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Abstract

The orthogonal polynomials with recurrence relation

(λn + µn − z)Fn(z) = µn+1 Fn+1(z) + λn−1 Fn−1(z)

and the three kinds of cubic transition rates





λn = (3n + 1)2(3n + 2), µn = (3n − 1)(3n)2,

λn = (3n + 2)2(3n + 3), µn = 3n(3n + 1)2,

λn = (3n + 1)(3n + 2)2, µn = (3n)2(3n + 1),

correspond to indeterminate Stieltjes moment problems. It follows that the polyno-
mials Fn(z) have infinitely many orthogonality measures, whose Stieltjes transform
is obtained from their Nevanlinna matrix, a 2 × 2 matrix of entire functions. We
present the full Nevanlinna matrix for these three classes of polynomials and we
discuss its growthat infinity and the asymptotic behaviour of the spectra of the
Nevanlinna extremal measures.



1 Birth and death processes and indeterminate mo-

ment problems

Birth and death processes are special stationary Markov processes whose state space is
the non-negative integers, representing for instance some population. We are interested in
the time evolution of a such population, described by the transition probabilities Pm,n(t)
which is the probability that the population goes from the state m at time t = 0 to the
state n at time t > 0. This evolution is supposed to be governed on a small time scale by

Pn,n+1(t) = λn t+ o(t),

Pn,n(t) = 1 − (λn + µn)t+ o(t),

Pn,n−1(t) = µn t+ o(t),

t→ 0.

For applications the most important problem is to find Pm,n(t) for given rates λn and µn,
with suitable extra constraints to be described later on.

From the previous setting one can prove that the transition probabilities have to be a
solution of the forward Kolmogorov equations

d

dt
Pm,n = λn−1 Pm,n−1 + µn+1 Pm,n+1 − (λn + µn)Pm,n. (1)

The Pm,n(t) are assumed to be continuous for small time scales with

lim
t→0

Pm,n(t) = δm,n. (2)

A representation theorem for Pm,n(t) proved by Karlin and MacGregor in [7] links birth
and death processes and orthogonal polynomials theory. Let us define the polynomials
Fn(x) by the three-terms recurrence relation

(λn + µn − x)Fn(x) = µn+1Fn+1(x) + λn−1Fn−1(x), n ≥ 0, (3)

with the boundary conditions

F−1(x) = 0, F0(x) = 1,

and the useful quantities

π0 = 1, πn =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
, n ≥ 1.

If the positivity conditions

λn > 0, n ≥ 0, and µ0 = 0, µn > 0, n ≥ 1 (4)

are fulfilled, then there is a positive measure ψ for which

Pm,n(t, ψ) =
1

πm

∫ ∞

0

e−xtFm(x)Fn(x) dψ(x). (5)
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Then the boundary condition (2) is nothing but the orthogonality relation

1

πm

∫

suppψ

Fm(x)Fn(x) dψ(x) = δm,n.

Such a measure has well-defined moments

cn =

∫

suppψ

xn dψ(x), n = 0, 1, . . . .

If supp(ψ) ⊆ R this is a Hamburger moment problem and if supp(ψ) ⊆ [0,∞) this is a
Stieltjes moment problem. In the event that the measure ψ is not unique we speak of
indeterminate Hamburger (or indeterminate Stieltjes) moment problems, indet H or indet
S for short. Stieltjes (see [1]) obtained the necessary and sufficient conditions for a moment
problem to be indet S

∞∑

n=0

πn <∞ and

∞∑

n=1

1

λnπn
<∞.

These conditions imply that it is also indet H. They will be supposed to hold in all what
follows.

1.1 Orthogonality measures for indeterminate moment problems

The description of all the orthogonality measures for an indet H problem was solved a long
time ago by Nevanlinna and M. Riesz, with a very good account in [1]. For the reader’s
convenience let us give a minimal account of this theory. More information will be found
in [3]. One first defines the Nevanlinna matrix N (z) as




A(z) C(z)

B(z) D(z)


 , A(z)D(z) − B(z)C(z) = 1, ∀z ∈ C,

where the four entire functions are given by

A(z) = z

∞∑

n=0

F̃n(z)

µ1

n+1∑

k=1

1

µkπk
, B(z) = −1 − z

∞∑

n=0

Fn(z)

n∑

k=1

1

µkπk
,

C(z) = 1 − z

∞∑

n=0

F̃n(z)

