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S U M M A R Y
We present a regional surface waveform tomography of the Pacific upper mantle, obtained
using an automated multimode surface waveform inversion technique on fundamental and
higher mode Rayleigh waves, to constrain the VSV structure down to ∼400 km depth. We
have improved on previous implementations of this technique by robustly accounting for the
effects of uncertainties in earthquake source parameters in the tomographic inversion. We have
furthermore improved path coverage in the South Pacific region by including Rayleigh wave
observations from the French Polynesian Pacific Lithosphere and Upper Mantle Experiment
deployment. This improvement has led to imaging of vertical low-velocity structures associated
with hotspots within the South Pacific Super-Swell region. We have produced an age-dependent
average cross-section for the Pacific Ocean lithosphere and found that the increase in VSV with
age is broadly compatible with a half-space cooling model of oceanic lithosphere formation.
We cannot confirm evidence for a Pacific-wide reheating event. Our synthetic tests show that
detailed interpretation of average VSV trends across the Pacific Ocean may be misleading
unless lateral resolution and amplitude recovery are uniform across the region, a condition that
is difficult to achieve in such a large oceanic basin with current seismic stations.
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1 I N T RO D U C T I O N

The Pacific region (Fig. 1) is a natural laboratory for oceanic plate

tectonics. It is the home of the oldest contiguous oceanic plate from

mid-ocean ridge to subduction (Pacific Plate, 0–170 Ma), as well

to four other exclusively oceanic plates (Juan de Fuca, Philippine,

Cocos and Nazca). It is bounded on three sides by subduction zones,

and contains four distinct mid-ocean ridges (East Pacific Rise, Gala-

pagos Rise, Chile Rise and Pacific–Antarctic ridge). More detailed

images of these structures, and of the expanses of plates between

them, are necessary if we wish to improve our understanding of the

structure and evolution of oceanicplates.

The upper mantle structure of the Pacific Ocean, where we ex-

pect to see the signature of plate tectonics, is best investigated us-

ing seismic surface waves. The majority of studies that cover the

whole Pacific Ocean use measurements of fundamental mode Love

and/or Rayleigh dispersion to constrain the uppermost 300 km of the

mantle, either alone (Nishimura & Forsyth 1988, 1989; Montagner

∗Also at: Lab. Terre Océan, Univeristé de Polynésie française, Tahiti, French

Polynesia.

& Tanimoto 1991; Ekström et al. 1997; Boschi & Ekström 2002;

Montagner 2002; Ritzwoller et al. 2002; Trampert & Woodhouse

2003; Beghein & Trampert 2004; Ritzwoller et al. 2004; Levshin

et al. 2005), or in a joint inversion with body wave phases and nor-

mal modes which provide a better constraint on the lower mantle

(Ekström & Dziewonski 1998; Beghein et al. 2002) . A few studies

improve the resolution of the base of the upper mantle by includ-

ing observations of higher mode surface waves, either explicitly

(Van Heijst & Woodhouse 1999; Ritsema et al. 2004) or as part

of a waveform inversion procedure (Mégnin & Romanowicz 2000;

Gung et al. 2003).

Surface wave studies of the Pacific Ocean upper mantle are ham-

pered by the geographical distribution of seismic stations, which

being almost exclusively land based are concentrated at the borders

of the region. As the vast majority of earthquakes are also concen-

trated along the subduction zones that form the Pacific Rim, surface

wave coverage of the expanse of the Pacific Ocean can only be ob-

tained by using very long propagation paths (10 000–15 000 km).

The lateral extent of the sensitivity zone for surface waves increases

with path length (Spetzler & Snieder 2001; Yoshizawa & Kennett

2002), therefore, even with good path density and azimuthal cover-

age the use of long propagation paths effectively limits the lateral

resolution of surface wave tomographic images to ∼1500 km, too
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Figure 1. Outline map for the Pacific Ocean region, showing location of

major features mentioned in the text. Topography and bathymetry are from

SRTM30. Hotspots according to Courtillot et al. (2003) are shown as open

circles and plate boundaries are drawn as thick black lines. Labelled hotspots

and plate boundaries are mentioned explicitly in the text. Abbreviations

are: HKT—Hikurangi–Kermadek–Tonga, JT—Japan Trench and EPR—

East Pacific Rise.

wide to provide meaningful images of narrow features such as mid-

ocean ridges, subduction zones and hotspots.

This present study was prompted by the installation in 2001 of

ten broadband stations in French Polynesia as part of the Pacific

Lithosphere and Upper Mantle Experiment (PLUME) described

by Barruol et al. (2002). These stations provided us with addi-

tional path coverage in the normally under-sampled South Pacific,

allowing us to improve our lateral resolution compared to previ-

ous studies. We used a two-stage waveform tomography method

that combines the automated multimode surface waveform in-

version of Debayle (1999) with the highly efficient Debayle &

Sambridge (2004) tomographic algorithm and is described in Sec-

tion 2. This procedure increases our sensitivity to the upper man-

tle shear wave velocity structure below ∼300 km depth compared

to studies that use only fundamental mode surface waves. We

have improved on previous implementations of this method (e.g

Debayle et al. 2001; Priestley & Debayle 2003; Sieminski et al.
2003; Pilidou et al. 2004) by explicitly and robustly accounting

for the effects of uncertainties in earthquake source parameters as

described in Section 2.3.

