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Abstract 

Fitts’ law is a well known empirically-based relation which predicts aimed-movement 

time (MT) from target distance (D) and target width (W). Fitts’ demonstration that MT, within 

limits, depends essentially on the ratio D/W implies a scale invariance that reduces the 

paradigm from three dimensions (MT, D, and W) to two (MT and D/W). This reduction, 

however, is legitimate only for narrow ranges of scale variations, a limitation that appears to 

have been overlooked so far. This paper advocates an explicit three-dimensional construal of 

Fitts’ paradigm involving not only the speed (MT) and the relative amplitude (D/W), but also 

the absolute amplitude (D), or scale of movements. Not only is this three-dimensional 

description of Fitts’ paradigm a technical necessity for the classic study of Fitts’ law, but it 

paves the way for a more complete modeling of aimed-movement performance and suggests a 

promising adaptation of Fitts’ paradigm to the recently emerged problem of target selection in 

zooming interfaces.  
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1. Introduction 

This article is about the amplitude of human hand movements, a subject that is treated 

within the conceptual framework elaborated by Paul Fitts (1954), the discoverer of Fitts’ law. 

Our movements, which Bernstein (1967) viewed as morphological objects, can be 

characterized by their shape as well as their size. Whether the goal is to generate a continuous 

trajectory (as in drawing) or, more simply, to reach a discrete target with the tip of some hand-

held pointer (as in Fitts’ experiments), any movement task can, to a large extent, be scaled up 

or down without altering its essential morphological characteristics.  

To re-scale an aimed-movement task simply amounts to changing target distance and 

target width proportionally. But it is only from the experimenter’s viewpoint that such a 

change is simple. The reproduction of the same movement at different scales involves 

dramatic qualitative changes in one’s muscular and skeletal machinery, of which we are 

normally unaware—for example, scaling up the movement task may require the shoulder and 

the elbow joints to replace the fingers and the wrist (Lacquaniti, Ferrigno, Pedotti, Soechting, 

& Terzuolo, 1987). However, what happens behind the stage, in the high-dimensionality 

angular space of the effectors is a question, however important for human movement science 

(e.g., Morasso & Tagliasco, 1986), that is beyond the scope of Fitts’ aimed-movement 

paradigm, which cannot do more than provide a convenient, albeit reductive, experimental 

context. The conceptual framework elaborated by Fitts considers movement exclusively in 

work space—the low-dimensionality linear space covered by the arm’s endpoint, and also the 

functionally crucial space in which organism-environment interactions take place (Mottet, 

Guiard, Bootsma, & Ferrand, in press; Saltzman & Kelso, 1987). 

Fitts’ aimed-movement paradigm makes things really simple. Not only does it reduce 

the movement task to that of reaching a single environmental location with a single body 

point, but it deliberately ignores all the complexity of the underlying biomechanics, to 

consider exclusively the motion of a single point in work space, be it a finger tip, a stylus tip, 

or a screen cursor. This radical simplification strategy, reminiscent of particle-motion 

modeling in classical mechanics, has proved quite successful. The paradigm, notably, has 

made it possible to establish Fitts’ law, admittedly one of the most general and robust 

regularities in the whole field of experimental psychology (see Section 2.3). However, rather 

surprisingly, we will see that the notion of movement amplitude still suffers some degree of 
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obscurity in Fitts’ paradigm. It will be shown that the ambiguity of the definition of amplitude 

that has been used so far has caused conceptual muddles and troublesome experimental errors.  

The paper will proceed as follows. After a glossary of the main variables that need to 

be distinguished in Fitts’ paradigm (see Table 1), Section 2 will present a simple, 

mathematically inspired analysis aimed at showing that the paradigm, contrary to its current 

understanding, is irreducibly three-dimensional, involving the variables of movement speed, 

absolute amplitude (or scale), and relative amplitude (distance scaled to error tolerance). 

Sections 3 and 4 will focus on the statuses and the actual influences of absolute and 

relative amplitude, the paradigm’s two independent variables. From a review of the literature, 

it will be suggested that these two variables exert comparable impacts on aimed-movement 

performance, leading to the view that absolute amplitude needs to be taken into consideration 

just like relative amplitude. Also, the utility of rephrasing relative amplitude in terms of the 

subjective notion of difficulty will be questioned, on the grounds that both absolute and 

relative amplitude bear a close relationship with this hypothetical intermediate variable, and 

that in either case the relationship is non-linear.  

Section 5 will present a critical analysis of the experimental design that has been used 

uninterruptedly since Fitts (1954). It will be shown that this design confounds the effects of 

absolute and relative amplitude, thereby exposing the assessment of Fitts’ law to the risk of 

being contaminated, to an uncontrolled extent, by an unwanted influence of the scale factor.   

Section 6 will present the main implications that can be drawn from the proposed 

three-dimensional understanding of Fitts’ paradigm. First, one’s method of assessing Fitts’ 

law can be improved, second, one’s approach to the modeling of aimed-performance can be 

enriched from two to three dimensions, and third, Fitts’ aimed-movement paradigm can be 

generalized to the recently emerged case of pointing in multi-scale electronic worlds.   

 

Table 1. A Glossary of the Main Variables Involved in Fitts’ Aimed-movement Paradigm 

 

 Variable Name Definition Physical Dimension 

Independent variables (environmental characteristics)  

 Target Distance (D) The distance separating target center from starting point  Length 

 Target Width (W) Target size, specifying the prescribed tolerance interval Length 

 Relative Target Dist.  (D/W) Target distance scaled to target width Dimensionless 

 Index of Difficulty (ID) Some mathematical function of D/W, e.g., log2 (2D/W) Dimensionless  

    

Dependent measures (movement characteristics)  

 Movement Time (MT)  The duration of the aimed movement  Time 

 Movement Amplitude (A) The distance actually covered by the movement Length 

 Effective Target Width (We) The dispersion, over repetitions, of movement endpoints (*) Length 
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 Relative Amplitude (A/We) Movement amplitude scaled to movement endpoint dispersion Dimensionless 

 Index of Effective Diffic. (IDe) Some mathematical function of A/We, e.g., log2 (2A/We) Dimensionless  

    

(*) Note. More specifically, We is the calculated W such that, given the observed dispersion of movement endpoints, 

a certain pre-specified error rate would have occurred. 

 

  

2. The Three-Dimensional Conceptual Space of Fitts’ Paradigm 

This section examines the issues of the number and identity of the variables involved 

in Fitts’ aimed-movement paradigm. An experimental paradigm can be viewed as the 

mathematical space in which abstract relationships can be conceived. The paradigm’s 

dependent and independent variables are the dimensions of this space.  

Fitts’ aimed-movement paradigm could be said to be four-dimensional in view of its 

basic ingredients: a pair of dependent measures, speed (MT) and accuracy (percentage of 

target misses), and a pair of manipulated variables, target distance (D) and target width (W). 

However, we will see that Fitts’ law research has led to the reduction of each of these two 

pairs of variables to a single variable. So the currently received version of the paradigm 

involves an essentially two-dimensional conceptual space in which MT is represented as a 

function of movement difficulty, based on the ratio D/W.  

It will be argued, however, that Fitts’ paradigm cannot work satisfactorily with fewer 

than three dimensions. While speed and accuracy measurements can be legitimately reduced 

to a single dependent variable, we will see that no such simplification can be achieved on 

independent variables. Concerning the identity of the dimensions, it will be shown that the 

irreducible two degrees of freedom (df) that experimenters have at their disposal cannot be 

formulated in terms of D and W, owing to inescapable confounds. The real independent 

variables of the paradigm will be shown to be the relative and the absolute amplitude of 

movement. 

2.1. Reducing Speed and Accuracy to a Single Dependent Variable 

A speeded aimed-movement task inevitably gives rise to occasional target misses. It 

has been repeatedly observed that, as the task is made more difficult, the probability of errors 

generally increases (e.g., Fitts, 1954; Crossman & Goodeve, 1963/83, Welford, 1968). 

Conversely, when the task becomes very easy, it is a common observation that people fail to 

exploit the whole error tolerance made available to them, with the spatial dispersion of their 

movement endpoints spread typically over an interval smaller than W (Schmidt, Zelaznik, 
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Hawkins, Frank, & Quinn, 1988). Taken together, these two effects can be described as a 

range effect. That is, movement precision—as can be assessed from the ratio of the mean and 

the standard deviation of amplitude—typically varies over a smaller range than recommended 

by experimenters via their manipulation of task difficulty (Guiard & Ferrand, 1998).  

As noted by Welford (1968), such effects are liable to bias the assessment of Fitts’ 

law, and therefore MT needs to be corrected for errors. A further concern is that performance 

is hard to evaluate if it is defined in terms of both speed and accuracy, because it can be 

affected differently on these two dimensions by experimental manipulations. The correction 

of MT for errors eliminates this problem in advance by neutralizing the variations of accuracy, 

which then can be safely ignored.  

Specifically, the solution introduced by Welford (1968) consists of replacing nominal 

tolerance W with effective tolerance We estimated from the standard deviation of movement 

endpoints
1
 and computing the ID on the basis of D/We. This amounts to calculating, for each 

level of the ID, the MT that would have been obtained, had the participant stuck to some 

constant, low level of error rate. In fact, for Welford’s procedure to be complete, one must 

also check if, on average, movement amplitude (A) equaled the prescribed distance D in each 

condition—an equality whose probability decreases as the task becomes easier because, to 

ensure a hit, the movement no longer needs to cover the whole prescribed amplitude (Guiard 

& Ferrand, 1998). In sum, the simple solution is to replace the nominal ID, computed from 

D/W, with an index of effective difficulty (IDe), computed from the more realistic ratio A/We. 

Such a procedure makes it possible to ignore accuracy variations and thus one is left with a 

single dependent variable, MT. 

2.2. The Question: Counting and Identifying the Paradigm’s Independent Variables 

While most of our movements take place in 3D space, the experimental paradigm 

introduced by Fitts (1954), in line with an experimental stream which can be traced back to 

Woodworth (1899), reduces the problem of aimed movement to a single spatial dimension. 

Fitts’ parsimonious conceptualization only considers three points on a continuum
2
 (see Figure 

1): one point to specify the current, or starting position and another two to specify a target 

interval allowing some tolerance for error. It is noteworthy that the smallest possible number 

                                                           
1
 An alternative, less reliable, procedure is to compute We from the observed frequencies of undershoots, hits, 

and overshoots. 
2
 As observed by Fitts (1954, Footnote 4, p. 387), this continuum need not be spatial length. The same rationale 

applies, beside amplitude, to any dimension of movement like its direction or its force—or even, as astutely 

remarked by Woodworth (1899), to the vocal pitch of a singer. 
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of points needed to capture the problem of aimed movement in 1D space is indeed three, and 

so the paradigm cannot be reduced to any simpler form.  

