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A new constitutive equation for elastoviscoplastic fluid flows

Pierre Saramito a

aCNRS – LJK, B.P. 53, 38041 Grenoble cedex 9, France

Abstract – From thermodynamic theory, a new three dimensional model for elastoviscoplastic fluid
flows is presented. It extends both the Bingham viscoplastic and the Oldroyd viscoelastic models. Fun-
damental flows are studied: simple shear flow, uniaxial elongation and large amplitude oscillatory shear
(LAOS). The complex moduli (G′, G′′) are found to be in qualitative agreement with experimental data
for materials that present microscopic network structures and large scale rearrangements. Various fluids
of practical interest, such as liquid foams, droplet emulsions or blood, present such a elastoviscoplastic
behavior : at low stress, the material behaves as a viscoelastic solid, while for a higher stress, and after
a yield stress value, the material behaves as a fluide.
Keywords – non-Newtonian fluid; viscoelasticity; viscoplasticity; constitutive equation.

1. Introduction

1.1. Historical background

The development of viscoplastic rheological model based on yield stress started in 1900 when Schwed-
off [17], studying a gelatin suspension, presented a one-dimensional plastic viscoelastic version of the
Maxwell model:







ε̇ = 0, when τ ≤ τ0,

λ
dτ

dt
+ (τ − τ0) = ηmε̇, when τ > τ0,

(1)

where τ is the stress, ε̇ the rate of deformation, ηm > 0 the viscosity, τ0 ≥ 0 the yield stress and λ ≥ 0 a
relaxation time. In steady state shear flow this reduces to τ = τ0 +ηmε̇ when τ > τ0. In 1922, Bingham [1]
proposed the one-dimensional stress-deformation rate equation for a viscous fluid with a yield stress:

max

(

0,
|τ | − τ0

|τ |

)

τ = ηmε̇ ⇐⇒











|τ | ≤ τ0 when |ε̇| = 0,

τ = ηmε̇+ τ0
ε̇

|ε̇| otherwise.
(2)

Notice that this model is equivalent – up to the sign of ε̇, assumed positive – to the steady case of the
model proposed by Schwedoff. Numerous attempts have been made to modify this simple equation to
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account for more complex behavior of such materials. In 1926, Herschel and Bulkley [5] proposed to
approximate the observed shear stress dependence of the viscosity on the shear rate ε̇ after yielding by
explicitly defining the viscosity ηm as a power-law function of |ε̇|.
In 1932, Prager [12], using the von Mises [21] yielding criterion, proposed to extend the Bingham model
to the three-dimensional case and Oldroyd, in 1947, in a collection of papers (see e.g. [10]) studied the
Bingham three-dimensional model and its Herschel-Bulkley extension coupled with the Navier-Stokes
equations for the motion of the fluid. Oldroyd proposed also a three dimensional constitutive equation
which combines the yielding criterion together with a linear Hookean elastic behavior before yielding and
a viscous behavior after yielding. In the one-dimensional case, the model can be written as:











τ = µε when τ ≤ τ0,
( |τ | − τ0

|τ |

)

τ = ηmε̇ when τ > τ0,
(3)

When compared to (1), this model is an improvement, since the material is no more rigid before yielding.
Here, the yield stress τ0 is related to the critical strain ε0 = τ0/µ. Since the first equation in (3) describes
stresses in term of strain ε and the second equation in (3) in term of strain rate ε̇, the stress-strain curve
predicted by this model must exhibit a discontinuity at the critical strain ε̇ = ε̇0 at which the stress
jumps from τ = τ0 to τ = τ0 + ηε̇. This is an approximation of the true behavior of materials: the real
deformation at the transition is expected to be smooth, at least continuous.

In 1950, Oldroyd [9] developed a theory for the invariant forms of rheological equations of state and
proposed a three-dimensional viscoelastic model, that can be expressed in its one-dimensional version as:

λ
dτ

dt
+ τ = ηmε̇ (4)

where the total stress σ = ηε̇+ τ . In this approach the stress τ is the elastic part of the total stress, from
which the elastic deformation can easily be obtained. The constant η > 0 is another viscosity, often called
the solvent viscosity in the context of polymer solutions.

1.2. One-dimensional presentation of the proposed model

Let us introduce an one-dimensional version of our model in order to combine the two previous models (2)
and (4):

λ
dτ

dt
+ max

(

0,
|τ | − τ0

|τ |

)

τ = ηmε̇. (5)

where the total stress expresses σ = ηε̇ + τ . When λ = η = 0 we obtain (2) while when τ0 = 0 our
model reduces to (4). Observe that (5) differs both from (1) and (3). Schwedoff proposed a rigid behavior
ε̇ = 0 when |τ | ≤ τ0 and Oldroyd proposed a brutal change of model when reaching the yield value. Our
proposition assures a continuous change from a solid to a fluid behavior of the material.

