper non-degeneracy conditions on the ”diffusion” coefficient o, the law of u(t,x) has
a density for t > 0 and z € Q. This extends results proved in [f] and [[] to higher dimension.
Since the noise F' has a space correlation, the setting of the corresponding stochastic calculus of
variations is that used in [R1]. Let Q = [0,7]¢, £ denote the inner product space of measurable
functions ¢ : @ — R such that fQ dx fQ dy lo(@)| f(z —y) |p(y)|] < +o0, endowed with the inner
product

<@, >5=/Qd:v/Qdy90(w)f(w—y)w(y)-

Let H denote the completion of £ and set & = L%([0, 7], ) and Hr = L%([0,T], H). Note that H
and H7 need not be spaces of functions, and that Hr is a Hilbert space which is isomorphic to the
reproducing kernel Hilbert space of the Gaussian noise (F(¢); ¢ € D([0,T] x Q). This noise can
be identified with a Gaussian process (W(h) h € Hr) defined as follows. Let (ej, j > 0) C &
be a CONS of H; then (W; fo fQ ej(x) F(ds,dx), j > 0) is a sequence of independent
standard Brownian motlons such that

D=3 [ <elontes n dWi(s) 0 € DOTI X Q).

7>0

For h € Hr, we set W(h) =}, fo < h(s),e; >1 dW;(s), and use the framework of the Malli-
avin calculus descrlbed in @ to define the Malliavin derlvatlve DX of arandom variable X and
the corresponding Sobolev spaces DV, Given X € DY2, h € Hyp, set DX =< DX, h SHp=
fOT < Dy X, h(r) >y dr, where D, , X € H for every r € [0,7]. Finally for » € [0,7] and
peH, set Dy, X =< Dy s, >n.

Since the coefficients R and g¢(t, z,.) are locally Lipschitz, we need to localize the Sobolev
spaces as follows. A random variable X belongs to ]Dl(;zc’ if there exists an increasing sequence
Q, C Q such that lim, P(,) = 1 and for every n, there exists a random variable X,, € DLp

and X = X,, on Q,. Let up € C(Q) and suppose that the conditions (H1) and (H’2) hold, where
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(H’2) The function o : R — R is bounded, globally Lipschitz, the map g(¢,x,.) is of class
C! with quadratic growth and satisfies (B.29), and the maps b;(t,,.),1 <i < N are of class C*
with derivatives bounded uniformly in (¢, x).

Let u denote the solution to (B.2J) with either the homogeneous Neumann or Dirichlet
boundary conditions. Lemmas P.3 and [L.3 imply that the trajectories of u — Gug are almost
surely Holder continuous on [0,7] x @, while the function Gug is clearly bounded by ||ug]|co-
Therefore, lim,, P(£2,) = 1 if for every n > 1 one sets

Q, = {w € Q : sup{|u(t,z)|, (t,x) € Q} < n}

We now construct a sequence of processes u(n) € D for every p € [2,+00[ such that
u = u(n) on Q,. Let K, be the sequence defined at the beginning of the proof of Theorem
B.3, which satisfies (B.25); set R,(z) = K,(|z|)R(z) and g,(t,z,y) = K.(|ly|]) g(t,z,y). The
functions R, and y — g, (t,2,y) are of class C! with bounded derivatives. Hence Theorem B2
yields the existence and uniqueness of the process u(n) solution to the evolution equation:

u(n)(t,z) = Gtuo(m)—i-/o /QG(t,x;s,y)a(u(n)(s,y))F(ds,dy) (5.1)
+/0 /Q[AG(t,x;s,y)Rn(u(n)(s,y))+G(t,x;s,y)gn(s,y,u(n)(s,y))
N

+ > Hit,;5,9) bi(s,y,u(n)(s,y)) | dyds .

i=1

The local property of stochastic integrals implies that u(n) = u on €,,. The following proposition
shows that u(n) € DP for every p € [2, +ool.