Our resulting tomographic model, presented in Section 3, pro-

vides images of the Pacific upper mantle shear wave velocity

structure with varying horizontal resolution. The best resolution is

obtained in the subduction zone regions, where our images of

subducted slabs are comparable with regional body wave studies

(Gorbatov & Kennett 2003) and surface wave studies of smaller re-

gions (Lebedev & Nolet 2003). In the region known as the South

Pacific Super-Swell, we find low shear wave velocity anomalies

that are confined to localized structures associated with several

major hotspots of the region. Our tomographic results contain

a strong age-dependent signature within the oceanic lithosphere,

which we discuss in detail in Sections 3.1 and 4, comparing average

VSV -age profiles with predictions from standard half-space cooling

and plate cooling models, and with a recent observation by Ritz-

woller et al. (2004) of a punctuated thermal history in the Pacific

Ocean.

2 DATA A N D M E T H O D S

We have analysed vertical component Rayleigh wave seismograms

from all earthquakes of magnitude greater than MW 5.5 that occurred

between 1977 January and 2003 April, and for which the R1 portion

of the surface waves propagated exclusively in the Pacific Ocean

hemisphere (i.e. between 120E and 300E). These earthquakes oc-

curred mostly on the subduction zones surrounding the Pacific Plate,

and to a lesser extent on the mid-ocean ridges. The vast majority

of our recordings were obtained from the public IRIS (Incorporated

Research Institutions for Seismology) database, with the addition

of a few thousand recordings from 2 yr of temporary deployment of

10 seismograph stations in French Polynesia (PLUME, Barruol et al.
2002). These Polynesian records provide extra coverage in the South

Pacific, allowing us to improve the resolution in this region com-

pared to previous studies. Our full data set contains several hundred

thousand seismograms.

Our surface waveform tomography is based on a two-stage proce-

dure that has proved to be successful in a number of recent regional-

scale studies (e.g. Debayle et al. 2001; Priestley & Debayle 2003;

Sieminski et al. 2003; Pilidou et al. 2004). We have modified the

procedure used in these previous studies to ensure a smooth data cov-

erage and to account for the uncertainties introduced by errors in

earthquake focal parameters. In the following two sections, we give

a brief overview of the two-stage waveform tomography method.

A more detailed description of our improvement to this method is

given in Section 2.3.

2.1 Surface waveform inversion

In the first stage of the tomographic process, we model vertical com-

ponent long period (50–160 s) Rayleigh wave seismograms to obtain

path-averaged values of the upper mantle shear wave velocity along

great-circle paths between earthquakes and seismograph stations.

We use the method of secondary observables originally proposed

by Cara & Lévêque (1987), and later automated by Debayle (1999),

to reduce the non-linearity of the waveform inversion. Rayleigh

waves are primarily sensitive to the propagation speed of vertically

polarized shear waves, VSV . The mantle part of our starting seismic

velocity model for each path is the smoothed version of the 1-D VSV

profile from PREM (Dziewonski & Anderson 1981) shown in Fig. 2.

The crustal portion is not inverted for, and is adapted to each path

by averaging the crustal part of the 3SMAC (Nataf & Ricard 1995)

3-D model along the great circle path. Using a different 3-D crustal

model (e.g. CRUST2.0, Mooney et al. 1998; Bassin et al. 2000),

does not change our waveform modelling results (see discussion

in Pilidou et al. 2004). We model the fundamental mode Rayleigh

wave together with its first four overtones, thereby increasing our

sensitivity to the shear wave velocity structure at the base of the

oceanic asthenosphere (∼300–400 km depth) compared to global

and whole-Pacific studies that use only fundamental mode surface

waves (Nishimura & Forsyth 1988, 1989; Montagner & Tanimoto

1991; Ekström et al. 1997; Boschi & Ekström 2002; Montagner

2002; Beghein & Trampert 2004; Ritzwoller et al. 2004; Smith

et al. 2004).

The automated multimode surface waveform inversion of

Debayle (1999) imposes stringent data quality requirements, and

rejects paths for which the waveform inversion does not converge.
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Figure 2. 1-D reference models: the VSV profile from PREM (dotted line,

Dziewonski & Anderson 1981); the mantle VSV starting model for 1-D in-

version of Rayleigh waves (dashed line), derived from PREM using a cubic

spline function; the Oceanic Reference Model (ORM) derived by averag-

ing our tomographic results for oceanic regions between the ages of 30 and

70 Ma (solid line).

Only 56 217 waveforms out of the full data set described above

met all of the requirements of the waveform inversion, and were in-

cluded in our tomographic inversion. Fig. 3 shows the path density

(number of paths per unit area) for these accepted waveforms, and

illustrates the exceptional size of our data set. The path-averaged

models from this study form half of the data set of the Debayle et al.
(2005) global model.

Figure 3. (a) Geographical distribution of the events (filled circles) and stations (white diamonds) used in this study. Stations corresponding to the PLUME

experiment are shown as larger red diamonds. (b) Ray density for the 56 217 waveforms included in the tomography. The unit area is the area of a 1 × 1◦ cell

at the equator. The colour scale is saturated at 100 ray paths per unit area, however the path density exceeds 3000 ray paths per unit area in places, notably in

the southwest Pacific.

2.2 Tomographic inversion of path-averaged models

In the second stage of the tomographic process, we combine the path-

averaged upper mantle models from all the earthquake-station paths

into a single tomographic inversion to obtain a 3-D model of shear

wave velocity in the upper mantle. We use the Debayle & Sambridge

(2004) tomographic algorithm, which has been optimized for the

inversion of extremely large data sets. This algorithm is based on

the continuous formulation of the inverse problem introduced by

Montagner (1986); it simultaneously inverts for the isotropic and

azimuthally anisotropic components of VSV using a procedure orig-

inally described by Lévêque et al. (1998). Neighbouring points in

the tomographic model are correlated using a Gaussian a priori
covariance function that has been found to act as a crude but ef-

fective sensitivity kernel by Sieminski et al. (2004). The lateral

degree of smoothing in the 3-D model is controlled by the half-

width of the Gaussian covariance function, also referred to as the

correlation length L corr, while the amplitude of the perturbations

in the inverted model is controlled by an a priori model variance,

σM .