The mechanical model is represented in Fig. 1.c. A friction τ0 has been inserted in the Oldroyd viscoelastic
model (Fig. 1.b). Before yielding, when the system has not reached the level of energy required to break
the friction element this one remains as a rigid link. The level of the elastic strain energy required to break
the friction element is determined by the von Mises yielding criterion. Consequently, before yielding, the
whole system predicts only recoverable Kelvin-Voigt viscoelastic deformation due to the spring and the
viscous element η: the Kelvin-Voigt viscoelastic model is described by a spring and a viscous body in
parallel (Fig. 1.a). The elastic behavior τ = µε is expressed in (5) in differential form where µ = ηm/λ is
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(a) Kelvin-Voigt (b) Oldroyd
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Figure 1. The proposed elastoviscoplastic model.

the elastic parameter associated to the spring on Fig. 1.c. Before yielding, the total stress is σ = µε+ηε̇+τ .
As soon as the strain energy exceeds the level required by the von Mises criterion, the stress in the friction
element attains the yield value leading to its breakage and starts of a deformation for all other elements.
After yielding, the deformation of these elements describes the Oldroyd-type viscoelastic behavior.
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The evolution in time of elongation ε(t) for a fixed imposed traction σ (creeping) is represented on Fig 1.d.
When σ ≤ τ0, the elongation for a fixed imposed traction is bounded in time, which means that such
material behaves as a solid. Otherwise, σ > τ0, the elongation is unbounded in time, which means that
the material behaves as a fluid. Notice the continuous behavior of the solution: the change of regime
occurs at t = t0 for the solution σ > τ0 and there is neither jump nor loss of derivability in the curve.
The solution on Fig 1.d is computed explicitly and formula details are reported in annex B.

1.3. Comparison with other recent and closely related models

There are a number of other closely related recent ideas that have appeared in the literature that are to
be cited.

In 1991, Beris, Walters and co-workers [2], in order to recover a continuous approximation of the solution
of the elastic-viscoplastic model (3) proposed by Oldroyd, have introduced an ad-hoc recovery procedure.
Before yielding, the material behaves as an elastic solid while after yielding it behaves as a power-law
viscous non-Newtonian fluid. Despite the lack of a thermodynamical analysis of their model, these authors
have been able to propose, based on their computational results, a useful Cox-Merz rule extension that was
found to be in good agreement with experimental data on a suspension of silicon particles in polyethylene.

In 2003, Houlsby and Puzrin [13, p. 254] have inserted a friction and a spring into the viscoelastic Kelvin-
Voigt model and the resulted model is represented on Fig. 2.a. Before yielding, the friction is rigid and the
material behaves as an elastic solid, thanks to the spring µ. After yielding, the deformation is governed by
the so-called standard model in the mechanics: a Kelvin-Voigt element plus a spring in series (see e.g. [8,
p. 42]). The predicted elongation under a constant traction is presented on Fig. 2.b. The elongation jumps
immediately at t = 0 from ε = 0 to ε = σ/µ, since the spring element has no time scale. Next, when t > 0,
if σ ≤ τ0, then the elongation remains constant, since the spring is fully extended. Otherwise, if σ > τ0,
the elongation grows and tends to a bounded value: the material behaves as a solid. By this way Houlsby
and Puzrin were able to capture some relevant aspects of the behavior of saturated clays. These authors
have proposed in a collection of papers many variants of their model. Nevertheless, it is not applicable to
material such as human blood or liquid foams that deform under a low stress and flow under a sufficient
stress.

In 1990 Isayev and Fan [7] have proposed a viscoelastic plastic constitutive equation for flow of particles
filled polymers. The main idea of these authors is to insert a friction and a spring into the viscoelastic
Oldroyd model and the resulted model is represented on Fig. 2.c. Before yielding, the friction is rigid and
the material behaves as a simple elastic solid, thanks to the spring µ. After yielding, the deformation
describes the Oldroyd viscoelastic model. These authors have added in parallel other Maxwell elements
in order to replace the Oldroyd viscoelastic element by a multi-mode Leonov viscoelastic model. The
predicted elongation under a constant traction is presented on Fig. 2.d. As for the Houlsby-Puzrin model,
the elongation jumps immediately at t = 0 from ε = 0 to ε = σ/µ. Next, when t > 0, if σ ≤ τ0,
then the elongation remains constant. Otherwise, if σ > τ0, the elongation grows and is not bounded: in
that case, the material behaves as a fluid. The friction element was able to describe the stress generated
in the disperse phase of the filled polymer melts and this contribution has represented an important
conceptual advance in this domain. Since the effect of added solid particles in a polymer melt is usually
to reduce the viscoelasticity, the need of this kind of formulation arises primarily in the case of highly
viscoelastic polymers such as rubbers. Nevertheless, the model presented in Fig. 1.c and. 1.d is a definitive
improvement: the instantaneous jump at t = 0 followed by a constant elongation under traction of both
the Houlsby-Puzrin and the one-mode simplified Isayev-Fan models is replaced by a smoother behavior.
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(a) Houlsby-Puzrin (b) Creeping for Houlsby-Puzrin model
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(c) Isayev-Fan (one Maxwell mode) (d) Creeping for Isayev-Fan model
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Figure 2. Some other elastoviscoplastic models.