Proposition 5.1 . Let Q be a compact subset of RY, ug € C(Q), let 0 : R — R be globally
Lipschitz and for i € {1,--- N}, let b; : [0,T] x Q X R satisfy the conditions (L1) and (L2),
and suppose that the maps y — b;(t,z,y) are of class C* with bounded derivatives, let G and
(H;, 1 < i < N) satisfy the conditions (C2) and (C4). Let F be a Gaussian process with
space covariance defined by in terms of a function f which satisfies the condition (C3).
Then for every p € [2,+00[ and (t,z) € [0,T] x @, the solution v(t,z) to belongs to
DYP. Furthermore, for every r € [0,T] and ¢ € H, D, v(t,x) =0 if r > t, while there exists a
bounded, adapted family of random variables (S(s,y), (s,y) € [0,T]x Q) such that for 0 <r < t:

D, v(t,x) = < G(t,z;r, %) o(v(r,*)), ¢ >x +/ /Q[G(t,x;s,y) S(s,y) (5.2)
N

X Drpv(s,y) F(ds,dy) + Y Hi(t, 3 5,y) dsbi(s,,0(s,)) Drpv(s, y) dydé’] :
=1

and for every p € [1,400],

sip B (‘/Ot 1Dy ev(t, ) |2 dr ,,) — C(p) < +%. (5.3)

(t,2)€[0,T]xQ

Furthermore, given 0 < s <t <T, if ¢ denotes the function defined by (2.13),

t—s

¢ N
sup E </ | Dy pu(t, )13, dr) <C Y(r)dr + Z(t — 5)2Urazai) | (5.4)
s i=1

z€Q
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Proof: Let (vy,, k > 0) be the Picard approximation scheme of v defined by (B.13); then by the
proof of Theorem B.J, the sequence (vi(t,z), k > 0) is bounded in LP(Q) uniformly in (¢,x) and
converges in LP(2) to v(t,z). Following a classical argument, we prove by induction on k that
vi(t, ) € DYP and that

sup sup FE <Hka(t,x)H%T) < 400, (5.5)
ko (t2)€[0,T]xQ

Z sup FE <|]ka+1(t,x) — ka(t,x)H%T> < 4o00. (5.6)
o (L2)E[0,T]xQ

Then using [R3], Lemma 1.2.3, we conclude that Duvy(t,x) converges to Dv(t,z) in the weak
topology of LP(Q2, Hr); furthermore, this yields (5.J). Since v is deterministic, it belongs to
DLP; suppose that v, € DYP; since o is globally Lipschitz, Proposition 1.2.3 in [RJ] implies that
o(vk(s,y)) € DY? and that D, (0 (vk(s,y))) = Sk(s,y) Dr.ovk(s, y), where Si(s,y) is a bounded
adapted process. Furthermore, for every r € [0,7T] and ¢ € H, D, ,vp41(t,x) = 0 if r > ¢ and
for r < t:

¢
D, pvpp1(t,x) =< G(t, x;7, %) o (v (1, %)), ¢ > +/ / [G(t,x;s,y) Sk(s,v)
r JQ

N

XDT,vak(S,y) F(dS,dy) + ZHl(t,x,s,y) 83bi(5,y’vk(5,y)) Dr,vv(s’y) dde .
i=1

Let ¢ be the L'([0,7]) function defined by (R.13) and set I = fOT ¥(r)dr . The linear growth
condition on o and equations (B.1§) and (R.13) imply that for any p € [2,+o0], there exists a
constant C}, (which does not depend on k) such that for every k

t
sup (I6(t i) o (or ()30, ) < CIpl/O vl =v) sup Blluc(r. )} dr <Gy (57)

For t € [0,T], z € Q, let (Y7(x), 0 <7 <T) be the Hr-valued martingale defined by

Vi) = [ . /Q Gt 2:5,9) Si(s,y) Dow(s, ) F(ds, dy).

Let (¢, j > 0) be a CONS of Hr; then Burkholder’s inequality for Hilbert-valued martingales
(see e.g. [IY], p. 212) and Parseval’s identity yield

t
sup 1Ye(@) 120 10y < Co 177 /0 P(t —s) Sl;PE(HDUk(Say)H?fT)dS- (5-8)

Finally, Lemma B.1] and the conditions (C2) - (C4) imply that the function v¥(s) = ¥(s) +
Zij\il s~@ta ¢ L1([0,T]), and together with the inequalities (5.7) and (F-§) this yields that

there exists C}, > 0 such that for every k > 0,

t
2p n 2p
sup || Dug(t, z)|| <C,+C / Y(t — s) sup ||[Dvg(s,y)|| ds.
JBEQ L2P(Q7HT) p p 0 yGQ L2P(QyHT)