Our tomographic model is discretized on a 1◦ ×1◦ regular grid, us-

ing a correlation length L corr of 400 km, and a priori model variances

σM of 0.05 km s−1 and 0.005 km s−1 for the isotropic and anisotropic

components of the shear wave velocity, respectively. Increasing (de-

creasing) L corr leads to smoother (rougher) tomographic images

with higher (lower) amplitude anomalies, but the overall pattern

of anomalies remains unchanged. Increasing (decreasing) σM leads

to higher (lower) amplitude anomalies, but still leaves the overall

pattern of anomalies unchanged. In this paper we discuss only the

isotropic part of the model; the anisotropic part is discussed in detail

in Maggi et al. (2006).

2.3 Path clustering and estimation of data errors

Most tomographic algorithms take into account the estimated uncer-

tainty in the data (in our case the path-averaged shear wave velocity

models) used to drive the inversion. In the following, we shall denote

such uncertainties as σD to contrast them with the a priori model

variance σM . In inversions based on the Tarantola & Valette (1982)
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approach, which both the Debayle & Sambridge (2004) inversion

and its predecessor by Montagner (1986) are based upon, these data

errors not only regulate the relative weight given to each datum

within the inversion, but also regulate how far beyond the a priori
model variance σM the inversion will push the final model in order

to fit the data within their errors.

However, if the data are unreliable and the data errors underesti-

mate the true uncertainties, this same behaviour can lead to artefacts

in the final result. Maggi & Priestley (2005) have shown that errors

in earthquake epicentre, origin time and hypocentral depth directly

affect the shear wave velocity models obtained by waveform inver-

sion without any influence on the quality of the waveform fit. These

source errors lead to erroneous path-averaged shear wave velocity

models coupled with underestimated uncertainties, and cause arte-

facts in the tomographic inversion. In order to reduce these artefacts,

excessive smoothing is often used, leading to loss of horizontal res-

olution and a decrease in data fit.

We can obtain a better estimate of the true path-averaged struc-

ture by comparing multiple path-averaged measurements along re-

peatedly sampled propagation paths. We cluster our path-averaged

models geographically with a cluster radius of 200 km, and treat

the shear wave models that form each cluster as independent mea-

surements of the average shear wave velocity profile VS(z) along the

common path. We form our clusters by grouping all paths whose

start and end points are within 200 km of the extremities of a cen-

tral path chosen at random from the data set, while imposing that

no path can belong to more than one cluster. The path-averaged

profile, VS(z), and depth-dependent measurement error, σD(z), as-

sociated with each cluster are, respectively, the mean and the stan-

dard deviation on the mean, σm(z) = σ (z)/
√

n, of the 1-D shear

wave velocity models of its n component paths. This choice of σ

m gives more weight to better-sampled paths. Very small values

of σm(z) are commonly indicative of a path for which the data

has little resolution at depth z, and for which most of the 1-D

shear wave velocity models have not moved away from the a priori
value. Therefore, if for a cluster the value of σm(z) at a particu-

lar depth is smaller than the average a posterior waveform fitting

error of its component paths, then we use this average waveform

fitting error instead of σm(z) as an estimate of the data uncertainty

σD(z).

Clustering with a 200 km radius reduced the number of inde-

pendent path-averaged shear wave velocity measurements in our

data set from 56 217 to 15 165. The resulting path density, plot-

ted in Fig. 4(a), is much smoother than that of the original data set

shown in Fig. 3(b). Previously over-sampled regions such as Indone-

sia, the westernmost Pacific, North America and certain corridors

towards Hawaii and other ocean island stations now have compa-

rable path density to the central and South Pacific regions, whose

path density has not been significantly modified by the clustering

procedure.

Of the 15 165 clustered ray paths, 63 per cent contain only one

path (see Fig. 4b) and, therefore, represent a single shear wave ve-

locity measurement with no error estimate other than the a posterior
waveform fitting error. In order to use these single-path models in

the tomography they need to be assigned a reasonable data error

σD . We have averaged at each depth all the standard deviations cal-

culated for a given cluster size n. We have found that this average

standard deviation σ̄ (n)|z increases rapidly with cluster size n for

small clusters, before tending towards a constant value (see Fig. 4c).

This suggests that the low value of σ for the smaller clusters is simply

a low-number sampling effect, and that if we had more data for these

clusters, the standard deviation would increase to become compat-

ible with the larger clusters. We, use the flat portion of the σ̄ (n)|z

curve to set an equivalent σ̄ for small clusters, as shown in Fig. 4c,

from which we calculate the corresponding σD(z) = σ̄ (n)|z/
√

n.

2.4 Horizontal resolution

Under the assumptions of ray theory, used throughout this study, sur-

face waves cannot resolve structures smaller than the width of their

sensitivity zone, estimates of which vary (e.g. Spetzler & Snieder

2001; Yoshizawa & Kennett 2002), but increase with surface wave

period (increasing wavelength) and also with increasing path length.