µ1
, D(z) = z

∞∑

n=0

Fn(z),

and the polynomials F̃n(x) are the solution of the recurrence relation (3) with λnandµn
replaced by the shift rates λ̃n = λn+1 and µ̃n = µn+1. Once the Nevanlinna matrix is
known all of the orthogonality measures ψφ have for Stieltjes transform

∫
dψφ(x)

z − x
=
A(z)φ(z) − C(z)

B(z)φ(z) −D(z)
, z ∈ C\R,

where the Pick function φ(z) has the general structure

φ(z) = t+ s z +

∫
xz + 1

x− z
dν(x), t ∈ R, s ≥ 0,
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where ν is a finite positive measure supported on R.
The Nevanlinna extremal (for short N-extremal) measures ψt correspond to the Pick

function φ(z) = t. These measures are fully discrete and for them and only for them are
the polynomials {Fn, n = 0, 1, . . .} dense in L2(R, dψt).

The number

− 1

α
=

∞∑

n=1

1

µnπn
,

is quite important since the positively supported N-extremal measures (hence correspond-
ing to S moment problems) are given by t ∈ [α, 0].

Among all of these positively supported measures, there is a unique one ψ0(x), which
has a mass at x = 0 and corresponds to the parameter t = 0. In [7] it is called the
“minimal” measure since it gives rise to “minimal” transition probabilities as explained
page 526 of this reference.

The measure corresponding to t = α has been shown by Pedersen [8] to correspond to
the Friedrichs extension of the Jacobi matrix and could be called the Friedrichs measure.
Notice also that necessary and sufficient conditions on the Pick function are known which
ensure that the corresponding measure is positively supported [9].

1.2 More restrictions on the measures

Let us now present further restrictions on the transition probabilities and see what conse-
quences and restrictions we get on the measures ψ. We thought it could be useful for the
reader to have a global view of these beautiful results, the proofs of which were given in
[7].

1. The first obvious restriction is that the transition probabilities are positive: as soon
as ψ is a solution of the H moment problem then one has

Pm,n(t, ψ) > 0 ∀m ≥ 0, ∀n ≥ 0, ∀t > 0.

2. The semi-group property

∞∑

l=0

Pm,l(s, ψ)Pl,n(t, ψ) = Pm,n(s+ t, ψ), s ≥ 0, t ≥ 0

holds iff ψ is N-extremal.

3. Before looking at the Markov property one could impose the weaker restrictions

0 <

∞∑

n=0

Pm,n(t, ψ) < 1 t > 0.

These will hold if ψ is a solution of the S moment problem.

4. The Markov property 1

∞∑

n=0

Pm,n(t, ψ) = 1 t > 0

1In the former terminology a process for which the Markov property holds was denoted as “honest”.
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holds for

Pm,n(t, ψ0) =
1

πm

∫ ∞

0

e−xtFm(x)Fn(x) dψ0(x),

where ψ0 is the “minimal” measure of Karlin and MacGregor, as defined in the previous
section.

For practical applications the Markov property is of paramount importance, and selects
among all possible N-extremal measures a unique one. From this point of view the unique-
ness of the solution of the Kolmogorov equation is restored by the Markov property and
applies only to Pm,n(t, ψ0).

If we consider polynomial transition rates of the form

λn = (n+ b1) · · · (n + bp), µn = (n + a1) · · · (n+ ap)(1 − δn0), n ≥ 0,

we have for large n

πn = O(n∆−p),
1

λnπn
= O(n−∆), ∆ =

p∑

i=1

(bi − ai).

The moment problem is indet S for 1 < ∆ < p − 1, and this requires at least cubic
transition rates. In this class only a few cases have been worked out, mainly the quartic
example [10] with

λn = (4n+4c+1)(4n+4c+2)2(4n+4c+3), µn = (4n+4c−1)(4n+4c)2(4n+4c+1)(1−δn0),

where the Nevanlinna matrix is known but leads to no explicit N-extremal measure. In
the limiting case c → 0 the “minimal” measure (which enjoys the Markov property) and
the Friedrichs measure were obtained explicitly, while for c = 1/4 some new explicit N-
extremal measures are given by Christiansen [5].

2 New Nevanlinna matrices

We will describe, in the sequel, some Nevanlinna matrices for some particular choices of
cubic λn and µn. To this end we need some background material.