These three points define two relevant lengths that can be manipulated experimentally, 

target distance (D) and target width (W). Length D, usually measured from starting position to 

the center of the target interval, serves to constrain movement amplitude (A), while length W 

serves to constrain the spatial variability of movement endpoints over repetitions.  

 

   D

W

 

Figure 1. The two basic lengths involved in Fitts’ aimed-movement paradigm. 

 

The question addressed here is, What variables can a student of human aimed 

movement manipulate independently in the extremely simple situation depicted in Figure 1 or, 

equivalently, What are the dimensions of the conceptual space involved in Fitts’ paradigm? It 

will become apparent below that, if Fitts’ law is taken into account, this question is far less 

trivial than it may seem at first. Our analysis must start with a brief reminder of Fitts’ law. 

2.3. Fitts’ Law in a Generic Form 

Fitts demonstrated that in target acquisition tasks movement time (MT) is essentially 

dependent on the ratio D/W. Fitts (1954; Fitts & Peterson, 1964) formulated the law as  

MT = a + b log2(2D/W),        (1) 

with a and b standing for adjustable constants and log2(2D/W) representing the task’s 

index of difficulty (ID).
3
 

Since Fitts’ pioneering work, a number of alternative formulations of the law have 

been proposed (Accot & Zhai, 1997; MacKenzie, 1992; Meyer, Smith, Kornblum, Abrams, & 

Wright, 1990; Schmidt, Zelaznik, Hawkins, Frank, & Quinn, 1979; Welford, 1968). 

Notwithstanding the utility of the proposed amendments, it must be noted that theorists have 

introduced only minor changes to Fitts’ model, whose two primary assumptions have been 

retained. First, all authors have agreed to hold the ratio D/W as the only determiner of task 

                                                           
3
 For convenience, this version of the ID will be used by default throughout this article.  
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difficulty. Second, all authors have assumed a linear relationship between MT and the 

proposed ID. That is, it has been unanimously admitted so far that  

ID = f (D/W),          (2) 

with f standing for some simple—linear, logarithmic, or power—mathematical 

function, and that 

MT = a + b ID.          (3) 

Taken together, Equation 2, which defines task difficulty without specifying any 

particular function, and Equation 3, which states a linear dependency of MT upon the ID, can 

be taken as the generic formulation of Fitts’ law. We will repeatedly refer to this formulation 

in the rest of this paper.
4
 

2.4. Amplitude and Tolerance: Two Non-Independent Variables 

Equations 2 and 3  have an important implication that seems to have attracted little 

attention so far. This implication is that D and W cannot work as independent variables in a 

Fitts’ law experiment. What should be realized is that if D is manipulated at a constant level 

of W, then by Equation 2 the ID will vary too and hence there will be no way, in the analysis 

of MT, to disentangle the effect of the ID from that of D. For example, for a constant W = 1 

cm, changing D from 20 cm to 40 cm yields a condition in which the movement is 

simultaneously more difficult and larger in amplitude, since both the numerator D and the 

ratio D/W change from 20 to 40. Likewise, if W is manipulated at a constant level of D, then 

the ID will again be affected, and so it will be unclear whether the effect observed on MT 

must be attributed to target width or difficulty.  

The simple point being made here is that changing just the numerator or just the 

denominator of a ratio alters the ratio itself. From the moment this ratio is known to be 

influential (and this indeed is the core of the lesson learnt from Fitts’ law research), it is 

unwise to ignore such a factor confound between D and the ID, or between W and the ID. The 

assessment of Fitts’ law requires that variables D and W be manipulated orthogonally with 

each other, but neither of the two basic manipulations work since the ratio D/W, a very 

influential factor on its own, will inevitably vary at the same time. This leads us to the 

                                                           
4
 Schmidt et al. (1979) introduced a variant of Fitts’ law of the form We = f(D, MT), with We standing for 

effective target width, defined as the spatial dispersion of movement endpoints around a target point—no 

tolerance being explicitly specified for error. A major characteristic of Schmidt et al.’s version of the paradigm 

is that movement tolerance and movement speed swap their roles, with W being measured as a dependent 

variable and MT being manipulated as an experimental variable. Schmidt et al.’s version of the paradigm will 

receive no specific treatment below because, from the standpoint adopted in the present paper, it does not seem 

to differ essentially from Fitts’. 
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following problem: What are the paradigm’s variables that can be manipulated independently 

of any other variable, if this possibility exists at all.  

2.5. The Paradigm’s True Independent Variables: Absolute and Relative Amplitude 

Below we will resort to a simple geometrical analogy to suggest that Fitts’ paradigm 

has two irreducible independent variables, and that these are, not the amplitude and the 

tolerance as commonly assumed, but rather the relative and the absolute amplitude of the 

movement. Since movement difficulty is entirely captured by a ratio, it is analogous to shape 

in one-dimensional (1D) space.  

Let us start with 2D geometry, the most familiar context for thinking of shape (Colton, 

1998). It takes five df to uniquely specify a rectangle in 2D space, and shape can be defined as 

one of these. For example, as illustrated in the upper part of Figure 2, one may completely 

specify the rectangle ABCD in a Cartesian coordinate system by providing one number for 

figure shape (the aspect ratio AB/BC), one for figure size (the length of any segment, say 

AB), two for figure position (the x and y coordinates of any corner, say xA and yA), and a final 

one for figure orientation (the angle φ subtended by any segment relative to either axis, say 

the angle formed by the line AB and the Oy axis).  

B

C

D

x

y

xA

yA

φ

A

x

O E F G

O

 

Figure 2. Specifying shape and scale in 2D space (above) and in 1D space (below). The set of three points E, F, 

and G below (with E representing the starting point, and F and G representing the target interval of a Fitts task) 

can be thought of as a 1D figure.  

 

Defining an aimed-movement task in Fitts’ paradigm is like defining a three-point 

figure in 1D space, as shown in the lower part of Figure 2. Three df are obviously involved 

but we can resort to different sets of three numbers to specify Figure EFG. One can simply 

express the figure’s three abscissas xE, xF, and xG. Another possibility, consistent with the 
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traditional understanding of Fitts’ paradigm, is to specify target distance, target width, and 

target location, that is, EF+½FG , FG, and OE, respectively. But there is a third possibility, 

which consists of specifying  

(1) figure shape: the aspect ratio EF/FG or, equivalently, the ratio (EF+½FG)/FG to 

match the ratio D/W of Equation 2,  

(2) figure size, or scale:
5
 the length of any segment, say EF+½FG to match the usual 

definition of D, and  

(3) figure location: the distance OE between the starting position and some origin. In 

practice, we will ignore this df, of little relevance to the problem at hand.  

So, if we obviously need two df to specify a Fitts task (the absolute location of the 

target being ignored), it is noteworthy that these two df need not be conceptualized as D and 

W. The task can be thought of just as well in terms of task shape, specified by the ratio D/W, a 

dimensionless quantity, and task scale, specified by D, which has the physical dimension of 

length.
6
 Even though the D and W description and the D/W and D description both specify a 

Fitts task completely, they are not equivalent for the aimed-movement paradigm, keeping 

Fitts’ law in mind. If shape is an important characteristic of the figure, then we should prefer 

the latter description, because it identifies shape explicitly.  

Table 2 shows the suggested correspondences. Movement difficulty rigorously 

corresponds to—being entirely determined by—relative movement amplitude, in the sense of 

amplitude scaled to tolerance, and this is an analogue to figure shape; task scale is equated 

with absolute movement amplitude—amplitude scaled to some external standard of length—

and this is analogue to figure size. 

 

                                                           
5
 Note that the terms “size” and “scale” are treated in this paper as strict synonyms. 

6
 The use of D (or A), rather than W (or We), as an index of movement scale will be justified in the next section. 
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Table 2. Operational definitions of the paradigm’s two independent variables, along with their respective 

geometrical analogues 

 

Variable name Operational definition Geometrical analogue 

Movement difficulty Relative amplitude D/W Figure shape 

Movement scale Absolute amplitude D Figure size 

 

Importantly, movement difficulty and movement scale, unlike D and W, do qualify as 

independent variables for experimenting in the paradigm, keeping in mind the constraint of 

Fitts’ law. As illustrated in Figure 3, varying task scale changes the absolute, but not the 

relative amplitude of the required movement: D (together with W) changes but the ratio D/W 

does not,  thus keeping movement difficulty constant. Reciprocally, varying W at a constant 

level of D changes the relative, but not the absolute amplitude of the movement: the ratio D/W 

(and hence the ID)  is made to change in the absence of any variation of D, thus keeping 

movement scale constant.  

 

 A                                     B      C  A                                     B      C

A’            B’ C’  A’                                     B’  C’

 

Figure 3. Manipulating movement scale and movement difficulty independently of each other in Fitts’ aimed-

movement paradigm. Point A marks the starting point, and the target is represented by the interval BC. Left: 

variation of movement scale at a constant level of difficulty. Right: variation of movement difficulty at a 

constant level of scale. 

 

We must be clear about what it means to scale an aimed-movement task up or down. 

Consider two task conditions with the same D/W ratio, one with, say, D = 20 cm and W = 2 

cm and the other with D = 40 cm and W = 4 cm—the latter task condition is a two-fold scaled 

up version of the former. To say that the two conditions involve the same ID is like saying 

that 20/2 = 40/4. But one should be aware of the dual meaning of the equal sign in the last 

statement. In fact, 20/2 and 40/4 are both equal and different. If one refers to the rational 

number involved (relative amplitude), then the equal sign denotes a mathematical equality. If, 

however, one considers the fractions, then the equal sign denotes an equivalence—namely, 

the shared capability of two different expressions to represent a certain rational number, 

whose simplest expression is 10/1 = 10. By recognizing that expressions like 10/1, 20/2, 40/4, 
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80/8, etc., obviously are different things (different fractions) which amount, in some specific 

sense, to the same thing (the same rational number), one recognizes the existence of the scale 

variable—that is, one recognizes that to specify 20/2 and 40/4 one need two df, as shown in 

Table 3. 

 

Table 3. The Two Degrees of Freedom of Arithmetical Fractions. 