For example, according to Spetzler & Snieder (2001) the width of

the sensitivity zone for a fundamental mode Rayleigh wave of 100 s

period (the dominant period in our data set) increases from 1200 km

for a 5000 km path to 1800 km for a 15 000 km path, while

Yoshizawa & Kennett (2002) estimate the sensitivity zone to in-

crease in width from 450 to 700 km, respectively. It is clear in

both cases that in order to optimize our horizontal resolution, we

have to maximize the proportion of short propagation paths in our

data set. The distribution of path lengths in our data set is shown

in Fig. 5(a). Approximately 75 per cent of our paths are shorter

than 6000 km and, therefore, have lateral sensitivity zones between

450 and 1200 km wide according to Yoshizawa & Kennett (2002)

and Spetzler & Snieder (2001), respectively. We have chosen to

apply a correlation length L corr of 400 km to the tomographic in-

version, corresponding to a Gaussian sensitivity zone around each

path with a width of 800 km, which is in the centre of the range

of sensitivity zone estimates for 100 s fundamental mode Rayleigh

waves.

For large data sets such as that presented in this study, the width

of the surface wave sensitivity zone physically degrades the hor-

izontal resolution from the geometrical resolution determined by

the path coverage alone. Fig. 5(b) shows a representation of the

geometrical resolution limit of our clustered path coverage as an

optimized Voronoi diagram in the style of Debayle & Sambridge

(2004). In order to correctly retrieve both isotropic and azimuthally

anisotropic components of VSV in a given region, we need to re-

solve the 2θ Rayleigh wave periodicity caused by an azimuthally

anisotropic medium. This requires at least three paths crossing the

region with sufficiently different azimuths. The Voronoi diagram in

Fig. 5(a) illustrates the size of the regions for which our data set satis-

fies this geometrical criterion. The size of the Voronoi cells increases

from a starting size of 2◦ in the western and southeastern Pacific,

towards cells of width up to 10◦–15◦ in the central Pacific, indicat-

ing that lateral resolution determined by the path coverage varies

from better than 200 km in the best-sampled regions to ∼1500 km

in the more sparsely sampled central Pacific. The relatively small

Voronoi cells in the South Pacific region are due to the additional

data provided by the PLUME deployment which provide 141 out

of 680 clustered paths in the region, as illustrated in Fig. 6. The

geometrical lateral resolution described by the Voronoi diagrams

is further degraded by the correlation length imposed on the inver-

sion, which reflects the finite width of the surface wave sensitivity

zone as described above. We estimate the actual horizontal reso-

lution to be ∼600 km in the northwestern Pacific, which has both

the densest path coverage and the largest proportion of short paths,

and ∼800 km in the South Pacific Super-Swell region. The Voronoi

diagrams should be used in conjunction with the path density plot of

Fig. 4(a) when interpreting the tomographic results in the following

section.
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Figure 4. (a) Ray density for the 15 165 clusters. The unit area is the same as for Fig. 3. (b) The distribution of cluster sizes. Shading indicates the range of

cluster sizes (1 path, 2–10 paths, 11–20 paths etc.); the percentage of clusters that fall in the two most populated bins are shown on the pie-chart, above the

number of clusters in the bin (in brackets). (c) The average σ for clusters vs. cluster size at depths of 50 to 200 km (solid lines). The average σ oscillates around

a central value σ̄ (z) indicated by the dashed lines and given within the plot. For each depth, the range of cluster sizes for which small number statistics seem to

apply (10–15) is highlighted in grey.

3 R E S U LT S

The results of our tomographic inversion are shown in Fig. 7, plotted

as percentage deviations from the Oceanic Reference Model (ORM)

of Fig. 2. ORM was derived by averaging our tomographic model

for oceanic regions of age between 30 and 70 Ma and of ocean

depth between 4500 and 5000 m (see Ritsema & Allen 2003), and

is significantly slower than PREM above 300 km depth, confirming

the observation by Ekström & Dziewonski (1998) that the Pacific

upper mantle is unusually slow. Below 300 km depth, ORM ap-

proaches the smoothed PREM model used as a starting model in

our 1-D waveform inversion stage. We have inverted simultane-

ously for both isotropic VSV and azimuthal anisotropy as discussed

above, though here we plot only the isotropic component of the

VSV distribution, as discussion of the azimuthally anisotropic sig-

nal is beyond the scope of this paper. This anisotropic signal is

similar to that obtained for the Pacific region using our data by

Debayle et al. (2005), and is described in detail in Maggi et al.
(2006).

At shallow depth (50 km) the isotropic VSV distribution closely

reflects regional tectonics: mid-ocean ridges and back-arc regions

are outlined by slow velocities, the subduction zones are outlined

by faster velocities, and the velocities increase progressively across

the Pacific plate from East to West as the lithospheric age increases.

At this depth, the continents are slower than ORM. At 100 km depth

the mid-ocean ridge signatures are less continuous, the increase in

VSV with lithospheric age is still visible and the continental cratons

of Australia and North America now appear as strong high-velocity

anomalies. At 150 km depth the ridge signatures have disappeared,

while the subduction zones are clearly visible and the continental

craton signatures are very strong. At 200 km depth the variation in

VSV across the Pacific is reduced to only 1–2 per cent, except for the

C© 2006 The Authors, GJI, 166, 1384–1397
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Figure 5. (a) Histogram of path lengths within the clustered data set. (b) Voronoi diagram in the style of Debayle & Sambridge (2004) for our clustered data

set.

Figure 6. (a) Blow-up of the Voronoi diagram of Fig. 5(a) in the region of the South Pacific Super-Swell. The PLUME stations are indicated by grey triangles,

and contribute ∼20 per cent of the paths crossing the region. (b) The Voronoi diagram with the paths contributed by the PLUME stations removed.