Thus Lemma 15 in [f] concludes the proof of (5.5). A similar argument shows (p.6). We conclude
that each vy (¢,z) € D'P, and that (F-d)and (F.d) hold. To prove (F-4), we use (B.10), (F.2) and
arguments similar to the previous ones; then for 0 < s <t < T,

1+ s E([v(r,y)|*)
Y

B[ 1etmn o) < o ([ letan o)
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t—s

< C Y(r)dr

0

Furthermore, the isometry of Hilbert-spaced valued martingales, Fubini’s theorem and (5.J)

imply
t 2
E < dr)
S H

t
SC/ dT/dy/de(t,:v;T,y)f(y—Z)G(t,w;T,Z)
s Q Jo

t—s

X / E(< Dyyv(s,y), Dysv(s,z >y)dr < C () dr
s 0

/ G(t,x;7,y) S(1,y) Dysv(r,y) F(dr, dy)
Q

Finally, conditions (C2) and (C4), Minkowski’s and Schwarz’s inequalities and Fubini’s theorem
imply that for every i < N,
2
dr)
H

t
E

/ Hl(ta €r;T, y) 83bi(7—a Y, /U(S’ y)) DT,*U(T’ y) dydT

< C(t— 5yt az/ dT/ dy |Hy(t,z:my)| sup / E(|Dro(r, ) 12,) dr
(r,y)€[0,T]xQ Js
< (t —r)2etized,
This completes the proof of (.4). 0

The following theorem, which establishes the absolute continuity of the law to the stochastic
Cahn-Hilliard PDE, is the main result of this section.

Theorem 5.2 . Let Q = [0,7]%, suppose that the conditions (H.1), (H’2) and (H.4) hold, let
F be a Gaussian noise with covariance defined by (1) in terms of a function f which satisfies
the conditions (C1) and ([3.2]). Let ug € C(Q) and let u be the solution to ([3.23) with initial
conditions ug and the homogeneous Neumann or Dirichlet boundary conditions. Let ty €]0,T],
x1,--- 1 be pairwise distinct points in |0, 7[?, and set u(to,z) = (u(to,x1), - ,u(te,x;)). For
any T >0, let

I(7) :/ F() [o] = 1 (o] )" o (5.9)
Bd(O T)
(i) Suppose that |o| > C > 0; then if for some 0 < v <

lim 1'(7'%"'”)_1 |:T +r3 I(T%_V)] =0,

T—0

the law of u(ty, z) is absolutely continuous with respect to Lebesque’s measure.
(ii) Let ug € C*(Q) for some a > 0 and suppose that for some v > 0:

d
lim I(Ti‘”’)*1 [TA +r3 I(Ti*”)] =0 for A €]0, Zg + £

de
lim S[andu €]0,1 A 5 Aal. (5.10)

Then the law of u(to, x) is absolutely continuous on {o # 0}'.

Remark 5.3 . Let f(v) = |v|™8 for some B > 0; then the condition (C1) holds for any B > 0,
while ([3.24) holds if and only if de + B < 4. Since for small T > 0, fT d=1=B—d+d q, —
CrB <I(r) < prd I=B—dtd—€(d-4)" g — O 4=B=€@-9" for any small € > 0, one has
lim, g I(Tiﬂ’) Ur + 72 I(7'4 ") =0 for every B >0 and 0 < v < BM , while ([5.14) holds if
and only if B + de > %\/ (4— (@/\%))
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Remark 5.4 The proofs of Theorems 1.5 in [J] and Theorems 1.2-1.4 in [i] extend to the case
of the space-time white noise F' in dimension d < 3 under the homogeneous Dirichlet boundary
conditions on [0, 7]%.

Proof of Theorem [.3: The proof, which is similar to that of Theorem 1.2 in [f] and Theorem 3.1
in [R1] is only sketched in case (ii). According to Theorem [.4, the trajectories of the solution
u(n) to (B-1) almost surely belong to CM([£, T]x Q) for 0 < A< 2ALE and 0 <p < 1AL Aa.
(Note that according to Theorem [1.4, the trajectories of u have the same Holder regularity.)
Using Theorem 2.1.2 and the following remark in [RJ], it suffices to show that for every n > 1
and M > 1, the [ x [ Malliavin covariance matrix I'(n) defined by

I'(n)(i, j) =< Du(n)(to, z:), Dun(to, ;) >y

is almost surely invertible on the set Q(M) = N_; {|o(u(n)(to, z:))| > 27} As usual, this reduces
to proving that for any vector v € R!, with |v| = 1, < I'(n)v,v >g:> 0 a.s. on Q(M).