   Ratio  

  1 10 100 

 100 100/100 100/10 100/1 

Scale (Numerator) 200 200/200 200/20 200/2 

 300 300/300 300/30 300/3 

 

Henceforth our new factorial description of Fitts’ paradigm will be designated as the 

Absolute vs. Relative Amplitude (ARA) description,
7
 as distinct from the currently accepted 

Amplitude vs. Tolerance (AT) description, which will be examined in greater detail in Section 

5 below. It should be emphasized that distinguishing ARA and AT designs is not just a 

technical matter for the way in which we design our experiments closely reflects the way in 

which we conceptualize our research problems. At stake here is the identification of the 

essence of Fitts’ aimed-movement problem.  

3. Absolute Amplitude: The Influence of Movement Scale on Performance 

In this section we discuss the definition of movement scale in the context of Fitts’ 

paradigm and we ask about the actual influence of this factor on performance. It will be 

argued that scale can be conveniently quantified in Fitts’ paradigm by the absolute amplitude 

of the movement, ignoring target width. Second, we will examine the fact that the 

independent variable of scale, in comparison with relative amplitude, has received little 

attention so far. The reason, we will propose, is because, according to Fitts’ law, MT should 

obviously be scale independent (see Equations 2 and 3). But this cannot possibly be true, as 

we will see.  

                                                           
7
 This alternative factorial description of Fitts’ paradigm that is proposed in the present paper might have been 

dubbed the “difficulty versus scale” description. However, as will be explained in Section 4, the equivalence of 

difficulty and relative amplitude does not seem warranted. Therefore, we will stick to the less fluid ARA label.  
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3.1. Defining Movement Scale as Absolute Movement Amplitude  

Since any length measure can serve to quantify the scale of Figure EFG shown in 

Figure 2, one might think that D and W should do the job just as well. Note, however, that 

these two candidate indices of scale are equivalent only if shape is constant. How can the 

scale of two aimed-movement tasks be compared if their D/W ratios differ?
 
  

Suppose you want to compare, for movement scale, a given task condition to another 

with a larger D but a smaller W. Why should W be ignored to evaluate task size? An obvious 

solution would be to combine D and W in some way. It is common practice to characterize the 

size of rectangular objects like computer screens by taking the length of the diagonal (AB² + 

BC²)1/2. So we could quantify movement scale in Fitts’ paradigm as (D² + W²)1/2. 

However, it seems preferable to simply use target distance D to estimate the scale of 

the required movement. Recall that, outside of Fitts’ law literature, it is a well established 

convention in human movement science to equate movement scale with movement amplitude 

defined as the largest spatial extension of the movement. For example, students of trajectory 

formation in handwriting usually take movement scale to be simply measured by the height of 

letters (e.g., Lacquaniti, Ferrigno, Pedotti, Soechting, & Terzuolo, 1987; Wright, 1993). Thus, 

recourse to (D² + W²)1/2 to quantify movement scale in the special context of Fitts’ paradigm 

would have the drawback of breaking a useful correspondence with a widely shared notion of 

scale.  

Note that the practical cost of ignoring tolerance for the estimation of scale in Fitts’ 

paradigm seems quite moderate. The size of an elongated object is efficiently captured by its 

longest extent. For example, comparative anatomy takes the size of a bone to be its length, 

rather than a combination of its length and its thickness (Colton, 1998; Gould, 1977), and to 

characterize the size of a sky-scraper a simple height estimate works. Likewise, D is typically 

so much larger than W—the ratio D/W actually rises in an accelerated manner from 1 to about 

500 as the ID varies from 1 to 10—that W can only contribute little to the square root index. 

Thus, the quantification of movement scale by movement amplitude or target distance can 

involve only a very small error, relative to the more comprehensive square root index. This 

error becomes quite negligible for IDs above 3 bits, as shown in Figure 4. Thus, in the rest of 

this paper, the scale of an aimed movement will be characterized simply by its amplitude (A 

or D). 
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Figure 4. The difference between the estimate of scale as D and as (D²+W²)1/2, in percentage of the latter, as a 

function of movement difficulty. 

3.2. The Within-Limits Validity of Fitts’ Law 

Compelling logical arguments and abundant empirical evidence have forced 

researchers, since Fitts (1954), to make the reservation that Fitts’ law is valid only within 

limits. The “within limits” phrase can be understood in two different senses, as the law does 

encounter severe limits on each of the two independent variables involved in the paradigm. 

First, Fitts’ law can be explored only within narrow limits of relative amplitude—to 

this author’s knowledge, it has never been possible in a standard Fitts’ law experiment to have 

people perform an aimed-movement task whose ID would exceed 10 bits, that is, a D/W ratio 

of about 500 (Guiard, Beaudouin-Lafon, & Mottet, 1999; but see also Guiard, Bourgeois, 

Mottet, & Beaudouin-Lafon, 2000).  

Second, practically speaking a Fitts task can be scaled up and down only to some 

extent. Were these scale limits known to be localized at some remote points above and below 

the selection of amplitudes used in typical Fitts’ law experiments, the points raised in the 

present paper would be of immaterial importance. But the question of the actual localization 

of these limits on the scale continuum is essentially open, having been ignored so far, owing 

to the failure to isolate the scale factor in the classic AT approach. In fact, within what limits 

of scale Fitts’ law remains valid is a problem that is experimentally intractable within the 

traditional AT approach. Yet there is a serious concern: so long as the effects of the scale 

factor are not understood and controlled in the paradigm, Fitts’ law will amount to an 

optimistic guess. 

Performance cannot be scale independent if only because perceptual-motor systems 

possess limited ranges of operation. For example, in a classic hand-tapping task, humans 
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cannot cope with targets smaller than half a millimeter or so, owing to the limited resolution 

of their perceptual-motor system. This limited resolution prohibits scaling down an aimed-

movement task below some critical level, unless participant are provided with a magnifying 

lens (Langolf, Chaffin, & Foulke, 1976; Guiard, Beaudouin-Lafon, & Mottet, 1999). On the 

other hand, any effector system, whether a single joint or the whole arm, also exhibits some 

upper limit for amplitude coverage.  

From the mere recognition of the existence of a lower and an upper limit for the scale 

of any movement, it follows that performance should decline toward either end of the 

manageable range of scale. Thus, one may conjecture that in Fitts’ paradigm the dependence 

of MT on scale exists and is U-shaped. 

We now turn to the empirical evidence. We will first ask about the relationship that 

links MT to movement scale, considering some fresh data from an experiment that varied 

scale at a constant level of relative amplitude. We will then turn to the question of the 

functional relationship borne by relative and absolute amplitude, considering the data of two 

rare experiments of the literature that happened to manipulate these two factors orthogonally, 

in keeping with the ARA logic introduced in Section 2.5.  

3.3. A U-Shaped Relationship Between MT and Movement Scale  

Guiard and Slifkin (2001) investigated the effect of movement scale in a remote-

controlled reciprocal Fitts task by manipulating the display-control (DC) gain over a large 

range with a constant ID of 5 bits. To make the screen cursor cover a constant D on a visual 

display, participants had, in different conditions, to move a slider with the hand over 

amplitudes of 1, 21, 41, or 61 cm, thanks to variations of the DC gain. 

Reducing the DC gain means scaling up the absolute amplitude of movement at a 

constant level of relative amplitude, a case that was illustrated on the left-hand side of Figure 

3. Notice that this scaling variation is restricted to hand space, to the exclusion of any change 

in the visual display—an interesting characteristic of DC gain manipulations. In particular, the 

amplitude of cursor motion on the display is not affected.  

In addition to MT, we measured performance accuracy with an index of effective 

difficulty (IDe) based on mean movement amplitude (A, rather than D) and effective tolerance 

(We, rather than W). Specifically, IDe was computed as log2(2A/We) (see Welford, 1968). 
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Figure 5 . Effect of movement scale on the speed (MT) and accuracy (IDe) of movement in Guiard and Slifkin’s 

(2001) reciprocal Fitts task experiment. 

 

Scale had a consistent nonlinear influence on MT. As shown in Figure 5, scaling up 

the absolute amplitude of movement from 1 cm (with only the fingers involved) to 61 cm 

(with the whole arm involved) improved both movement accuracy (F(3,33)=6.37, p<.002) 

and movement speed (F(3,33)=30.62, p<.001).
8
 

The hypothesis of a U-shaped relationship between MT and movement scale was 

supported by the data. As visible in the figure, movement precision began to drop beyond 41 

cm, while a floor effect was simultaneously beginning to settle on MT, suggesting an optimal 

region for the movement around 40-60 cm. 

This finding is consistent with the conclusion of a large body of studies conducted in 

an ergonomic perspective on the role of the DC-gain factor in remote-controlled tasks. This 

literature has produced converging evidence that the dependency of MT upon movement scale 

is U-shaped, and repeatedly confirmed the existence of scaling optima. For a given effector 

system in a given task, performance drops as soon as movement scale becomes either too 

small or too large, (e.g., Arnaut & Greenstein, 1990; Buck, 1980; Gibbs, 1962; Jenkins & 

Connor, 1949; Poulton, 1974; for a review, see Li Lin, Radwin, & Vanderheiden, 1992). 

The simple suggestion that arises from the evidence reported and cited above is that it 

seems risky to ignore the scale factor in a Fitts experiment, scale being liable to exert a 

powerful non-linear effect on performance.  

                                                           
8
 A full discussion of the specific MT curve we obtained, which differs considerably from some other 

observations—notably, those of Hoffmann (1997) and Langolf et al. (1976)—would take us away from the 

main point of this section. 
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3.4. The Functional Relationship Between Absolute and Relative Amplitude 

Having examined separately the impact of scale on performance, we may turn to the 

question of how the paradigm’s two independent variable interact, a question whose treatment 

requires an ARA factorial description of the paradigm. Unfortunately, the literature reports 

few experiments with an ARA design. Below we examine two rare cases, the studies of Gan 

and Hoffmann (1988) and Danion, Duarte, and Grosjean (1999).  

Gan and Hoffmann (1988) studied the performance of discrete tapping movements at 

ten levels of ID (from 1 to 6 bits) for each of four levels of D (4, 9, 16, and 25 cm).
9
 Figure 6 

plots their MT data (from their Table 1, p. 832) as a function of relative amplitude (D/W), 

separately for each level of absolute amplitude (D). Interestingly, MT was linearly dependent 

on relative amplitude D/W. The scale factor was also found to substantially influence 

performance, with the movement slowing down monotonically as absolute amplitude was 

raised from 4 to 25 cm. Gan and Hoffmann reported a strong interaction between D and Fitts’ 

logarithmic ID, but the Fitts’ law curves they obtained were consistently nonlinear. In fact, as 

shown in Figure 6 (which uses a linear, rather than a log scale for relative amplitude), their 

data do suggest an essentially additive relation between relative and absolute amplitude.  
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Figure 6. The MT data of Gan and Hoffmann (1988) re-plotted as a function of relative movement amplitude, at 

each of four levels of absolute amplitude. 