During the last two decades, the thermodynamic framework developed and furnished some robust the-
oretical tools for managing efficiently rheological models: see e.g. [19, p. 26] or [8] for some concise
presentations of the thermodynamic framework for the development of combined viscoelastic and plastic
models. The table 3 presents an historical summary of such models and signals their associated main fea-
tures before and after yielding. The 3D column is marked when the model has been written in a general
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year contribution before yielding after yielding 3D TH

1900 Schwedoff [17] rigid solid Maxwell viscoelastic fluid

1922 Bingham [1] rigid solid Newtonian fluid

1926 Herschel & Bulkley [5] rigid solid power-law fluid

1947 Oldroyd [10] elastic solid Newtonian fluid X

1990 Isayev & Fan [7] elastic solid Leonov viscoelastic fluid X X

1991 Beris, Walters & co. [2] elastic solid power-law fluid X

2003 Houlsby-Puzrin [13, p. 254] elastic solid Kelvin viscoelastic solid X X

2007 present Kelvin-Voigt viscoelastic solid Oldroyd viscoelastic fluid X X

Figure 3. Summary table of the referenced contributions on elastoviscoplastic models.

sense, e.g. with objective derivatives. The TH column is also marked when the model satisfies the second
law of thermodynamics.

The aim of the present article is to build the proposed model for the general three-dimensional case
(section 2) and to study it on three simple flows (section 3): a simple shear flow, an uniaxial elongation and
an oscillatory shear flow. The impatient reader – and the reader who is unfamiliar with the thermodynamic
framework – could jump in a first lecture directly to the end of section 2 where is presented the complete
set of equations (11) governing such a flow, before to read section 3 devoted to applications. There are also
two technical appendices. Appendix A contains some properties used in section 2 and related to multi-
dimensional subdifferential calculus. Appendix B groups the explicit resolution of the one-dimensional
creeping problems as presented in the introduction on Figs. 1 and 2.

2. The proposed model

2.1. Thermodynamic framework

The state of the system is described by using two independent variables : the total deformation tensor ε
and an internal variable, the elastic deformation tensor εe. We have ε = εe + εm where εm represents the
plastic deformation tensor. Following Halphen and Nguyen [4] (see e.g. [19] or [8, p. 97]) we say that a
generalized standard material is characterized by the existence of a free energy function E and a potential
of dissipation D, that are both convex functions of their arguments. The proposed model that combines
viscoelasticity and viscoplasticity, is represented by a rheological scheme on Fig. 1.c and can be written
as:

E (ε, εe) = µ |εe|2 ,
D (ε̇, ε̇e) = ϕ ( ε̇ ) + ϕm (ε̇− ε̇e) ,

(6)

where µ > 0 is the elasticity parameter and where |.| denotes the matrix norm, defined by a double

contraction of indices : |εe|2 = εe : εe. The functions ϕ and ϕm are expressed by :

6



ϕ (ε̇) =







η | ε̇ |2 when tr ε̇ = 0,

+∞ otherwise,
and ϕm (ε̇m) =







ηm |ε̇m|2 + τ0 |ε̇m| when tr ε̇m = 0,

+∞ otherwise.
(7)

The ϕ function expresses the incompressible viscous behavior at macroscopic level and is associated to
a macroscopic viscosity η > 0 while the ϕm function expresses the viscoplastic behavior at microscopic
level, by using a microscopic viscosity ηm > 0, acting on continuous modification of the network links.
and also a yield stress value τ0 ≥ 0. When the stress becomes higher than this value, some topological
modifications appear in the network of contacts. This model satisfies the second law of thermodynamics:
in the framework of generalized standard materials [4,19,8] this property is a direct consequence of the
convexity of both E and D.

2.2. The constitutive law

Let Ω be a bounded domain of R
N , where N = 1, 2, 3. Since both ϕ and ϕm are non-linear and non-

differentiable, the following manipulations involve subdifferential calculus from convex analysis. The ma-
terial constitutive laws can be written as:

σ ∈ ∂E
∂ε

+
∂D
∂ε̇

and 0 ∈ ∂E
∂εe

+
∂D
∂ε̇e

, (8)

where σ is the total Cauchy stress tensor. Using definition (6) of E and D, we get:

σ ∈ ∂ϕ (ε̇) + ∂ϕm (ε̇− ε̇e) and 0 ∈ 2µεe − ∂ϕm (ε̇− ε̇e) . (9)

The combination of the two previous relations leads to σ−2µεe ∈ ∂ϕ(ε̇). Then, by using expression (A.3)
of ∂ϕ from the technical annex, and by introducing the pressure field p, we get the following expression of
the total Cauchy stress tensor: σ = −p.I + 2ηε̇+ 2µεe when tr(ε̇) = 0. Then, the second relation in (9) is
equivalent to ε̇− ε̇e ∈ ∂ϕ∗

m (2µεe) where ϕ∗
m is the dual of ϕm. Let us introduce the elastic stress tensor

τ = 2µεe. The expression (A.2) of ∂ϕ∗
m in annex yields:

λτ̇ + max

(

0,
|τd| − τ0

|τd|

)

τ = 2ηmε̇, (10)

where λ = ηm/µ is the relaxation time and τd = τ − 1
N tr(τ) I denotes the deviatoric part of τ .