For 1 <i <l r<t (9 in Pr0p051t10n @ shows that D, ,u(n)(to,x;) = G(to,zi;r, *)
xo(u(n)(r,*)) + Ul(to,r, x;); for a fixed unit vector v of R%, a usual argument shows that given
T 6]07 t2 ]7

<I'(n )vv>——|— Z Z viv; Io(4,5) — ZZU I5(i lZvile(i), (5.11)

i=1 j#£i;5=1 i=1 i=1
where

no- Zv/ G ko, zis7,y) o (uln) )3 dr

to—T

L(i,j) = /t0 < G(to, ;%) o(u(n)(r,z;)), G(to, xj; 7, %) o(u(n)(r,x;)) >n dr,

0—T

I3(i) = /ttOT G(to, wi;7,7y) [a(u(n)(r,y))—a(u(n)(r,xi))Hidr,

to
L) :/ U (to, 7, 2:) |2 dr
t

0—T
Remark R.3 shows that condition (R.7) is satisfied. Let & = inf{d(z;,0Q), 1 < i < [} and
suppose that for the constant Cy defined in the proof of Lemma B (i), 2Cy 7 1 < ¢ Then
(B17) and (R-1G) imply that on Q(M), for v > 0, 7 small enough and d = 4,5,
l
1 _ _ (5*d)+
L >C viQ—/ fv) v 4y (o]t dv. 5.12
(;\ ) 32 Ba(0card ) (0) Jv] (IoI™) (5.12)

We now prove upper estimates of I5(4,5) up to I4(i). Let m = inf{|x; —x;|, 1 < i < j <1},
let ¢; and C; denote the constants appearing in condition (C1), and let k €]0, %[ be such that
k(1+ec1) <3 Fix 1 <i<j<lthen I»(i,5) < C|o|% Ja(i, §), where

- s T
Ja(i,5) = / Pt dr/ dy/ dzexp —CM fly—2) exp —CM .
0 Q Q T3 T3

We split the integral on @ x @ in several parts. Indeed, if |y — z| > km, the continuity of f
implies that f(y — z) < C < +oo. Suppose now that, |y — z| < km. Then if |y — z;| < 1 |y — 2|,
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(C1) implies that f(y —2) < C1 f(y — @), while |z — z;| > | |2 — 25 — (lzi —y| + |y — 2])
m (1 — k(1 + 01)> > %, Similarly, if |z — z;] < e1ly — 2|, then f(y — 2) < C1f(z — ;)
and |y — ;| > . Finally, suppose that |y — 2| < km, ci |y — 2| < |y — x| A |z — zj]; then

since k < %, one of the norms |y — x| or [z — ;| (say |z — x;|) is larger than %Z. Thus,

J2(1,7) < Ja1(4,7) +2J22(4, ) + 2 J2,3(4, j), where

1
halid) = [ // exp( 'y_“’”l':‘") fly = =) exp (—c@) dydz < O
0 ly—z|>km T3
- yvy%
Joo(i,j) < Cq r dr f(v) exp — | dv L exp <—c\ |3 > dz
0 Ba(0,R) r3 l2|>mr— 1
. 1
Cl/ f(v) dv/ r exp —c‘v‘l3 exp (—67"_%> dr
Ba(0,R) 0 r3

C exp(—ir~3) / F@) o= I (jo 1) do < € exp(~ar3),
B4(0,R)

4
Ja(i, ) < Cl/ r 4d7"/dy/ (y — z) exp u exp —Ei‘z_fmg dz
|z—zj]> ﬂ r3 r3

3

t\.’)l&

IN

IN

< Cexp(—ér™ 3
Hence, for 7 small enough,
l l
‘Z Z Ui?)jfz(i,j)‘ SCT (5.13)
i=1 j#ij=1