Tonga-Kermadec subduction zone and continental cratons, which

are underlain by faster velocities until ∼250 km depth.

Fig. 8 shows selected cross-sections through our tomographic

model. A cross-section running the length of the East Pacific Rise

from north to south (Fig. 8b) shows longitudinal variations in the

strength of the low-velocity anomaly corresponding to the oceanic

ridge. It also suggests the presence of slower regions at depths be-

tween ∼300 and 400 km near the triple junction of the EPR and

the slow-spreading Galapagos Rise (A), and near the Easter Island

Hotspot (B). Cross-sections through two major subduction zone

trenches, Japan, and Tonga–Kermadec, are shown in Figs 8(c)–(d).

Our image of the Japan trench shows an ∼150 km thick fast anomaly

that descends into the mantle down to at least ∼250 km depth, with

seismicity outlining its upper surface. We can resolve this thin sub-

ducting plate using surface waves thanks to an extremely dense cov-

erage of short-range paths in the region surrounding Japan. In our

image, the slab is better defined than in the global model S20RTS

(Ritsema et al. 1999). Our image is similar to that obtained in a

smaller regional surface wave study of Southeast Asia by Lebedev

& Nolet (2003), and to the upper 250 km of the image obtained

by the Gorbatov & Kennett (2003) regional body wave study of the

Western Pacific subduction zones, in which the Japan slab is seen to

bottom out at transition zone depths. The Tonga-Kermadec trench

shown in Fig. 8(d) also lies in a region of extremely dense coverage

(see Fig. 4a), and is visible in our tomographic image well into the

transition zone. A similar image of this slab is obtained by Gorbatov

& Kennett (2003), also showing the slab penetrating the transition

zone. The difference in our resolution of the subducting slabs below

Japan and Tonga–Kermadec at depths >300 km is due to the dif-

ferent illumination by higher mode surface waves, more prevalent
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Figure 7. Horizontal slices through our tomographic model showing isotropic VSV at (a) 50 km, (b) 100 km, (c) 150 km, (d) 200 km, (e) 250 km and (f)

300 km depth. Throughout this paper, unless otherwise noted, tomographic results are plotted as a percentage variation with respect to the ORM model of

Fig. 2. Azimuthal anisotropy results are not plotted on the tomographic slices for clarity, although anisotropy was taken into account in the inversion.

in the Tonga-Kermadec region thanks to the much larger number of

deep focus earthquakes.

Panels (e)–(h) in Fig. 8 focus on our tomographic results for the

South Pacific Super-Swell region, a shallow bathymetric anomaly

(indicated by a dashed line in Fig. 8e) that has been postulated to

be the surface expression of a large-scale mantle super-plume in

the southcentral Pacific Ocean (see e.g. McNutt & Fischer 1987;

Sichoix et al. 1998; Mégnin & Romanowicz 2000). This region is

characterized by an increased rate of volcanism compared to other

oceanic regions of similar age, and has been reported as having

anomalously slow shear wave velocity by a number of surface wave

tomographic studies (e.g. Ekström & Dziewonski 1998; Montagner

2002). Although a detailed discussion of the origin and implications

of the anomalous bathymetry and volcanism are outside the scope

of this paper, we would like to comment on the shear wave velocity

structure of this region in the light of the improved coverage and hor-

izontal resolution afforded to us by the PLUME data. In Fig. 8 panels

(e)–(h) we show cross-sections through the Super-Swell region and

the adjacent regions of the Pacific plate, taken along the 20, 40 and

80 Ma isochrons as defined by Müller et al. (1997). The 20 Ma pro-

file shows a localized low shear wave velocity anomaly within the

Super-Swell region confined to the upper 100–150 km of the mantle.

The anomaly is underlain by a region with shear wave velocities up to

3 per cent faster than those in North Pacific plate mantle of the same

age. The 40 Ma profile shows two low-velocity anomalies (C and

D) within the Super-Swell region, associated with the approximate

locations of the Marquesas and Macdonald hotspots, respectively.

The anomaly associated with the Macdonald hotspot (D) is contin-

uous down to ∼420 km depth, as is the broad low-velocity anomaly

at the northern end of this profile, indicating a possible thermal

upwelling from the transition zone. The 80 Ma profile shows a nar-

row low-velocity anomaly (E), apparently also of thermal origin,

rising from the transition zone close to the location of the Society

hotspot. Furthermore, the northern portion of this profile shows a

high-velocity anomaly associated with the approximate location of

the Hawaiian hotspot. Detailed discussion of these hotspot related

shear wave velocity anomalies, and interpretation of their thermal

or chemical origin (e.g. Richardson et al. 2000; Tommasi et al.
2004), is outside the scope of this paper, and will not be engaged

in here. It seems clear from Fig. 8, however, that the low-velocity

anomalies in the Super-Swell region, imaged with higher resolu-

tion thanks to the data from the PLUME experiment, are confined

to localized structures, and are not pervasive throughout the entire

area.

3.1 Shear wave velocity structure and oceanic age

The longest wavelength feature of the tomographic model shown in

Fig. 7 is the increase in VSV with increasing ocean age, progressing

from East to West across the Pacific plate. In Figs 9(a) and (b)

we compare the shear wave velocity distribution at 100 km depth

with the lithospheric ages given by Müller et al. (1997). The age
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Figure 8. Selected cross-sections through our tomographic model. (a) Location of cross-sections shown in panels (b)–(d). (e) Location of cross-sections shown

in panels (f) to (h); the approximate boundary of the region of anomalously elevated seafloor topography known as the South Pacific Super-Swell is indicated

by a dashed line. The intersections of this boundary with the 20–80 Ma isochron profiles in panels (f)–(h) are indicated by vertical dashed lines. Green/black

circles along the EPR profile in (a) and the 20–80 Ma isochron profiles in (e) correspond to the circles in panels (b), (f)–(h) and are used as distance markers.