 

Table 4. Goodness of fit (r²) for the linear regression of MT versus task difficulty in the data of Gan and 

Hoffmann (1988), using three candidate definitions of the ID, for each level of scale. 

                                                           
9
 This work of Gan and Hoffmann (1988) was primarily aimed at empirically substantiating the distinction 

between ballistic and visually-controlled movement. Here we leave this concern aside to focus on the issue of 

absolute versus relative amplitude. 
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    D (cm)  

 4 9 16 25 Mean 

Fitts' logarithmic ID = log2(2D/W) .937 .838 .791 .754 .830 

Meyer et al.'s (1990) power ID = (D/W)
1/2
 .990 .965 .951 .926 .958 

Linear ID = D/W .923 .970 .994 .995 .971 

Mean .950 .924 .912 .892  

 

As shown in Table 4, a simple linear ID defined as D/W provides a better fit (with an 

r² of .971 on average over the four scale levels) than Fitts’ logarithmic ID (r² = .830). The 

linear ID does also better than Meyer, Smith, Kornblum, Abrams, & Wright’s (1990) square-

root ID (r² = .958). Keeping in mind that the data set of Gan and Hoffmann (1988) is one of 

the few that permit the MT versus ID relationship to be evaluated without any spurious 

influence from scale, such a result is worthy of consideration.  

Another instance of an utilization of the ARA approach to Fitts’ paradigm is the recent 

study of Danion et al. (1999). 
10
 These authors, interested in the question whether Fitts’ law 

holds for movements of the whole body, had participants stand on a force platform, facing a 

computer screen. The task was a reciprocal aiming task in which the screen cursor was made 

to move from one target to another by oscillating one’s center of pressure on the platform. 

Danion et al. used six levels of task difficulty (ID = 1.4 through 2.9 bits, a low-level selection 

of IDs suitable to the particular effector system involved) crossed with four levels of 

movement scale on the platform (3, 4.5, 6, and 9 cm). Movement scale was varied by 

adjusting the DC gain. 

200

400

600

800

1000

1200

1 2 3 4

Relative Amplitude (D /W )

MT  (ms)

D = 3.0 cm

D = 4.5 cm

D = 6.0 cm

D = 9.0 cm

 

Figure 7. The data of Danion et al. (1999) with MT re-plotted as a function of relative movement amplitude, at 

each of four levels of absolute amplitude. 

 

                                                           
10
 The author thanks Frédéric Danion for making his numerical data available to him. 
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As shown in Figure 7, the results of Danion et al.’s whole-body pointing experiment 

differed from those of the hand-tapping experiment of Gan and Hoffman in two notable 

respects. First, performance improved, rather than decayed, as the movement was scaled up, a 

finding that presumably reflects the difficulty of controlling amplitudes of a few centimeters 

with oscillations of the whole body. Second, whereas in Gan and Hoffmann’s experiment the 

effects of absolute and relative amplitude were essentially additive, Danion et al.’s data 

suggest a clear-cut interaction, with the effect of relative amplitude monotonically declining 

as the movement was scaled up.
 

Interestingly, however, the MT data of Figure 7 replicate those of Gan and Hoffmann 

(1988) in that they show an essentially linear link between performance and relative 

amplitude. Again, as summarized in Table 5, a better linear data fit obtains when task 

difficulty is quantified as D/W (mean r² = .989) than with Fitts’ logarithmic ID (r² = .947) or 

Meyer et al.’s (1990) power ID (r² = .961).  

 

Table 5. Quality of fit (r²) for the linear regression of MT versus task difficulty in the data of Danion et al. 

(1999), for each level of scale, with three candidate definitions of task difficulty. 

    Distance (cm)  

 3 4.5 6 9 Mean 

Fitts' logarithmic ID = log2(2D/W)  .966 .902 .964 .957 .947 

Meyer et al.'s (1990) power ID = (D/W)^1/2 .982 .920 .964 .978 .961 

Linear ID = D/W .987 .987 .958 .989 .980 

Mean .978 .936 .962 .975  

 

So the data of these two experiments converge to suggest the possibility of modeling 

Fitts’ law as a linear equation—at least for limited ranges of variation of relative amplitude. 

Why in Gan and Hoffmann’s study  absolute and relative amplitude added their effects on MT 

while these factors  interacted in Danion et al.’s is a question for future research.  

These two isolated studies must be viewed just as a start. The functional relationship 

borne by absolute and relative amplitude in Fitts’ paradigm is an important research problem 

that needs to be tackled, and this requires recourse to ARA designs like those of Gan and 

Hoffmann and Danion et al.  

4. Relative Amplitude: Questioning the Difficulty Labeling  

Designating as an “index of difficulty” some logarithmic or power transform of the 

ratio D/W has been a well-established tradition in the field since Fitts (1954). The previous 

sections of this paper used occasionally the term difficulty to refer to the paradigm’s 
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independent variable based on relative amplitude. However, as will be explained in this 

section, recourse, in the aimed-movement paradigm, to the very notion of difficulty is 

questionable. Three objections arise. First, difficulty is a subjective intermediate variable 

whose utility is uncertain. Second, the link between subjective difficulty and relative 

amplitude is not simple enough to justify the implicitly assumed equivalence. Finally, there 

seems to be no more affinity between difficulty and relative amplitude than between difficulty 

and absolute amplitude.  

4.1. Difficulty: A Subjective Intermediate Variable 

A first concern is that difficulty is a subjective variable. Sticking to operationally 

defined notions, the only thing we know for certain is the simple quantitative relationship that 

links MT to relative amplitude. Whether it is legitimate—and even useful, in the first place—

to rephrase this relationship in terms of difficulty, a subjective variable that has the status of a 

hypothetical intermediate variable, as shown in Figure 8, seems questionable.  

 

Movement Time Difficulty Relative Amplitude

 

Figure 8. A direct and an indirect route of causality from relative amplitude to movement time. Difficulty plays 

the role of an intermediate subjective variable, interposed between two objectively defined variables. 

 

This is not to suggest that the notion of difficulty is ill-defined in Fitts’ paradigm. 

Undoubtedly, this notion is grounded on an unequivocally specified manipulation and an 

unequivocally specified dependent measure. Simply, the point is that when relative amplitude 

is manipulated and performance speed measured, reference to a third, intermediate variable 

like difficulty is gratuitous unless explicit justifications are provided. It is intuitively 

appealing to equate relative amplitude with difficulty, but Fitts’ law literature has remained 

silent on the specific sense in which a movement can be said to become more difficult when 

its relative amplitude increases. We will see in the next two sub-sections that the needed 

justifications are rather elusive.  

4.2. The Non-Linear Dependence of Difficulty on Relative Amplitude  

A possible justification for equating relative amplitude with subjective difficulty could 

be found in the demonstration that these two variables bear a simple linear relationship. This, 
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however, is unlikely. We will review evidence that the relationship is non-linear, with a 

minimum of subjective difficulty at some optimal region of relative amplitude.  

One method of experimentally evaluating subjective difficulty in a Fitts task consists 

of examining the way in which participants actually comply with the accuracy instructions. It 

may be hypothesized that the more difficult a task subjectively, the greater the mismatch 

between effective difficulty (IDe), which can be estimated on the basis of the distribution of 

the actual movement endpoints (e.g., as log2(2A/We)), and prescribed difficulty (IDp), defined 

on the basis of the mere description of the experimental material (e.g., as log2(2D/W)). The 

relationship between subjective difficulty and relative amplitude can be inferred from the 

extent to which IDe follows the variations of IDp. For example, if a participant finds it difficult 

to handle a very high ratio of D/W, then the IDe should be lower than the IDp. 

This question was investigated by Guiard and Ferrand (1998) in a remote-controlled, 

reciprocal aiming task. Their participants were explicitly asked to try, in all conditions, to use 

“only and all the error tolerance offered”, while minimizing MT. The IDe was found to vary 

linearly with the IDp (y = 0.75 x + 1.49, r² = .994), but the slope was consistently less than 

unity, with a large positive intercept, as illustrated in Figure 9.  
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Figure 9. Graphical illustration of the way in which the IDe follows the variations of the IDp in the data of 

Guiard and Ferrand (1998). Error bars represent α = .05 confidence intervals based on between-participant 

standard deviations. The solid line and the dashed line illustrate the best-fitting curve and the line of equality, 

respectively. 
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In keeping with classic observations (e.g., Welford, 1968; Crossman & Goodeve, 

1963/1983), the participants were less accurate than required when the IDp exceeded some 

critical upper level. Below this level, however, IDe was not found to equal IDp. Rather, 

participants produced movements that were consistently more accurate than those required, 

and this mismatch was more and more marked as the task became less and less “difficult”. 

Such a reluctance to execute an easier movement seems rather paradoxical, unless it is 

recognized that the supposedly less difficult task conditions are in fact, in some other sense, 

more difficult. 

The solution to the paradox proposed by Guiard and Ferrand (1998) was that below 

some optimal region of the ratio D/W, the lower this ratio, the harder the task in terms of 

energetic demands. Think of an extremely easy Fitts task with, say, D = W = 20 cm (the ID 

amounting to a minimal 1 bit). Since the probability of a miss is virtually zero, the only 

concern that remains is to perform the movement as fast as possible. The point is that, owing 

to Schmidt et al.’s (1979) law, to try to exploit all the tolerance offered so as to match the 

typical instructions of a Fitts task, one needs to produce one’s athletic maximum, and this, 

undoubtedly, is very difficult.  

So we reach the conclusion that when humans are asked to carry out a speeded aimed-

movement task, they are just as reluctant to deal with very low levels of difficulty as they are 

to deal with very high levels of difficulty, “difficulty” being understood here in Fitts’ sense. 

While this seems rather paradoxical in light of Fitts’ (1954) understanding of difficulty, the 

paradox vanishes altogether from the moment it is acknowledged that subjective difficulty 

involves at least two dimensions, energetic expenditure and information processing. 

Since the energetic and the information processing costs vary in opposite directions 

when the ratio D/W changes, it is reasonable to hypothesize that for any aimed-movement task 

there must exist an optimal region of relative amplitude. In the data of Figure 9, this optimal 

region seems to have been located towards an ID of 6 bits. Only at this level of the prescribed 

ID were the participants able to comply with accuracy instructions—that is to say, to produce 

A/We = D/W. 