2.3. The system of equations

Since the material is considered in large deformations, we choose to use the Eulerian mathematical
framework, more suitable for fluids flows computations. We assume that ε̇ = D(v) =

(

∇v + ∇vT
)

/2 is
the rate of deformation, while the material derivative τ̇ of tensor τ in the Eulerian framework is expressed

by the Gordon-Schowalter’s derivative [3] :
2

τ= ∂τ
∂t + v.∇τ + τW (v) −W (v)τ − a (τD(v) +D(v)τ) where

W (v) =
(

∇v −∇vT
)

/2 is the vorticity tensor. The material parameter a ∈ [−1, 1] is associated to the
Gordon-Schowalter’s derivative. When a = 0 we obtain the Jaumann derivative of tensors, while a = 1
and a = −1 are associated to the upper and the lower convected derivatives, respectively.

The elastoviscoplastic fluid is then described by a set of three equations associated to three un-
knowns (τ,v, p): the differential equation (10) is completed with the conservation of momentum and
mass:
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

























λ
2

τ + max

(

0,
|τd| − τ0

|τd|

)

τ − 2ηmD(v) = 0,

ρ

(

∂v

∂t
+ v.∇v

)

− div (−pI + 2ηD(v) + τ) = f ,

div v = 0,

where ρ denotes the constant density and f a known external force, such as the gravity. These equations
are completed by some suitable initial and boundaries conditions in order to close the system. For instance
the initial conditions τ(t=0) = τ0 and v(t=0) = v0 and the boundary condition v = vΓ on the boundary
∂Ω are convenient. The total Cauchy stress tensor writes:

σ = −pI + 2ηD(v) + τ.

Notice that when τ0 = 0 the model reduces to the usual viscoelastic Oldroyd model [9,15] and when λ = 0
it reduces to the viscoplastic Bingham model [1,14]. When both τ0 = 0 and λ = 0 the fluid is Newtonian
and the set of equations reduces to the classical Navier-Stokes equations associated to a total viscosity
η0 = η + ηm. Conversely, when both τ0 6= 0 and λ 6= 0 the fluid is elastoviscoplastic.

Dimensionless formulation – Let us introduce some classical dimensionless numbers:

We =
λU

L
, Bi =

τ0L

η0U
and Re =

ρUL

η0
,

where U and L are some characteristic velocity and length of the flow, respectively. We also use the
retardation parameter α = ηm/η0. The problem reduces to find some dimensionless fields, also denoted
by (τ,v, p) such that:



























We
2

τ + max

(

0,
|τd| −Bi

|τd|

)

τ − 2αD(v) = 0,

Re

(

∂v

∂t
+ v.∇v

)

− div (−pI + 2(1 − α)D(v) + τ) = f ,

div v = 0,

(11)

where f denotes some known dimensionless vector field. These equations are completed by the initial and
boundaries conditions.

3. Examples

3.1. Uniaxial elongation

The fluid is at the rest at t = 0 and a constant elongational rate ε̇0 is applied: the Weissenberg number
is We = λε̇0 and the Bingham number Bi = τ0/(η0ε̇0). All quantities presented in this paragraph are
dimensionless.

The flow is tridimensional and the dimensionless velocity gradient writes ∇v = diag(1,−1/2,−1/2). The
problem reduces to find τ11, τ22 and τ33 such that











We
dτ11
dt

+ (κ− 2aWe)τ11 = 2α,

We
dτkk

dt
+ (κ+ aWe)τkk = −α, k = 2, 3
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Figure 4. Dimensionless first normal stress difference ψ = τ11 − τ22 for uniaxial elongation when Bi=1, a=1 and α=1: (a)
influence of We for ξ=0; (b) influence of ξ for We=0.75.

with the initial condition τ(t = 0) = 0 and where κ = max (0, 1 −Bi/|τd|). As above, since τ(0) = 0
and τ(t) is continuous, there exists t0 > 0 such that when t ∈ [0, t0] we have |τd| ≤ Bi and thus κ = 0:
this is the linear flow regime. The eigenvalues of the system are −2aWe and aWe. For t > t0, the case
κ > 0 occurs. Since κ ≤ 1, when aWe > 1/2 the stress becomes unbounded in finite time, as shown on
Fig. 4.a that plots the dimensionless first normal stress difference ψ = τ11 − τ22. This drawback is still
true when Bi = 0, i.e. for the Oldroyd viscoelastic model. In the context of viscoelastic models, some
alternate constitutive equations that extend the Oldroyd model have been proposed. Let us consider the
following constitutive equation:

We
2

τ + (1 + ξ tr τ) max

(

0,
|τd| − Bi

|τd|

)

τ − 2αD(v) = 0, (12)

where ξ ≥ 0 is a new material parameter. For Bi = 0 we obtain the viscoelastic Phan-Thien and Tanner
model (see e.g. [11,16]). For ξ = 0 we obtain the previous elastoviscoplastic model (11) while for any
ξ > 0 the solution remains bounded, as shown on Fig. 4.b for We = 0.75.

3.2. Simple shear flow

The fluid is at the rest at t = 0 and a constant shear rate γ̇0 is applied: the Weissenberg number is
We = λγ̇0 and the Bingham number Bi = τ0/(η0γ̇0).