Seafloor topography profiles from Smith & Sandwell (1997) are shown above each tomographic cross-section. All tomographic images are plotted as percentage

variation with respect to the 1-D ORM model of Fig. 2. Earthquakes from the Harvard CMT catalogue within 200 km of the profiles are shown as small black

circles.
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Figure 9. (a) Tomographic results for 100 km depth. (b) Distribution of ocean ages for the Pacific region from Müller et al. (1997). (c) Plot of VSV against

ocean age for the 100 km depth tomographic results. All points of the tomographic inversion grid that lie on oceanic lithosphere for which we have an estimate

of age from Müller et al. (1997) are plotted as grey dots. Also plotted are the average shear wave velocity in 5 Myr age bins (black squares), the standard

deviation of each bin (black error bars) and the median value for each bin (white triangles).

dependence of VSV is further illustrated by the VSV -age scatter plot

of Fig. 9(c), in which the VSV values for all points of the tomographic

inversion grid that lie on oceanic lithosphere are plotted against their

respective Müller et al. (1997) ages. Also shown in the scatter plot

are average, standard deviation and median values in 5 Ma age bins.

The figure shows that although the average VSV increases with age,

this increase is not particularly smooth, and that a small number

of VSV measurements differ significantly (more than 3σ ) from the

average trend. The increase in VSV appears to flatten slightly between

the ages of 60 and 90 Ma, although this effect is small compared to

the flattening observed for similar ages by Ritzwoller et al. (2004).

The large oscillation for ages >140 Ma coincides with a region of

large scatter in VSV , and should not be interpreted as a robust feature

in the average cooling trend.

An intuitive image of the dependence of VSV on age can be found

in the age-dependent average cross-section for the Pacific Ocean

lithosphere in Fig. 10, which was created by taking sliding window

averages of our tomographic results at depths from 40 to 225 km

along the isochrons of Fig. 9(b). Shear wave velocity in this image is

expressed in absolute units for ease of comparison with other stud-

ies and with physical models of the lithosphere. As tomographic

inversions tend to underestimate the true amplitude of velocity per-

turbations, the range of VSV at each depth may underestimate the

true range. The cross-section shows shear wave velocity decreasing

with depth within the lithosphere down to ∼150 km depth, where

it reaches a minimum that goes from ∼4.33 km s−1 at old ages

(>120 Ma) to ∼4.18 km s−1 at young ages (<20 Ma). The shear

wave velocity of this low-velocity zone taken far from the ridge

axis, is consistent with the results of Ekström & Dziewonski (1998)

for the average VSV of the Pacific Plate. VSV contours in Fig. 10(a)

deepen progressively with age, approximately following the trend

predicted by Parker & Oldenburg (1973) for purely diffusive cool-

ing. The large oscillation for ages >140 Ma discussed for Fig. 9 is

also present in this image. As the smoothing induced by the sliding

window averaging procedure used to create this image precludes

formal quantitative analysis of the observed VSV -age trend, such

analysis will be conducted below using non-overlapping age bins.

4 D I S C U S S I O N

4.1 Lithospheric cooling models

In the traditional oceanic plate tectonic model (e.g. Parsons &

McKenzie 1978), new lithosphere is generated at mid-ocean ridges,

the plates then cool, subside and thicken as they move away from

the ridges, and the lithosphere reaches a stable state after ∼60–

80 Myr. This model requires heat to be supplied to the base of

older lithosphere, most probably by small scale convection, for it to

stop cooling diffusively. A recent re-evaluation of the plate model

by McKenzie et al. (2005) has found that the temperature depen-

dence of thermal conductivity plays an important role in determining
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Figure 10. Tomographic cross-section with respect to age for the Pacific Ocean region. This smoothed image was created by averaging VSV along the Müller

et al. (1997) isochrons, using a sliding age window of 10 Ma width and excluding areas with no age information. Colour shading represents absolute VSV . The

continuous black line indicates the position of the thermal boundary layer for the Parker & Oldenburg (1973) half-space cooling model.

oceanic geotherms. Other models of lithospheric cooling include the

half-space cooling model (Parker & Oldenburg 1973), in which the

lithosphere is formed by diffusive cooling alone and continues to

increase in thickness with age, and the recently revived constant

heat-flux model (Crough 1975; Doin & Fleitout 1996), in which

constant heat flow is assumed at the base of the lithosphere what-

ever the age of the overlying plate. Discrimination between these

cooling models and calibration of the plate model parameters (in

particular mantle temperature and plate thickness) has tradition-

ally been carried out using ocean depth and heat-flow data (e.g.

Parsons & Sclater 1977; Stein & Stein 1992), although there have

been efforts to include other data such as the geoid (Doin et al.
1996; DeLaughter et al. 1999). These surface observables, espe-

cially oceanic topography and geoid, tend to reject the half-space

cooling model in favour of plate models, but are not sufficiently

accurate to distinguish between plate models and constant heat flow

models (Doin & Fleitout 2000).