If the link between relative movement amplitude and subjective difficulty is non-

linear, then the legitimacy of the usual association of relative amplitude with difficulty seems 

quite questionable. Converting relative amplitude into the subjective variable of difficulty can 

only amount to importing, rather gratuitously, an extra dose of complexity into the paradigm. 
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4.3. The Dual Source of Difficulty in Fitts’ Paradigm 

A further problem with the equivalence that has been traditionally assumed between 

relative amplitude and difficulty is that there does no seem to exist any compelling affinity 

between these two variables. In fact, subjective difficulty is likely to be just as strongly 

dependent on the paradigm’s other independent variable, movement scale.  

Imagine you perform a Fitts’ task that involves a medium level of absolute and relative 

amplitude. Now the experimenter scales up D and W proportionally over and over. Obviously, 

the task will become more and more difficult, up to the point where you will no longer be able 

to carry it out. The same will occur if the task is gradually scaled down below the optimal 

region.  

We have seen in Section 3 that MT increases when an aimed movement is scaled up or 

down from some optimal scale region. If, as is the case with relative amplitude, MT is 

accepted as an objective criterion of difficulty, then it is clear that re-scaling a task above and 

below the task’s optimal scale region implies an increase in task difficulty.  

In sum, not only is the relation between relative amplitude and subjective difficulty too 

complex for any equivalence to hold, but a similar non-linear relation must be assumed to 

exist between subjective difficulty and scale, the paradigm’s other independent variable. 

Therefore, it seems preferable to stick to operational definitions and to label the two 

independent variables as relative amplitude and absolute amplitude (or scale), rather than 

difficulty and scale.  

5. The Deficiency of the Two-Dimensional Approach to Fitts’ Paradigm 

In this section, we proceed to evaluate the damage that has resulted in published work 

from traditionally overlooking the experimental confounds that affect variables D and W, as a 

result of the paradigm missing the third conceptual dimension of scale. We start with a 

taxonomic point: experiments with AT designs fall in three categories according to where the 

selection of Ds happens to fall on the scale continuum, relative to the effector-specific 

optimum. We then turn to an analysis of the shortcomings of the current method. One 

detrimental consequence of using AT designs has been the recurrent emergence of an ill-

posed problem whose treatment has occasionally led to erroneous conclusions—the problem 

of the respective influences of D and W on performance. Another consequence, which we will 

document with two simulation experiments, has been the contamination of experimental 

measures by uncontrolled scale effects, leading to biased estimates of Fitts’ law.  
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5.1 A Taxonomy of AT-Designed Experiments 

What possible effects can an uncontrolled variation of movement scale exert on the 

assessment of Fitts’ law in an experiment using an AT design? Three cases must be 

distinguished.  

Insofar as D varies in the near-optimal region of the movement scale continuum 

(where the slope of the MT versus scale relationship is minimal, or even possibly null in case 

of a plateau), one expects little or no contamination from the scale factor. This, of course, is 

the only favorable case.  

If, however, the selection of Ds unfortunately extends in the sub-optimal scaling 

region (where scaling up the movement facilitates performance), the overlooked scale factor 

will counteract the effect of the ID and thus cause an underestimation of the slope of Fitts’ 

law.  

Finally, if the selected range of variation of D happens to extend in the supra-optimal 

region (where scaling up the movement deteriorates performance), scale will add its effect to 

that of the ID, leading to an overestimation of the slope of Fitts’ law. 

5.2. The Confound of Absolute and Relative Amplitude in AT Designs 

The amplitude versus tolerance description of the aimed-movement paradigm was 

popularized by Fitts (1954; Fitts & Peterson, 1964). Table 6 shows the design he used for his 

famous 1954 study (Experiment 2), in which he crossed four levels of D with four levels of 

W. One expects MTs to be shown in a table of this sort, but notice that in fact Table 6 

displays, for each combination of D and W, the levels taken by the third relevant experimental 

variable, namely, the ID.  

 

Table 6. The ID as a function of target distance and target width in Fitts (1954, Experiment 2). 

 

    D (cm)   

   10.2 20.3 40.6 81.3 Mean ID (bit) 

        
  0.16 7.0 8.0 9.0 10.0 8.5 

 W (cm)  0.32 6.0 7.0 8.0 9.0 7.5 

  0.64 5.0 6.0 7.0 8.0 6.5 

  1.27 4.0 5.0 6.0 7.0 5.5 

          Mean ID (bit) 5.5 6.5 7.5 8.5 7.0 
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The problem that is made apparent by this presentation is that variables D and W—two 

supposedly independent variables—each co-varied with the ID. As D was scaled up from 10.2 

to 81.3 cm, the mean ID increased from 5.5 to 8.5 bits. Likewise, as W was scaled up from 

0.16 to 1.27 cm, the mean ID declined from 8.5 to 5.5 bits. Thus each of the two variables 

Fitts used as factors in his experimental design co-varied with the ID. 

It must be realized that the cost of a complete crossing of variables D and W is an 

incomplete crossing of variables ID and D. Table 7 shows the MT data that Fitts (1954) 

collected in his disc-transfer experiment.
11
 Two observations must be made. First, the 

selection of D levels was systematically shifted upward as the ID increased—this being 

possible only because 12 of the 28 cells were left empty—and therefore the ID co-varied with 

target distance (a rather strong positive correlation, r = .985). Specifically, as task difficulty 

(top row) was manipulated from 4 to 10 bits, the mean amplitude of the movement (bottom 

row) increased from 10.2 to 81.6 cm—indeed a considerable variation.  

 

Table 7. The MTs (s) of Fitts’ (1954) disc-transfer experiment shown as a function of the paradigm’s true 

independent variables, relative amplitude (ID) and absolute amplitude (D). Empty cells are filled in gray. The 

bottom row shows the mean value taken by D for each level of the ID.  

 

    ID (bit)     

  4 5 6 7 8 9 10 

 10.2 0.535 0.607 0.649 0.697    

D (cm) 20.3  0.623 0.672 0.734 0.771   

 40.6   0.724 0.771 0.844 0.896  

 81.3    0.902 0.975 1.028 1.096 

 Mean D 10.2 15.2 23.7 38.1 47.4 61.0 81.3 

         

The reason why such a level of co-variation is troublesome is because the overlooked 

variable influenced MT substantially. The table shows quite clearly that, considered separately 

for each level of task difficulty, Fitts’ scaling up of D (together with W) resulted in the 

performance systematically slowing down. Thus, it is clear that each of the two confounded 

variables of Table 7 were actually influential in this experiment, a severe handicap for 

interpreting MT.  

The data of Table 7 are illustrated graphically in Figure 10. Fitts’ method of 

processing the data consisted of computing a linear regression with all data points.
12
 The best-

fitting curve Fitts obtained with this method, of equation MT = 90 ID + 150, is shown in the 

                                                           
11
 See Sheridan (1979) for a similar criticism of the structure of Fitts’ data. 

12
 Fitts in fact originally introduced this method in a later reanalysis of his 1954 data (Fitts & Peterson, 1964). 
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figure as a solid line crossing the whole selection of IDs. This curve ought to summarize a 

pure effect of task difficulty, but it is in fact seriously contaminated by the variation of scale. 

Given the structure of the design, It would have been more satisfactory to compute a best-

fitting curve separately for each level of D, to get estimates of Fitts’ law free from any 

influence from scale, irrelevant here. These curves are shown as dashed lines in the figure. 

The revised method, however, yields rather different estimates of Fitts’ law parameters with, 

in particular, considerably shallower slopes (52.8, 50.6, 58.9, and 63.5 ms/bit from the lowest 

to the highest levels of D) in comparison with Fitts’ own estimate (90 ms/bit).  
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Figure 10. The MT data collected by Fitts (1954, Experiment 2) in his disc-transfer 

experiment. 

 

In light of the analysis of Section 2, it is clear that the shortcoming of Fitts’ design 

reflects his using only two dimensions, MT and relative amplitude, for thinking of his 

paradigm: with a single independent variable in the design, there is no way out of the factor 

confound. 

The present criticism would just be of historic interest, had not Fitts’ design been 

perpetuated up to present in mainstream research on human aimed movement. Ever since 

Fitts, it has been customary in the field to design experiments in which distance and tolerance 

are scrupulously balanced, as though these were independent variables, with the drawback 

that absolute and relative amplitude are made to co-vary.
 
Presumably, hundreds of references 

could be cited here, including most leading contributions to the various chapters of Fitts’ law 

research (to cite just a few: Accot & Zhai, 1997; Card, English, & Burr, 1978; Fitts & 
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Peterson, 1964; Jagacinski & Monk, 1985; Kelso, Southard, & Goodman, 1979; Meyer et al., 

1990; Mottet & Bootsma, 1999; Welford, Norris, & Shock 1969).  

 

Table 8. Estimation of the Co-Variation of Absolute and Relative Amplitude in a Sample of Fitts' Law  

Experiments 
(
*
)
 

       Co-variation of D 

       Absolute Amplitude (D)  relative to log2(2D/W) 

  Unit Min Max Range  r Slope (% per bit) 

         

Accot & Zhai (1997)  cm 12.8 51.2 38.4  .994 25.0% 

Annett et al. (1979)  cm 20.3 40.6 20.3  .388 15.1% 

Card et al. (1978)  cm 1.0 16.0 15.0  .815 13.9% 

Fitts (1954) tapping  cm 5.1 40.6 35.6  .985 16.5% 

Fitts (1954) disk transfer  cm 10.2 81.3 71.1  .985 16.5% 

Fitts (1954) pin transfer  cm 2.5 40.6 38.1  .969 12.8% 

Jagacinski & Monk (1985) helmet  deg 2.5 7.5 5.1  .996 31.0% 

Jagacinski & Monk (1985) joystick  deg 2.5 7.5 5.1  .996 31.3% 

Kelso, Southard, & Goodman (1979)  cm 6.0 24.0 18.0  .894 40.0% 

MacKenzie & Buxton (1992)  pixel 64.0 512.0 448.0  .985 16.5% 

Meyer et al. (1990)  deg 10.0 39.5 29.5  .993 24.9% 

Mottet & Bootsma (1999)  cm 8.0 24.0 16.0  .747 20.5% 

Welford et al. (1969)  cm 3.4 40.0 36.6  .709 20.5% 

 (
*
) 
Note. The rightmost estimate is the slope of the D vs. ID relationship expressed in percentage of the range of 

D covered in the experiment per bit. Fitts' ID was generalized to all data sets to facilitate comparisons. 