The flow is bidimensional and the dimensionless velocity gradient is constant: ∇v = ([0, 1]; [0, 0]). The
problem reduces to find τ11, τ22 and τ12, such that, for all t > 0:

We
d

dt











τ11

τ22

τ12











+We











0 0 −(1 + a)

0 0 1 − a
1 − a

2
−1 + a

2
0





















τ11

τ22

τ12











+ κ











τ11

τ22

τ12











=











0

0

α











, (13)
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Figure 5. Simple shear flow for We = 1 and α = 8/9: (a) a = 1 and Bi = 1; (b) a = 0 and Bi = 1; (c) a = 0 and Bi = 2.

with the initial condition τ(0) = 0 and where κ = max (0, 1 −Bi/|τd|) and

|τd|2 = (1/2) (τ11 − τ22)
2

+ 2τ2
12. Let ψ = τ11 − τ22 be the dimensionless normal stress difference.

Then τ11 =
1 + a

2
ψ and τ22 = −1 − a

2
ψ. The solution (τ12, ψ) is represented on Fig. 5. Since τ(0) = 0

and τ(t) is continuous, there exists t0 > 0 such that when t ∈ [0, t0] we have |τd| ≤ Bi and thus κ = 0:
this is the linear flow regime. The eigenvalues of the system are 0 and ±i

√
1 − a2. At t = t0, |τd| reaches

Bi. Then, for t > t0, the non-linear factor κ > 0 occurs: the corresponding term amortizes the grown of
the solution, that remains bounded. When a = 1 (see Fig. 5.a, where τ22 = 0) and when a = 0 and Bi
(see Fig. 5.b, where τ22 = −τ11) is small enough, the solution tends to a constant. Remark the important
overshoot of both τ12 and τ11 − τ22 when a = 0 (Fig. 5.b) while when a = 1 there is only a tiny overshoot
of τ12. When a = 0 and Bi becomes large, instabilities appear, while the solution remains bounded
(Fig. 5.c). There has been many studies on the a parameter of the Gordon-Schowalter derivative (see
e.g. [20]). Based on comparisons with data measurements, most authors consider that only the case a = 1
– or at least a close to 1 – is relevant from a practical point of view.

Notice that the dimensionless steady shear viscosity ηs/η0 coincides with the dimensionless shear stress
σ12 = 1 − α+ τ12. When the solution becomes stationary, let us observe the dimensionless steady shear
viscosity ηs/η0 as a function of We on Fig. 6. The material presents a shear thinning character. For large
We, the shear viscosity tends to a plateau when ξ = 0 (Fig. 6.a) and decreases monotonically when ξ > 0
(Fig. 6.b). This shear thinning behavior is more pronounced when Bi increases: the value of Bi controls
the plateau at small values of We.

3.3. Periodic shear flow

An oscillatory shear flow is applied: the imposed shear strain is γ0 sin(ωt) and the shear rate becomes
γ0ω cos(ωt). The Weissenberg number is defined by We = λω and the Bingham number by Bi =
τ0/(η0γ0ω).

The flow is bidimensional and the velocity gradient is periodic: ∇v(t) = ([0, cos t]; [0, 0]). The problem
reduces to find τ11, τ22 and τ12, from R

+ to R, such that

10
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Figure 6. Shear viscosity for a = 1, α = 1 and (a) ξ = 0; (b) ξ = 0.015.































We
d

dt











τ11

τ22

τ12











+ F(t, τ) =











0

0

α cos t











in ]0, 2π[,

τ(0) = τ(2π),

(14)

where

F(t, τ) = We cos(t)Aa











τ11

τ22

τ12











+ κ











τ11

τ22

τ12











and κ = max (0, 1 −Bi/|τd|) and |τd|2 = (1/2) (τ11 − τ22)
2
+ 2τ2

12. The ξ material parameter introduced
in (12) has been found to have an influence on the elongational flow, while in the case of the periodic
shear flow, it has been found to have very minor influence. Thus only the case ξ = 0 is presented in this
paragraph.

3.3.1. The solution for Bi = 0

The case Bi = 0 is asymptotically reached when the amplitude γ0 becomes large. The material behaves
as a viscoelastic fluid and the system reduces to:























We
dτ11
dt

−We(1 + a) cos(t)τ12 + τ11 = 0,

We
dτ22
dt

+We(1 − a) cos(t)τ12 + τ22 = 0,

We
dτ12
dt

+
We cos(t)

2
((1 − a)τ11 − (1 + a)τ22) + τ12 = α cos(t),

11



together with periodic boundary condition τ(0) = τ(2π). By introducing the first normal stress difference
ψ = τ11 − τ22, the system can be rewritten in a more compact form:



































We
dψ

dt
+ ψ = 2We cos(t)τ12,

We
dτ12
dt

+ τ12 = α cos(t) − We(1 − a2) cos(t)

2
ψ,

ψ(0) = ψ(2π) and τ12(0) = τ12(2π),

τ11 =
1 + a

2
ψ and τ22 = −1 − a

2
ψ.

When a = ±1 the system admits an explicit solution:

ψ(t) =
αWe

(1 +We2)(1 + 4We2)

(

(1 + 2We2) cos(2t) + 3We sin(2t) + 1 + 4We2
)

, (15)

τ12(t) =
α

1 +We2
(cos(t) +We sin(t)). (16)

Otherwise, when |a| < 1, the solution has no explicit form to our knowledge.