Seismological observables tell a different story. Nearly all studies

of surface wave dispersion across the major ocean plates show that

lithospheric seismic velocities, the thickness of the seismic litho-

sphere and the seismic velocities in the low-velocity zone below

the lithosphere all increase continuously with age when averaged

over isochrons, and do not flatten out for older lithosphere as do the

seafloor bathymetry and geoid (see Forsyth 1977; Zhang & Tanimoto

1991; Zhang & Lay 1999, for a review of the implications of sur-

face wave phase dispersion observations on plate cooling models).

These studies provide depth-dependent constraints on the cooling

signature, while the traditional surface observations of bathymetry,

heat flow or geoid are sensitive only to the integrated properties of

the lithosphere. The seismological observations tend to favour the

half-space conductive cooling model, or possibly a thick plate model

(∼120 km thick) such as that of Parsons & Sclater (1977), over plate

models with thin plates such as the widely recognized GDH1 model

of Stein & Stein (1992). The reasons for which seismological and

surface observations seem incompatible are unclear, although the

most likely candidates are uncertainties in the observations them-

selves, especially the depth and heat flow observations at old ages.

Insufficient path coverage in the central portions of the oceans adds

uncertainty to the surface wave observations.

An exception to previous surface wave studies of lithospheric

cooling is the recent study by Ritzwoller et al. (2004), who found

a prominent flattening in the average VS-age trend for the Pacific

Ocean lithosphere between the ages of 70 and 100 Ma. They in-

ferred a punctuated cooling history for the Pacific Ocean, with dif-

fusive cooling being interrupted by reheating of 70 to 100 Myr old

lithosphere, and suggested thermal boundary layer instabilities as

a possible reheating mechanism. This observation is very different

from those of previous surface wave studies of lithospheric cooling

and also from current surface observations of bathymetry, heat flow

and geoid, which all imply monotonic average cooling histories. If

we compare the VSV -age trend from our study (Fig. 9) to that of

Ritzwoller et al. (2004) (Figure 5c from their paper), we find that

instead of the prominent flattening between 70 and 100 Ma, we ob-

serve mostly small amplitude oscillations of the VSV trend with only

a very weak flattening signal. There may be multiple reasons for

the discrepancy between our results and those of Ritzwoller et al.
(2004). The most likely are differences in the surface wave data sets

(which could lead to differences in surface wave coverage over the

Pacific Ocean), the measurement techniques (secondary observables

vs. a combination of different phase and group velocity dispersion

techniques) and the tomographic inversion techniques (azimuthally

anisotropic Gaussian ray tomography vs. radially anisotropic diffrac-

tion tomography). The discrepancy is unlikely to be due simply to

the use of ray theory compared with diffraction tomography (i.e.

2-D finite-frequency kernels), as Ritzwoller et al. themselves state

that their result does not change significantly if they invert their

phase and group velocity dispersion measurements using Gaussian

ray theory instead of diffraction kernels.
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Table 1. Mantle parameters assumed by the three lithospheric cooling mod-

els considered in this paper. HSC: half-space cooling model of Parker &

Oldenburg (1973); PS: plate model of Parsons & Sclater (1977); GDH1:

global depth and heat flow model of Stein & Stein (1992).

Model κ/10−6 m2 s−1 Tm/◦C a/km

HSC 0.8 1300

PS 0.8 1350 125

GDH1 0.8 1450 95

4.2 Comparison of VSV -age profiles with lithospheric

cooling models

We have compared our observed trend for VSV against ocean age to

three representative and well-known cooling models: the half-space

cooling model of Parker & Oldenburg (1973) (hereafter referred

to as HSC), the Parsons & Sclater (1977) plate model (hereafter

referred to as PS) and the GDH1 plate model of Stein & Stein

(1992). The mantle properties assumed by the three cooling models

we considered are tabulated in Table 1. We assume that shear wave

velocity VSV and temperature T are functions of age t and depth z
and are linearly related as follows:

VSV (t, z) − VSV (t0, z)

VSV (t0, z)
= ∂lnVSV

∂T
[T (t, z) − T (t0, z)], (1)

where t0 is a reference age and the partial derivative ∂lnVSV /∂T
may depend on depth. We fit each of the cooling models to the

observed VSV trend at each depth, by allowing only ∂lnVSV /∂T to

vary. Data for lithosphere younger than 10 Ma are excluded to avoid

possible non-linearity in the temperature dependence of VSV due to

the presence of partial melt or to diffusion boundary effects at the

elevated temperatures near the ridge axis. We choose our reference

age t0 to be 10 Ma. We also exclude data for ages greater than 140

Ma in the fitting, although we do show the model predictions for

older lithosphere. Fig. 11(a) shows the best-fit curves for the three

cooling models at 75 km depth. All three lithospheric cooling models

fit the binned tomographic values within their standard deviation,

therefore, the tomography itself cannot formally rule out any of

them. The best fit to the overall shape of the VSV -age trend is provided

by the Stein & Stein (1992) GDH1 plate model, while the HSC model

and the PS thick plate model are almost indistinguishable in terms

of goodness of fit. The robustness of this conclusion will be tested

below.

The values of ∂lnVSV /∂T obtained by the fitting of the three

models at depths up to 200 km are shown in Fig. 11(b), and com-

pared with values determined from mineral physics experiments

(Cammarano et al. 2003). As the temperature for the plate models

is only defined within the plates themselves, we have not fitted these

models to profiles at depths greater than their plate thickness. It is

important to note that the absolute values of ∂lnVSV /∂T we obtain

for each depth are lower bounds on the true absolute values, as the

tomographic inversion is damped (via the a priori model variance

σM ) towards a 1-D a priori model. A further illustration of the effect

of this damping is shown in the synthetic test below.