 

Table 8 shows the strength of the undesirable correlation that linked absolute and 

relative amplitude in a sample of important studies from the literature. The correlation 

coefficients take very high positive values, in most cases over the .9 level. This seems 

alarming because the slope of the unwanted link between D and the ID was generally quite 

substantial, as shown in the rightmost column of the table. Take for example, the case of 

Meyer et al.’s (1990) influential study: for every new bit of information in the manipulation of 

relative amplitude, movement scale was increased on average by 25 percent of its total range 

of variation (7.5° per bit).  

Two categories of exceptions can be cited: studies in which task difficulty was 

manipulated through variations of W at a constant level of D (e.g., Guiard, 1993, 1997; 

Mottet, Guiard, Bootsma, & Ferrand, in press) and studies whose experimental design fully 

crossed movement difficulty and movement scale (Danion et al., 1999; Gan & Hoffmann, 

1988). We will return to these studies below. 
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With some examples, the next sections will show that failure to detect the confound 

between absolute and relative amplitude with the traditional AT design has caused serious 

misunderstandings and measurement errors in Fitts’ law research.  

5.3 A Recurrent Ill-Posed Problem: Separating the Effects of D and W 

One consequence of the established 2D understanding of Fitts’ paradigm has been the 

recurrent reappearance of the ill-posed experimental problem of estimating the respective 

effects of variables D and W on MT (e.g., Annett, Annett, Hudson, & Turner, 1979; Card, 

English, & Burr, 1978; Jagacinski & Monk, 1985; Meyer et al., 1990; Mottet & Bootsma, 

1999; Welford, Norris, & Shock, 1969). 

According to Fitts’ law, the two possible methods of manipulating the ID—by varying 

either the numerator or the denominator of the ratio D/W—are equivalent and hence they 

should yield the same coefficients of Fitts’ law. However, the two methods have been 

generally reported to yield substantially different estimates. 

Let us focus on one representative example. Welford, Norris, & Shock (1969), who 

used a reciprocal tapping task, were puzzled to find a Fitts’ law slope of over 170 ms/bit 

through the variation of W (with D kept constant), but of hardly 100 ms/bit through the 

variation of D (with W kept constant). This apparent discrepancy led Welford et al. to the 

wrong hypothesis that “ the accuracy of ballistic movements is, other things being equal, 

independent of their extent” (p. 11). This hypothesis—which must be understood to refer to 

absolute lengths, that is, to W rather than W/D and to D rather than D/W—has been clearly 

ruled out since then. For example, Schmidt et al. (1979) showed that, for very fast, purely 

ballistic aimed movements, the spatial dispersion of endpoints increases when, for a constant 

MT, movement amplitude is increased, and Langolf, Chaffin, & Foulke (1979) showed with 

kinematic analyses that the whole movement, and not simply its terminal component, is 

affected by the tolerance.  

In light of the alternative ARA factorial description, the puzzle Welford et al. thought 

they had to tackle vanishes. As shown in the right-hand side of Figure 3, the W manipulation 

involves just relative amplitude (D/W), to the exclusion of scale (D), and so this method of 

estimating Fitts’ law is valid. By contrast, the separate manipulation of D, with W constant, 

varies both relative and absolute amplitude (D/W and D), thereby exposing MT to their 

confounded influences. From the moment it is realized that one of two concurrent methods of 

evaluating an effect is invalid, there is no more reason to wonder about discrepant results.  
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But we can say more, with the ARA approach, about these results. We can explain 

why Welford et al. obtained a shallower slope for Fitts’ law with the separate manipulation of 

D, rather than W. Their data show that scaling up the movement facilitated performance 

systematically over the whole selection of absolute amplitudes that was used in the 

experiment (34-400 mm), revealing a sub-optimal selection of task scalings. This scale effect 

accounts for the reduced slope of Fitts’ law with the manipulation of D: as the increase of 

relative amplitude made performance more difficult, the simultaneous scaling up of absolute 

amplitude made the performance, in another sense, less difficult. So the uncontrolled effect of 

scale involved in the isolated manipulation of D partially offset the effect of the ID.  

In fact, the problem of the respective contributions of D and W to Fitts’ law is squarely 

intractable because it is ill-posed, the distance and tolerance concepts being inherently 

equivocal in the usual 2D understanding of the paradigm. To investigate the effect of absolute 

amplitude or absolute target size, one needs to distinguish these variables from relative 

amplitude and relative target size, but that requires the problem to be rephrased in the ARA 

conceptual space, with the third dimension of scale.  

5.4. Evaluating the Scale Bias Inherent in the Usual AT Design: Two Simulation 

Experiments  

In designing a Fitts’ law experiment, one needs more cells to cross absolute and 

relative amplitude (ARA design) than amplitude and tolerance (AT design). So by re-

processing the data of an experiments with a full ARA design, it is possible to simulate an 

experiment with an AT design and thus evaluate the results that would have obtained, had the 

traditional AT design been used. Re-computing Fitts’ law from a subset of the data such that 

D is crossed with W is like re-running the experiment with an AT design. The question, of 

course, is, how different would have the results been? Such a simulation was performed on 

the data of Danion et al. (1999) and Gan and Hoffmann (1988), the two already cited 

instances of ARA-designed Fitts’ law studies. It will be shown that AT designs provide 

quantitatively biased estimates of Fitts’ law and that, worse, they can be misleading with 

regard to the issue of how the law should be modeled qualitatively. 

Quantitatively Biased Coefficient Estimates  

Danion et al.’s ARA design, which crossed six levels of ID with four levels of D, had 

24 cells. From these 24 cells, a subset of nine cells could be selected for the simulation in 

such a way that three levels of D were crossed with three levels of W (see Table 9). 
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Interestingly, the range of variation of the ID was not altered in the simulation, with the ID 

still varying from 1.4 to 2.9 bits. 

Recall that the main problem with the AT design is that it produces an orthogonal 

variation of D and W, of limited utility, at the considerable cost of introducing a factorial 

confound between relative and absolute amplitude. In the simulated AT experiment based on 

Danion et al.’s data, the correlation between D and W was found indeed to be very low and 

statistically non significant (r = .135), and this led to a strong positive correlation between D 

and the ratio D/W (r = .835, p <.001). 

 

Table 9. Combinations of D and W, along with the MTs, for the largest possible subset of cells from Danion et 

al.’s (1999) experiment such that D varies orthogonally with W. From the original 24 cells, the selection retains 

three levels of D crossed with three levels of W.  

 

D (cm) W (cm) D/W Fitts' ID (bit) MT (s) 

4.50 3.41 1.32 1.40 0.382 

4.50 2.77 1.62 1.70 0.405 

4.50 2.25 2.00 2.00 0.535 

6.00 3.69 1.62 1.70 0.408 

6.00 3.00 2.00 2.00 0.491 

6.00 2.44 2.46 2.30 0.505 

9.00 3.66 2.46 2.30 0.421 

9.00 2.97 3.03 2.60 0.478 

9.00 2.41 3.73 2.90 0.552 

 

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3

Relative Amplitude D/W

MT

(s)

MT  = 0.06 D /W  + 0.38, r ² = .490

MT  = 0.20 D /W  + 0.09, r ² = .995

 

 

Figure 11. A simulation of the results Danion et al. (1999) would have obtained, had they used the usual AT 

design for the same range of IDs. The simulation data are illustrated in gray, while the data they actually 

obtained with their ARA design, averaged over the four scale levels, are illustrated in black.  
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As visible in Figure 11, the simulated AT experiment yielded a picture of Fitts’ law 

that differs markedly from that which Danion et al. actually obtained with their ARA design. 

Most notably, the slope of the fitted function for the simulated data is hardly one third of that 

obtained with their actual data.  

The interpretation of such a slope reduction with the simulated AT design is 

straightforward. Danion et al.’s actual data (see Figure 7) show that scaling up the task 

improved performance monotonically—the symptom of a sub-optimal scale selection. Owing 

to the positive correlation of absolute and relative amplitude inherent in the simulated AT 

design, the effect of scale (the larger the absolute amplitude, the better) partially offset the 

effect of relative amplitude (the larger the ratio D/W, the worse), and so the AT simulation 

produced an underestimation of the slope of Fitts’ law. 

 

Table 10. Movement times for the largest subset of cells from Gan and Hoffmann’s (1988) design such that D 

and W vary orthogonally.  

 

D (cm) W (cm) D/W Fitts' ID (bit) MT (s) 

4.0 4.00 1.00 1.0 0.107 

4.0 2.83 1.41 1.5 0.117 

4.0 2.00 2.00 2.0 0.118 

4.0 1.41 2.83 2.5 0.125 

4.0 1.00 4.00 3.0 0.137 

9.0 4.50 2.00 2.0 0.137 

9.0 3.18 2.83 2.5 0.15 

9.0 2.25 4.00 3.0 0.151 

9.0 1.59 5.66 3.5 0.162 

9.0 1.13 8.00 4.0 0.178 

16.0 4.00 4.00 3.0 0.169 

16.0 2.83 5.66 3.5 0.184 

16.0 2.00 8.00 4.0 0.195 

16.0 1.41 11.31 4.5 0.213 

16.0 1.00 16.00 5.0 0.237 

25.0 4.42 5.66 3.5 0.208 

25.0 3.13 8.00 4.0 0.216 

25.0 2.21 11.31 4.5 0.225 

25.0 1.56 16.00 5.0 0.248 

25.0 0.78 32.00 6.0 0.322 

 

 

Gan and Hoffmann used a copious ARA design for their experiment, crossing ten 

levels of ID with four levels of D. From the 40 cells of this design, the simulation used a 

subset of 20 cells such that four levels of D were crossed with five levels of W (see Table 10). 

As was the case with Danion et al.’s data, the AT simulation let the ID cover the same range 

of variation as in the original ARA experiment (1-6 bits). The simulation produced a virtually 
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zero correlation between D and W (r = .02) and, by the same token, the strong positive 

correlation between D and D/W expected with an AT-designed experiment (r = .665, p < .01).  

The results of the simulation are shown in Figure 12. The 40% inflation of the slope 

with the AT simulation (from 50 to 70 ms per unit of D/W) can be easily explained. Gan and 

Hoffmann, contrary to Danion et al., obtained a monotonic increase of MT as they scaled up 

the aimed-movement task (see Figure 6), revealing a supra-optimal selection of scale. Hence, 

the AT simulation made absolute and relative amplitude work in synergy, leading to an 

overestimation of the effect of the ID.  
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Figure 12. A simulation of the results that Gan and Hoffmann (1988) would have obtained, had they used an AT 

design for the same range of IDs. The simulation data are shown in gray. The data they actually obtained with 

their ARA design, averaged over the four levels of D, are shown in black. 