Fubini’s theorem, the Lipschitz property of o, the Holder regularity of x — u(n)(¢, z) uniformly
for & <t < ty, Schwarz’s inequality and |y — z\g <23 (]y - xl\% +|z— x]]%) yield for any i <,
0<7< %0:

B(n) < c | //ddeIGt:vmy)lf( —2) |Gtz 2)
xE(|u<n><r, y) = u(n)(r, z:)l[u(n)(r, 2) = u(n)(r, )| ) dr

4 4
< C/ r 2dr//dydzexp< v 1‘3> fly—2)]z — 2% exp <_CM>
3 r3
_dp ‘U‘% I o 4

< C f(o)dv [ r~27s exp — | dr |z| 2 exp(—¢|z|3) dz

By(0,R) 0 T3 B4(0,R)

+o0o

< C Ol asas dv/ . s~ exp(—¢cs) ds,

B4(0,R) lv|3 773

where to obtain the last integral, we have set s = ]v]% r~3. We split the last integral on {|v| <
T%_V} and its complement for some v > 0. Then using (B.24), a straightforward computation
yields for d = 4,5 and 7 small enough:

E(@) < €[ fellE (14 o E ) du
B4(0,7277)
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4—d+ & . aw
T o Hwizrtmry SN2 exp(=ers ) dv

< CT4+E u(d€+/i)

Thus, choosing v close enough to 0 and 79 small enough, we deduce that for 0 < 7 < 7y:

E(G)) <Crd, 0<A< f+§ (5.14)

Finally, using the decomposition of U (tg, 7, z;), and Fubini’s theorem, we obtain that F(|14(7)]) <
Z?Zl T, where

2

H)

2
)

H

2
)

H

’ /Q Hj(s,zi;r,y) 03bi(s,y, (w(n)(s,y)) Dyu(n)(s,y) dyds

0—T

T, = / drE< / / G(5,557, ) S: (1) (5, ) Drwu(n) (5, ) F(ds, dy)

0—T

T, — /tto drE( /t/ AG(s, 1 1) B (u(n)(s,9)) Dyeu(n)(s, y) dyds

T3 = /t“ drE< /0/ G(s,zi;r,y) 039(s,y, (u(n)(s,y)) Dru(n)(s,y) dyds

0—T

N 2
Z / drE .
j=1 to—T H
The isometry property for Hilbert-space valued martingales, (5.3) with p = 1, Schwarz’s inequal-
ity and (R.14) or (R.15) imply for v small enough

Ty

T, < C ds//dydz]G(s zi;ry)| fly — 2) |G(s, 251, 2)|
to—T

<« s B ([ D)
(s,9)Elto—T,t0]xQ to—T
< Cr [I(Tif”) + exp (—ET%>] . (5.15)

Minkowski’s and Schwarz’s inequalities, then Fubini’s theorem and (p.4) imply

to 1 to
o< of (to—ritdr / /Q AG(to, 2 5,) Ry(u(n)(s, 9)) E(| Dywu(n) (s,9))|,) dyds
to—T r
< art [U s [wsctonisy  sw  B([ ipaamieiae)
to Q (&y)E[to—’T,to}XQ to—T
< C(n)T[I(T)—i-T%}. (5.16)

A similar computation, using Minkowski’s inequality, Fubini’s theorem, Lemma B.] with p = oo
and ¢ = 1 and (5.4) yields

to S
T, < CnT/ ds/ dy G(to, zi; 8,y) sup E(/ ”Dr*u(n)(suy))”g‘[ d7“>
to—T Q (5,9) t

E[tofT,to]XQ 0—T
< Cur [I(T)Hﬂ , (5.17)
< cﬂz / is [ ayttioisy) s ([ D))
to—T Q (s,y)Elto—T,to] xQ to—7
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< Gt [r+rt] 519
The inequalities (§.17)-(p.1§) yield that

E(|L(i)]) < C(n) [T% I(Tif”)jw} . (5.19)

Finally, the inequalities (F.11)-(-14) and (B:19) imply that for p > 0 such that 7477 < 11 (T%—H/)
(which exists because of (p.10)), we have for small enough 7:

P(<o T >u< ) < P(L+L>ClHr) —r - 7))

IN

1
g <I3 th=s I(TW)) <OIEH) T et 4 rr I(ri )

for some A < & + £ then the condition (5-10) concludes the proof of (i). 0
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