3.3.2. The solution for large Bi

The case Bi→ +∞ is reached when the amplitude γ0 becomes small. The material behaves as an elastic
solid. Moreover, there exists a finite value Bic > 0 such that when Bi > Bic then the solution satisfies
|τd| < Bi. In that case, the system reduces to:























We
dτ11
dt

−We(1 + a) cos(t)τ12 = 0,

We
dτ22
dt

+We(1 − a) cos(t)τ12 = 0,

We
dτ12
dt

+
We cos(t)

2
((1 − a)τ11 − (1 + a)τ22) = α cos(t),

together with the periodic boundary condition τ(0) = τ(2π). Let ψ = τ11 − τ22. Combining the previous
equations, we get



































We
dψ

dt
= 2We cos(t)τ12,

We
dτ12
dt

= α cos(t) − We(1 − a2) cos(t)

2
ψ,

ψ(0) = ψ(2π) and τ12(0) = τ12(2π),

τ11 =
1 + a

2
ψ and τ22 = −1 − a

2
ψ.

When a = ±1 the solution is known explicitly:

ψ(t) =
α(c− cos(2t))

2We
, (17)

τ12(t) =
α sin(t)

We
, (18)

where c is an arbitrary constant. In that case |τd(t)| is maximum for t = π/2 when c ≥ 0 and t = −π/2
when c ≤ 0. We have:

max
t∈[0,2π]

|τd(t)| =
α

2
√

2We
((1 + |c|)2 + 16)1/2.

12



Let

Bic =

√

17

8

α

We
.

Then, when Bi ≥ Bic, there exists a periodic solution τ(t) for all t in [0, 2π] such that |τd(t)| ≤ Bi in
[0, 2π] and this solution is expressed by (17)-(18).

3.3.3. The solution for Bi ∈ ]0, Bic[

Problem (14) is approximated by using a centered second order scheme:






























We

2∆t











τn+1
11 − τn−1

11

τn+1
22 − τn−1

22

τn+1
12 − τn−1

12











+ F(tn, τ
n) =











0

0

α cos tn











,

τ0 = τN ,

(19)

with tn = 2πn/N , n = 0 . . .N , ∆t = 2π/N and τn ≈ τ(tn). This is a N by N non-linear system of
equations that we solve by using a non-linear Gauss-Seidel iterative algorithm. We use N = 1000 points
in the [0, 2π] interval, and iterations are stopped when the maximal residual term in the discrete non-
linear problem (19) becomes lower than 10−12. Fig. 7 shows the solution τ12 and τ11 (while τ22 = 0) for
a = 1, Bi = 3, α = 1 ξ = 0, and We = 0.1, 0.05 and 0.025. When a = 0 the components τ12 and τ11 are
comparable up to a slight variation, while τ22 = −τ11, and the corresponding solution is not represented.

3.3.4. Fourier analysis

The solution σ12 = (1 − α)γ̇ + τ12 expands as:

σ12(t) =
∑

k≥1

ak sin(kt) + bk cos(kt),

where the coefficients are expressed by:

ak =
1

π

∫ 2π

0

σ12(t) sin(kt) dt and bk =
1

π

∫ 2π

0

σ12(t) cos(kt) dt.

When the response is linear we have ak = bk = 0 for all k ≥ 2. There are two cases when this situation
occurs: when Bi = 0 while the material behaves as a viscoelastic fluid, and when Bi → +∞ while its
behaves as an elastic solid. Otherwise, only odd harmonics appear. In [6], the authors propose large
amplitude oscillatory shear as a way to classify complex fluids. Following this approach, we observe on
Fig. 9 that the third harmonic contributes of about 20% of the first harmonic, and higher harmonics decay
very fast. See also [22, p. 74] for a comparable observation, based on a comparison between experimental
data on a linear hight-density polyethylene melt and several theoretical models. See also Fig. 11 in [6]
for a similar observation based on experimental data for a Xanthan gum solution. Therefore, the moduli
obtained from the first harmonic via Fourier transformation analysis are not substantially different from
the moduli calculated neglecting higher harmonics, as in the linear regime. By extension to the linear
regimes, let us introduce the in-phase moduli G′ and the out-of-phase moduli G′′: these are related to the
first Fourier coefficients by G′ = a1 and G′′ = b1. When Bi ≥ Bic, the material behaves as a viscoelastic
solid, the regime is linear and the solution is independent of Bi. The corresponding values of G′ and G′′

are denoted by G′
∞ and G′′

∞. When a = ±1, from (18), we have

G′
∞ = α/We and G′′

∞ = 1 − α.

13
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We
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Figure 7. Periodic shear flow: influence of We = 0.1, 0.05, 0.025 : (top) τ12/Bi; (bottom) τ11/We.

Conversely, when Bi vanishes, the material behaves as a viscoelastic fluid: the constitutive equation is
also linear and the solution is expressed by (16). The corresponding values of G′ and G′′ are denoted by
G′

0 and G′′
0 :

G′
0 =

αWe

1 +We2
and G′′

0 = 1 − αWe2

1 +We2

In the non-linear case, the moduli (G′, G′′) are computed by using the solution (τn)0≤n≤N of the approx-
imate problem (19):
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We = 1/20
We = 1/40

γ(t)
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Bi

-1 0 1

-1

0

1
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γ̇(t)
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Bi

-1 0 1

-1

0

1

Figure 8. Lissajous plots: influence of We = 0.1, 0.05, 0.025 : (left) τ12/Bi versus γ(t) = sin(t) ; (right) τ12/Bi versus
γ̇(t) = cos(t).
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Figure 9. Periodic shear flow: intensities of the harmonics normalized by the intensity of the fundamental frequency:
We = 1/40, Bi = 3, a = 1 and α = 8/9.