In order to test the robustness of any interpretation of the VSV -

age curves, we performed a synthetic tomographic experiment. We

produced an input tomographic model starting from the smoothed

PREM profile of Fig. 2, assuming a value of ∂lnVSV /∂T of −1.5 per

cent/100 K, and imposing that the oceanic lithosphere had cooled

according to the HSC model; we then computed the path-averaged

shear wave velocity models along each of the 15 165 paths, and

imposed the same values of σD used in the original inversion; we

then inverted this tomographic model under the same conditions as

our real tomographic inversion, using as the a priori 1-D model the

average velocity in the tomographic input model at each depth; fi-

nally we binned both input and output synthetic tomographic mod-

els in 5Ma age bins as described above. These VSV -age bins are

shown in Figs 11(c) and (d) for the input and output synthetic

tomographic models, respectively. Comparison of the two panels

shows that the range of VSV values is smaller for the output tomo-

graphic model, leading to the inference of a smaller ∂lnVSV /∂T
(1.0 per cent/100 K). More importantly, the shape of the output

VSV -age trend is distinctly different: it is flatter than that for the

input tomographic model between 60 and 100 Ma, it seems to be

fit better by the GHD1 model than by the HSC model, and it dis-

plays an oscillation that is similar to that observed for the real to-

mographic model. In the synthetic test this oscillation is caused

by reduced amplitude recovery of the tomography in the central

Pacific region, itself caused most probably by uneven data cover-

age and reduced lateral resolution in this same region (see Figs 4a

and 5a).

The similarity in shape between the synthetic test output profile

(Fig. 11d) and our tomographic profile (Fig. 11a) calls into ques-

tion our earlier conclusion that a thin plate model provides the best

fit to our surface wave observations, and suggests that a half-space

cooling model or a thick plate model may be more appropriate,

in accordance with most previous surface wave studies of litho-

spheric cooling (Forsyth 1977; Zhang & Tanimoto 1991; Zhang &

Lay 1999). The tendency of our tomographic inversion to flatten

VSV age profiles between 60 and 100 Ma makes us question the

large flattening signal observed by Ritzwoller et al. (2004). Such

a signal is not strongly observed in our VSV age profiles despite

it being favoured by the path coverage as shown by our synthetic

test. We cannot rule out that with better coverage of the Central

Pacific region such a signal would indeed be robustly observed, and

cannot test the path distribution used by Ritzwoller et al. directly.

We, therefore, cannot robustly exclude the presence of a re-heating

mechanism that may have affected the central Pacific lithosphere.

However, we conclude from this synthetic tomographic experiment

that detailed interpretation of the VSV -age trends from tomographic

images is likely to be misleading unless lateral resolution and ampli-

tude recovery can be shown to be uniform across the oceanic region

under consideration, a condition that is difficult to achieve in large

oceanic basins with few seismic stations.

5 C O N C L U S I O N

In this study we have presented a multimode regional surface wave-

form tomography of the Pacific upper mantle, using the two-stage

method of secondary observables (Cara & Lévêque 1987; Debayle

& Sambridge 2004) on over 56 000 Rayleigh wave paths. We have

clustered these paths geographically with a cluster radius of 200 km

in order to obtain a realistic estimate of the errors induced in wave-

form modelling by inadequate knowledge of earthquake source pa-

rameters. The preponderance of short path lengths in our data set

has led to well-resolved images of the most densely covered re-

gions, in particular of the Japan and Tonga-Kermadec subduction

zones and of the West Pacific. Our improved coverage of the south-

ern Pacific region thanks to data from the PLUME experiment of

Barruol et al. (2002) has allowed us to determine that the low-

velocity anomalies in the South Pacific Super-Swell region are con-

fined to localized structures, and are not pervasive throughout the

entire area.

C© 2006 The Authors, GJI, 166, 1384–1397

Journal compilation C© 2006 RAS



Pacific tomography 1395

Figure 11. (a) Fits of simple cooling models to average VSV -age profile at 75 km depth. VSV values are binned in 5 Ma bins, as in Fig. 9. For each bin, grey

error bars indicate the standard deviation and black error bars the standard error on the mean. Best-fit curves are shown for three models: HSC, half-space

cooling (Parker & Oldenburg 1973) in red; PS (Parsons & Sclater 1977) in green; GDH1 (Stein & Stein 1992) in blue. (b) Values of ∂lnVSV /∂T obtained from

fitting the three cooling models to average VSV -age profiles at depths ranging from 50 to 150 km. Note that the two plate models (PS and GDH1) are only fitted

to the VSV observations at depths that lie within each plate. (c) Fits of the three cooling models to a synthetic tomographic input model created by cooling the

PREM VSV model by half-space cooling. (d) Fits to the tomographic output model obtained by inverting the input model in (c) using the real data coverage and

tomographic inversion parameters.

We have produced an age-dependent average cross-section for

the Pacific Ocean lithosphere, and interpreted the average VSV -age

profiles at different depths in terms of standard half-space cooling

and plate cooling models. We have found that our tomography re-

sults cannot rule out any of these models. Synthetic experiments

suggest that geographical variations in amplitude resolution of the

tomography due to insufficient path coverage in the central Pacific

Ocean create an artificial flattening of the profile between 60 and

100 Ma. As increases in the path coverage of oceanic regions will

be hard to obtain due to the difficulty and expense of deploying

ocean bottom seismometers, we hope that further developments in

tomographic techniques, for example the use of fully 3-D sensitivity

kernels as described by Tromp et al. (2005), will bring about the im-

provements in lateral resolution and amplitude recovery necessary

for detailed seismological observation of geodynamic processes in

oceanic regions.
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