 

Failure to Identify the Best-Fitting Model 

Table 11 summarizes the results of the two simulation experiments. We have just seen 

that within one and the same model of Fitts’ law, the ARA and the AT designs yield different 

coefficients for the same experimental conditions. This confirms that the AT design does 

indeed induce a quantitative bias in the assessment of Fitts’ law (in the left part of Table 11, 

Fitts’ logarithmic model is just taken as an example). 

 

Table 11. Comparison of the actual ARA and the simulated AT experiments of Danion et al. (1999) and Gan and 

Hoffmann (1988) in terms of Fitts’ law coefficients and quality of fit with four candidate models 
(
*
)
.  
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 Fitts' Law Coefficients  Mean Fit (r²) with Four Candidate Models  

 using Fitts' (1954) ID  Fitts' ID Shannon's ID Power ID Linear ID 

 Slope (s/bit) Intercept (s)  log2(2D/W) log2(D/W+1) (D/W)^0.5 D/W 

Danion et al. (1999)        

Actual ARA Design 0.293 -0.082  .947 .957 .961 .980 

Simulated AT Design 0.095 0.265  .529 .517 .511 .490 

        

Gan & Hoffman (1988)        

Actual ARA Design 0.026 0.101  .830 .878 .958 .971 

Simulated AT Design 0.040 0.043  .895 .937 .937 .868 

 
(
*
) 
Note. For the ARA design, the slope, intercept, and r² levels are averages over four scale levels. Shannon's ID 

is that advocated by MacKenzie (1992), and the power ID is that advocated by Meyer et al. (1988). 

 

But recourse to the AT logic has a yet more serious consequence. As shown in the 

right-hand side of Table 11, the best-fitting equations rank differently depending on whether 

the AT or the ARA design is used to assess Fitts’ law. With an AT design, Danion et al. 

would have obtained deceptively low levels of r² for all candidate models (the highest r² being 

a modest .529, for Fitts’ model), and perhaps they would have hesitated to claim that Fitts’ 

law holds for postural oscillations of the whole body. In fact, with their actual ARA design, 

they found good fits, with r² = .947 for Fitts’ equation. However, it turns out that their data 

are best modeled by a linear equation, of the form MT = k1 + k2 * D/W, as visible in the table. 

Had Danion et al. had recourse to the usual AT design, their data would have failed to reveal 

the possibility of modeling Fitts’ law as a linear, rather than logarithmic equation. 

Had Gan and Hoffmann used an AT design and asked about the best fitting model, 

they would have been led to conclude that Shannon’s logarithmic model (MacKenzie, 1992) 

and Meyer et al.’s (1990) power model did best, and that the linear model did worst, but this 

would have been a false conclusion. In fact, with the data they actually obtained with their 

ARA design, the linear model does best, and Fitts’ does worst.
13
 So the reprocessing of the 

two data sets suggests that the bad consequences of using the traditional design extends 

beyond the issue of coefficient estimation—in fact, the AT design is liable to mislead Fitts’ 

researchers as to which mathematical model is the most consistent with their data. 

Were the alternative equations of Fitts’ law just convenient ways of summarizing 

empirical data, the above findings would be relatively harmless. However, these mathematical 

formulations actually reflect specific theories of movement control. Consider Meyer et al.’s 

(1990) theory. The power form of the equation they proposed was based on an elaborate 

                                                           
13
 The reports of Danion et al. (1999) and Gan and Hoffman (1988), who used Fitts’ ID, do not consider the issue 

of the logarithmic versus power versus linear ID. 
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model, the stochastic optimized sub-movement model. Meyer et al. hypothesized that an 

aimed movement is made up of an optimized number of concatenated sub-movements, each 

of which is stochastically optimized to accommodate the fact that the faster the sub-

movement, the greater the motor noise (Schmidt et al., 1979) and hence the more likely the 

necessity to produce an additional corrective sub-movement when the current sub-movement 

is completed. The empirical validation of Meyer et al.’s (1990) model was based on the joint 

consideration of both chronometrical (MT measures) and kinematic (sub-movement parsing) 

aspects of performance. It would take us beyond the scope of the present paper, concerned by 

the conceptual framework of the study of aimed movement rather than the theory of 

movement control, to discuss Meyer et al.’s model. What should be noted at this point is 

simply that since the design of Meyer et al.’s experiment involved a high degree of co-

variation between relative and absolute amplitude (see Table 8 and Section 5.2), our findings 

raise doubts about the empirical grounding of their conclusions and suggests the necessity of 

new experimental tests using an appropriate ARA design.  

6. Implications for Future Research  

The new understanding of Fitts’ aimed-movement paradigm proposed in this paper 

inscribes itself in a larger and, it is argued, clearer conceptual space whose three 

unequivocally defined dimensions are movement time and the absolute and relative amplitude 

of movements. This proposal has three important implications for future research. First, the 

experimental method of assessing Fitts’ law can be improved by recourse to the ARA design, 

which makes it possible to eliminate the confounds that have handicapped Fitts’ law research 

up to present. The second, deeper implication is that the theme of human aimed movement 

can be recast so as to progress towards a complete 3D account of human aimed-movement 

performance.  Third, consideration of the scale dimension makes it possible to envision a 

promising adaptation of the paradigm to multi-scale pointing, a new research problem for 

human movement science that has recently emerged from the rapidly developing field of 

information technology. 

6.1. Improving Fitts’ Law Method Within the Classic 2D Approach 

It was shown in Section 2 that Fits’ aimed-movement paradigm has two irreducible 

independent variables, and that these are absolute amplitude (or movement scale) and relative 

amplitude. It was then shown, in Section 3, that both dimensions count: scale, the paradigm’s 
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dimension that has been generally ignored in Fitts’ law studies, is a more influential source of 

variance for MT than has been thought so far, and therefore it cannot be legitimately ignored. 

In Section 4, it was argued that relative amplitude, the dimension that has attracted all the 

field’s attention, is not more closely related to subjective difficulty than is scale, leading to the 

conclusion that it is safe, contrary to an established tradition, to ignore the variable of 

subjective difficulty and to stick to the simple operational notions of absolute and relative 

amplitude.  

There is no reason, from the preceding, to question the importance of the classic 

problem inherited from Fitts, the problem of the two-dimensional relationship that links MT to 

relative amplitude. As has been noted many times, Fitts’ law is a remarkably general and 

robust relationship—within limits of absolute and relative amplitude. The implication that has 

to be drawn, particularly from the analysis  of the shortcomings of the traditional AT design 

(see Section 5), is that the traditional method of assessing Fitts’ law can be improved.  

The problem encountered in the classic study of Fitts’ law is that the conventional AT 

experimental design fails to neutralize movement scale, a factor that the 2D approach, by 

definition, wants to ignore. The analyses of the above sections suggest that to adequately 

investigate the MT versus relative amplitude relation in 2D space, one needs to use ARA 

designs. This means that one needs, if not to theorize, at least to design one’s experiments in 

the full 3D space of the paradigm. In practice, this simply involves filling up the design 

shown in Table 7, so as to make sure that the variation of the ID, the critical experimental 

variable, is orthogonal to the unwanted variation of D, a variable deemed to be irrelevant.  

6.2. Tackling The Aimed-Movement Problem as a Whole: From Curves to Manifolds 

The perspective outlined in the last sub-section seems too conservative. Let us try to 

see what it would mean to treat scale as a fully fledged experimental factor rather than as just 

a source of experimental perturbation—that is, as a factor to manipulate rather than a factor to 

neutralize. 

One simple argument in favor of this more ambitious exploitation of the full 3D 

approach to Fitts’ aimed-movement paradigm is that, despite the beauty of the scale 

invariance postulated by Fitts’ law, performance is more often than not scale dependent, as 

emphasized in Section 3. Unless experiments are deliberately designed so as to restrict the 

range of the scale variation to virtually nothing, the absolute-amplitude variable is in its own 

right just as important in the paradigm as is relative amplitude. 
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Furthermore, if the goal of research on human aimed movement is to make reliable 

performance predictions, then building 3D models of aimed movement, of the form MT = f 

(D, D/W) rather than MT = f (D/W), should represent a progress towards that goal.  

Finally, there is a practical argument. Thanks to the new computer software 

technology we now have at our disposal, the complexity cost of introducing a third dimension 

into the treatment of the aimed-movement problem is becoming manageable. An ever 

increasing variety of computer applications has been developing, thanks to which 3D patterns 

of data can be visualized and explored more and more easily. In this section we return to the 

data of Gan and Hoffmann (1988) and Danion et al. (1999), the two already mentioned 

instances of studies with ARA designs, to suggest that mastering data in 3D space is no longer 

a task of deterring difficulty. 

What follows simply aims at helping to visually grasp the 3D conceptual space of 

Fitts’ paradigm—fortunately, we have to deal with no more than three dimensions. Figures 13 

and 14 show 3D representations of the data of Gan and Hoffmann (1988), which we have 

already examined in some details. However, while in the preceding figures we used 2D 

representations, with MT plotted as a function of relative amplitude and with scale treated 

simply as a parameter, now we can see the paradigm’s full 3D space, with its three axes (MT, 

D, and D/W) and its three planes.  
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Figure 13. A 3D graphical representation of the data of Gan and Hoffmann (1988). 
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The floor of Figure 13 is the D x D/W plane, that in which we found the classic AT 

method to suffer a flaw (see Section 5). The problem with the AT design is that absolute and 

relative amplitude are not fully crossed, with the distribution of experimental points being 

typically far from rectangular, yielding a non-zero correlation between the two independent 

variables. In contrast, it is easy to see in Figure 13 that a vertical projection, onto the graph’s 

floor, of Gan and Hoffmann’s experimental data points would yield a rectangular scatter of 

data points, as a result of the ARA design used by these authors. The second plane (left-hand 

side wall) is the plane of Fitts’ law, formed by the dimensions of relative amplitude and MT. 

With a horizontal projection of the data points on this plane, one would obtain the 

representation already shown in Figure 6. The third plane (right-hand side wall), is that 

formed by the dimensions of MT and scale, which so far has attracted more attention from an 

applied than theoretical perspective, the main reference here being the ergonomic literature on 

the effects of DC gain (see Arnaut & Greenstein, 1990).  