G′ ≈ 2

N

N
∑

n=1

τn
12 sin(tn) and G′′ ≈ 1 − α+

2

N

N
∑

n=1

τn
12 cos(tn).

The α = ηm/(η + ηm) viscosity ratio parameter allows to control G′′
∞ the G′′ moduli at high values of

Bi (i.e. for small amplitudes). The choice α < 1 leads to a non-vanishing G′′
∞, that has been found to be
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consistent with data measurements; the numerical computations are presented for α = 8/9.

Fig. 10 plots G′ and G′′ versus the dimensionless number Bi−1 = γ0η0ω/τ0. This is a dimensionless
version of the moduli plots since most figures in the literature are based on the representation of the
moduli versus the amplitude γ0. Only G′′ shows an overshoot: this behavior matches the type III of the

We=1/10
We=1/20
We=1/40

G′

Bi−1

10−3 10−2 10−1 100 101 102
10−2

10−1

100

101

102

103
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G′′

Bi−1

10−3 10−2 10−1 100 101 102
10−2

10−1

100

101

102

103

Figure 10. Periodic shear flow: moduli versus Bi−1 for a = 1: (left) G′; (right) G′′.

classification introduced in [6] when using large amplitude oscillatory shear. Many materials that present
such a behavior are listed on page 61 of [6]. See also Fig. 7.b of this reference for the (G′, G′′) plot of a
Xanthan gum 4% solution. The micro-structure of this class of materials is characterized by a network of
links that develops some complex structures. When an external strain is imposed, the complex network
structure is destroyed by large deformation over a critical strain. In [18], based on a network model, the
authors explain the overshoot of G′′ in term of the balance between the formation and the destruction of
the network junctions.

Conclusion

A new model for elastoviscoplastic fluid flows that is objective and satisfies the second law of thermody-
namics is proposed in (11). A variant of the constitutive equation is also introduced in (12) in order to
enforce finite extensional properties of the material. Large amplitude oscillatory shear (LAOS) has been
performed and complex moduli (G′, G′′) are qualitatively in good agreement with experimental data for
many materials that present microscopic complex network structures with large rearrangements. The
model is a good candidate for numerical simulation of elastoviscoplastic in multidimensional geometries:
future works will perform such computations and compare them with experimental data measured on
flows in complex geometries.
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Appendix A. Subdifferential calculus in the multi-dimensional case

A.1. The ϕm function – The subgradient ∂ϕm, as introduced in (7), is defined for any tensor D by:

∂ϕm(D) = {τ, τ : (H −D) ≤ ϕm(H) − ϕm(D), ∀H}
= {τ, jm(D) ≤ jm(H), ∀H with tr(H) = 0 and tr(D) = 0},

with the notation jτ (H) = ηm|H |2+τ0|H |−τ : H . When the minimizer D of jτ over the set {D, trD = 0}
is non vanishing, it satisfies, from the theory of Lagrange multipliers:

∇jτ (D) − p.I = 0 and tr(D) = 0,

where p is the Lagrange multiplier. Then 2ηD + τ0
D
|D| − τ − p.I = 0 and tr(D) = 0. Thus the subgradi-

ent finally writes:

∂ϕ(D) =























{τ, |τd| ≤ τ0} when D = 0,
{

τ, τ = −p.I + 2ηmD + τ0
D

|D|

}

when D 6= 0 and tr(D) = 0,

∅ otherwise,

(A.1)

where τd denotes the deviatoric part of τ . The dual ϕ∗
m of ϕm is then characterized by the Fenchel

identity, that is, for any τ ∈ ∂ϕm(D), by ϕ∗
m(τ) = τ : D − ϕm(D). Moreover, τ ∈ ∂ϕm(D) is equivalent

toD ∈ ∂ϕ∗
m(τ). From τ+p.I = (2ηm+τ0/|D|)D we get |τd| = 2ηm|D|+τ0 and thus |D| = (|τd|−τ0)/(2ηm).

Finally:

∂ϕ∗
m(τ) =

{

D, D =
1

2ηm
max

(

0,
|τd| − τ0

|τd|

)

τd

}

, (A.2)

where τd denotes the deviatoric part of τ .

A.2. The ϕ function – The function ϕ, as introduced in (7), is a particular case of ϕm with τ0 = 0 and
ηm = η. From (A.1), the subgradient writes:

∂ϕ(D) =







{τ, τ = −p.I + 2ηD} when tr(D) = 0,

∅ otherwise.
(A.3)

Appendix B. Explicit resolutions for one-dimensional creeping tests

Let us suppose that the material is at the rest and that, for all t ≥ 0 we impose a constant stress
σ(t) = σ > 0. This appendix presents the explicit solution for three one-dimensional models: the present
model, the Houlsby-Puzrin model and the Isayev-Fan one.

B.1. The proposed model

The potentials associated to the one-dimensional version of model presented on Fig. 1.c are:

E (ε, εm) =
µ

2
|εe|2 and D (ε̇, ε̇m) =

η

2
|ε̇|2 +

ηm

2
|ε̇− ε̇e|2 + τ0 |ε̇− ε̇e| .
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By derivation, as in (8), we obtain the constitutive law (5) with σ = ηε̇ + τ . The imposed traction
σ(t) = σ > 0 leads to ε̇ = (σ − τ)/η and the constitutive equation (5) is then completed with the initial
condition:











λ1
dτ

dt
(t) +

(

1 +
η

ηm
max

(

0,
|τ(t)| − τ0

|τ(t)|

))

τ(t) = σ ∀t > 0,

τ(0) = 0.

where λ1 = λη/ηm. Since τ(0) = 0 and τ(t) is continuous there exists t0 > 0 such that when t ∈ [0, t0] we

have |τ(t)| < τ0: this is the first regime and the differential equation becomes linear: λ1
dτ

dt
(t) + τ(t) = σ,

∀t ∈]0, t0[. Then

τ(t) = σ (1 − exp (−t/λ1)) and ε(t) = (λ1σ/η) (1 − exp (−t/λ1)) , 0 ≤ t ≤ t0.

When σ ≤ τ0, we have always τ(t) < τ0 and thus the previous expressions of τ and ε are true for all t ≥ 0.
In that case, the elongation for a fixed imposed traction is bounded in time, which means that the ma-
terial behaves as a solid. When σ > τ0, we have τ(t0) = τ0 for a finite time t0 = λ1 log (σ/(σ − τ0)).
When t > t0 we have τ(t) > τ0: this is the second regime and the differential equation becomes:

λ2
dτ

dt
(t) + τ(t) = σ2, ∀t > t0 together with the initial condition τ(t0) = τ0, where λ2 = λη/(η + ηm)

and σ2 = (ηmσ + ητ0)/(η + ηm). The solution in the second regime expresses:

τ(t) = σ2 − (σ2 − τ0) exp (−(t− t0)/λ2) , t ≥ t0,

ε(t) =
σ − σ2

η
(t− t0) +

λτ0
ηm

+
λ2(σ2 − τ0)

η
(1 − exp (−(t− t0)/λ2)) , t ≥ t0.

In that case, the elongation for a fixed imposed traction is unbounded in time, which means that such
material behaves as a fluid. As a conclusion, the material behaves as an elastic solid when the traction is
lower than the yield value and as a viscoelastic fluid otherwise (see Fig. 1.d).

B.2. The Houlsby-Puzrin model

The potentials associated to the one-dimensional version of model represented on Fig. 2.a are:

E (ε, εm) =
µm

2
|εm|2 +

µ

2
|ε− εm|2 and D (ε̇, ε̇m) = fm (ε̇m) ,

where fm(d) = τ0|d| +
ηm

2
|d|2, ∀d ∈ R. By derivation, as in (8), we obtain the constitu-

tive laws: σ = µ(ε − εm) and µ(ε− εm) − µmεm ∈ ∂fm(ε̇m). Since for all ξ ∈ R we have
∂f∗

m(d) = {(1/ηm)max(0, 1 − τ0/|d|) d}, ∀d ∈ R, these relations can be rewritten as: ε = εm + σ/µ and

ε̇m =
1

ηm
max(0, 1 − τ0/|σ − µmεm|) (σ − µmεm).

For an imposed traction σ = σ and εm(0) = 0 the problem is a nonlinear differential equation. When
σ ≤ τ0 the solution is constant and otherwise the problem becomes linear. The solution expresses for all
t > 0 as:

ε̇(t) =







σ/µ when σ ≤ τ0,

σ/µ+
σ − τ0
µm

(1 − exp(−t/λ)) otherwise.

As a conclusion, the Houlsby-Puzrin material behaves as an elastic solid when the traction is lower than
the yield value and as a viscoelastic solid otherwise (see Fig. 2.b).
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B.3. The one-mode simplified Isayev-Fan model

The potentials associated to the one-dimensional version of model represented on Fig. 2.c are:

E(ε, εm,1, εm,2) =
µm

2
|εm,1|2 +

µ

2
|ε− εm,1 − εm,2|2,

D(ε̇, ε̇m,1, ε̇m,2) = fm(ε̇m,1 + ε̇m,2) +
ηm,2

2
|ε̇m,2|2,

where fm(d) = τ0|d| +
ηm

2
|d|2, ∀d ∈ R. The constitutive laws are obtained as usual by derivation. Let

σ = σ > 0 be the imposed traction and assume that εm,i(0) = 0, i = 1, 2 as initial condition. The
computation is comparable to the two previous examples and is not detailed here. When σ ≤ τ0 then the
solution is constant: ε(t) = σ/µ, for all t > 0. When σ > τ0, after reduction to some linear problems, we
obtain the solution for all t > 0:

ε(t) =







σ/µ when σ ≤ τ0,

σ/µ+ bt+ (c− bλ)(1 − exp(−t/λ)) otherwise,

where

λ =

(

ηmηm,2

ηm + ηm,2

)

µm, b =
σ − τ0

ηm + ηm,2
and c =

(

ηmηm,2

ηm + ηm,2

)

σ − τ0
µm

.

As a conclusion, the Isayev-Fan simplified material behaves as an elastic solid when the traction is lower
than the yield value and as a viscoelastic fluid otherwise (see Fig. 2.d).
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