The 3D representation of the data makes it possible to examine, not only each of the 

three 2D relations, but the whole 3D pattern. In the place of three 2D curves, one is faced by a 

single 3D object, which has the form of a manifold. With the help of the multiple viewpoint 

provided in Figure 14, the reader should be able to see that the data of Gan and Hoffmann 

(1988) make up an almost flat sheet—the 3D graphical image of a roughly additive 

combination of the main effects of absolute and relative amplitude. 
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Figure 14. Four slightly different views on the data of Gan and Hoffmann (1988), to help to see the 3D shape of 

the manifold. 

 

Figures 15 and 16 illustrate the data of Danion et al.’ study, our second example of an 

ARA-designed study, whose layout is strikingly different. Unlike the almost planar sheet 

formed by the data of Gan and Hoffmann, the figures depict a deeply undulated manifold—

the 3D image of the complicated sui generis interaction obtained by Danion et al. It is easy to 

appreciate that, in cases like this one, a 3D representation conveys more information than a 

flat representation like that shown in Figure 7, which simply shows a set of curves. 
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Figure 15. A 3D graphical representation of the data of Danion et al. (1999). 
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Figure 16. Six slightly different views on the data of Danion et al. (1999), to help appreciate the shape of the 

manifold. 

6.3. A New Challenge for Aimed-Movement Research: Target Acquisition in Multi-Scale 

Electronic Worlds 

This section introduces a recent extension of Fitts’ aimed-movement paradigm that 

makes it possible to accommodate the problem of human aimed movement to the new context 

created by recent developments of information technologies. It will be shown that when 

aimed movement takes place in a multi-scale, or zooming graphical user interface, the narrow 

limits of absolute and relative amplitude that normally affect Fitts’ law, due to the functional 

limitations of the human perceptual-motor system (see Section 3.2), vanish altogether. First, 

the fact that the scale of action becomes a freely-controlled parameter means, by definition, 

that the scale barrier to Fitts’ law has fallen down. Second, and more intriguingly, we will see 

that with zooms any upper limit of relative amplitude disappears. This in turn makes it 

possible to investigate Fitts’ law far above its usual upper limit of ID, a possibility that was 

recently explored by Guiard, Bourgeois, Mottet, and Beaudouin-Lafon (2000). 

Dramatic changes have occurred recently in human-computer interaction (HCI), the 

freshly emerged branch of computer science specialized in the design of human-computer 

interfaces (see Shneiderman, 1998, for a review). These changes challenge Fitts’ aimed-

movement paradigm. The advent, during the nineties, of multi-scale or zooming graphical 

user interfaces (Furnas & Bederson, 1995), gave birth to multi-scale pointing, an entirely 

novel category of human action that has no counterpart in the real world (Guiard, 1999). In a 

zooming interface, not only can one move a cursor (an analogue to hand motion), not only can 

one move one’s view (an analogue to locomotion), but one can freely adjust the scale at 
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which one wishes to interact with the electronic world at hand. Note that a multi-scale world 

allows no absolute definition of variables D and W, these quantities being zoom dependent. 

The only independent variable that remains under the experimenter’s control is the critical, 

zoom-independent D/W ratio—with the consequence that the above-discussed ARA versus 

AT design problem no longer exists. 

Suppose you are exploring the zoomable maps of a recent electronic world atlas. For 

example, you are watching a city map of Wellington, New Zealand, but you decide to look for 

another, remotely located place, say, the Luxembourg garden in Paris, at a distance of over 

19,000 km. You will first zoom out to see a large-scale view of the Earth, then perform a 

rapid pan
14
 across the seas and the continents so as to position your view over Europe, and 

finally plummet down to France and then Paris by performing an intricate sequence of zooms 

in and pans. When, in the end, you are facing a detailed map of Paris, you will be able to click 

on the Luxembourg garden (perhaps to know the opening hours of this public garden, if your 

application includes this facility). The whole sequence, down to the final click on the target, 

will have lasted just a few seconds.  

Not only does the above task belong unequivocally to the class of target-acquisition 

tasks to the study of which Fitts’ paradigm is dedicated, but this task is perfectly well defined, 

with D = 19,000 km, W = 0.4 km, and therefore ID = 16.5 bits. Handling this high a level of 

ID would be impossible in the real world,
15
 but it is a commonplace task for the user of a 

multi-scale electronic world.
16
 As already noted, Fitts’ law students so far have used ranges of 

ID that never extend beyond 10 bits (a D/W ratio of about 500), because so long as an aimed 

movement is confined in a single scale—the fate of real-world movements—one encounters 

the tight functional limitations of the human perceptual-motor system. 

By contrast, as one explores a multi-scale electronic world, one can deal with however 

large values of D and however small values of W one likes, thanks to the zoom. Even though, 

of course, the current state of the technology and the amount of stored information impose 

ultimate limits to the D/W ratio, these limits are already extremely remote in comparison with 

those experienced in our real-world aimed movements.  

                                                           
14
 In the cinema metaphor that has become conventional in HCI research on multi-scale information 

visualization, zooming means re-scaling one’s view and panning (a term derived from panoramic) means 

moving one’s view in space. 
15
 Of course, we do cover this sort of distances in the real world, but this requires concatenating a series of 

transportation acts (e.g., a walk + a taxi ride + a walk + a flight, etc.), none of which, it must be realized, obeys 

Fitts’ law.  
16
 A related example is selection of one page from among the 5,000,000 pages accessible on the Internet site of 

the US Library of Congress (Shneiderman, 1997), which can be said to involve an ID of 22 bits. 
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It is a new and important fact for Fitts’ law research that humans are actually able to 

accommodate quite smoothly IDs far higher than 10 bits in target-acquisition tasks, provided 

that the user-environment interaction is zoomable (Guiard et al., 1999). The important 

question that immediately arises is whether Fitts’ law holds in general, far beyond the so far 

inviolable barrier of ID. This question was recently addressed by Guiard, Bourgeois, Mottet, 

& Beaudouin-Lafon (2000), who used a zoomable pointing interface and thus were able to 

have their participants deal with IDs of up to 31 bits (i.e., up to a D/W ratio of one billion)—

note that pointing with this high an ID was equivalent to reaching and selecting a one-inch 

target at a distance of about half the circumference of our planet.  

Guiard et al.’s (2000) participants were offered three df of control, two for moving, 

with a mouse, the latitude and longitude of their view and a third one for zooming, using the 

throttle of a game controller assigned to the other, non-preferred hand. For ID levels up to 8 

bits, the zoom facility was ignored, the participants being content to carry out the task by 

simply panning with the mouse. For higher IDs, all participants used the zoom for all their 

movements. The more difficult the task, the larger the zoom detour made by participants. In 

fact, the relation between zooming amplitude (A
Z
)—the zoom range covered during the 

movement—and the ID was found to be rigorously linear, with A
Z
 = 6.6 ID – 14.8, r² = .997. 

Figure 17 shows the MT vs. ID curve obtained by Guiard et al., with the ID simply 

defined as log2 (D/W). The MT was found to vary over the wide-ranging selection of IDs just 

as predicted by Fitts, with on average MT = 0.32 ID – 0.04 (r² = .995), the fit being excellent 

for each of the seven individuals who participated in the experiment (.981 < r² < .999). 

Moreover, in keeping with Fitts’ (1954) initial expectation of a constant rate of information 

transmission in humans, the intercept of the mean curve was virtually zero.  
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Figure 17. Movement time as a function of the ID, varied up to 30 bits. MTs for the two ID levels where the 

zoom facility was ignored (3 and 5 bits) are included. Error bars represent 95% confidence intervals based on 

between-participant standard deviations. 

 

Interestingly, the five data points corresponding to multi-scale pointing (in the 8- to 

30-bit range) were found to be aligned with the two leftmost data points, which corresponded 

to single-scale (i.e., fixed-zoom) pointing. There was no evidence of a difference in the slope 

of Fitts’ law between multi-scale and single-scale pointing (0.30 and 0.29 s/bit, respectively).  

Guiard et al.’s study shows that, with multi-scale interfaces, Fitts’ law can be 

investigated far beyond the classic 10-bit barrier without the essence of Fitts’ aimed-

movement paradigm being altered. Second, with the absolute- and relative-amplitude limits of 

Fitts’ law being removed thanks to the zoom, Guiard et al. were able to show that MT varies 

as a simple logarithmic function of relative amplitude, in strong agreement with Fitts’ (1954) 

prediction. 

Perhaps the main potential interest of this exploratory work lies in its opening new 

avenues for theorizing and experimenting on human aimed movement. The designers of 

multi-scale interfaces have begun to create radically novel environments for the performance 

of goal-directed movements and conceived human-environment interaction principles that are 

without precedents in the real world. In the near future, these technological breakthroughs are 

likely to elicit conceptual changes in human movement science.  

More experiments are obviously needed to accurately model Fitts’ law estimated 

without its traditional limits in the context of zoomable interfaces, but in light of Guiard et 

al.’s (2000) first findings, modeling of the generalized version of the law as a power 

relationship, as proposed by Meyer et al. (1990), already seems implausible. Meyer et al. 

(1990) stated that, by varying the number n of sub-movements involved in an aimed 

movement, their power model MT = k1 + k2 * (D/W)
1/n
  could accommodate both Schmidt et 

al.’s (1979) linear model (when n = 1) and Fitts’ (1954) logarithmic model of Fitts’ law, 

arguing that “as n grows larger, this relation approaches a logarithmic function, paralleling 

Fitts’ law” (p. 214). This, however, is a mistake. When n tends to infinity, 1/n tends to zero 

and hence the expression (D/W)
1/n
 tends to unity, yielding MT =  a constant. Thus, the model 

of Meyer et al. (1990) cannot accommodate the logarithmic function that seems to describe 

Fitts’ law in the generalized case with both single-scale and multi-scale aimed movement 

included.   
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Second, kinematic
17
 analyses of the actual movements of users are needed, in the 

direction outlined by Furnas and Bederson (1995), to understand pan-zoom coordination. 

Recourse to Fitts’ paradigm to evaluate target-selection performance in graphic user 

interfaces has become a norm in HCI (MacKenzie, 1992). Over the past few years, however, 

studies concerned with multi-scale graphical interfaces in HCI have squarely abandoned Fitts’ 

law, as though inapplicable or irrelevant, and retreated to raw measurements of task 

completion times. The present work suggests that Fitts’ paradigm, as an evaluation tool in 

HCI, has not said its last word in the face of multi-scale electronic worlds. 
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