2.1 Background material

In order to describe the Nevanlinna matrix we will need a triplet of elementary functions
defined by

σl(u) =
∞∑

n=0

(−1)n
u3n+l

(3n+ l)!
, l = 0, 1, 2. (6)

It is easy to check the relations

σ′
1 = σ0, σ′

2 = σ1, σ′
0 = −σ2, (7)

with the boundary conditions

σ0(0) = 1, σ1(0) = 0, σ2(0) = 0.
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These functions are called trigonometric functions of order 3, since they are three linearly
independent solutions of the third order differential equation

σ′′′
l + σl = 0, l = 0, 1, 2.

Their explicit form is

σ0(u) =
1

3

(
e−u + 2 cos

(√
3

2
u

)
eu/2

)
,

σ1(u) =
1

3

(
−e−u + 2 cos

(√
3

2
u− π

3

)
eu/2

)
,

σ2(u) =
1

3

(
e−u − 2 cos

(√
3

2
u+

π

3

)
eu/2

)
.

(8)

We will need also the following functions

θ(t) =

∫ t

0

du

(1 − u3)2/3
, θ̂(t) = θ0 − θ(t), θ0 ≡ θ(1) =

Γ3(1/3)

2π
√

3
. (9)

Notice that θ̂(t) is continuous for t ∈ [0, 1] with the bounds 0 ≤ θ̂(t) ≤ θ0.

2.2 The Nevanlinna matrices

In [6] the Nevanlinna matrix of the polynomials Fn(x), with the transition rates

λn = (3n+ 3c+ 1)2(3n+ 3c+ 2), µn = (3n+ 3c− 1)(3n+ 3c)2(1 − δn0), c ≥ 0

has been obtained through the computation of some generating functions. From the pre-
vious section we can check that it is an indeterminate Stieltjes moment problem since
we have ∆ = 5/3. Important simplifications in the structure of the Nevanlinna matrix
occur for the special cases c = 0 and c = 1/3. Similar results were also obtained for the
recurrence coefficients

λn = (3n + 3c+ 1)(3n+ 3c+ 2)2, µn = (3n+ 3c)2(3n+ 3c+ 1)(1 − δn0), c ≥ 0.

In this case simplifications do occur only for c = 0, the other possibility c = −1/3 is ruled
out by positivity since it leads to λ0 = 0. These simplified cases will be studied in detail
since they allow further insights into the N-extremal spectra and the growth at infinity.

Let us observe that the computational techniques used in the previous reference allow
to compute Ã and B̃ instead of A and B. We have the relations

Ã(z) = A(z) − C(z)

α
, B̃(z) = B(z) − D(z)

α
, − 1

α
=

∞∑

n=1

1

µnπn
.

We use this transformation in order in the following to give simplified formulas (for example
(10-12)).The sum defining α converges since the moment problem is indet S.

In the first case with c = 0 the recurrence coefficients are

λn = (3n+ 1)2(3n+ 2), µn = (3n− 1)(3n)2, n ≥ 0
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and the corresponding Nevanlinna matrix N0(z) is given by





Ã0(z) =

∫ 1

0

σ2(ρθ̂(u))

ρ2
(1 − u3)−1/3 du, B̃0(z) = −σ0(ρθ0),

C0(z) =
3
√

3

2π

∫ 1

0

σ0(ρθ̂(u)) (1 − u3)−1/3 du, D0(z) =
3
√

3

2π
ρ2 σ1(ρθ0),

(10)

with ρ = z1/3. Our results for B̃0(z) are in agreement with [11], but correct the mistaken
form of D0(z) given in this reference.

In the second case with c = 1/3 the recurrence coefficients are

λn = (3n+ 2)2(3n+ 3), µn = 3n(3n+ 1)2, n ≥ 0,

and the corresponding Nevanlinna matrix N1(z) is given by





Ã1(z) =

∫ 1

0

σ2(ρθ̂(u))

ρ2
u (1 − u3)−1/3 du, B̃1(z) = −σ1(ρθ0)

ρ
,

C1(z) =
3

B(2
3
, 2

3
)

∫ 1

0

σ0(ρθ̂(u)) u (1− u3)−1/3 du, D1(z) =
3

B(2
3
, 2

3
)
ρ σ2(ρθ0).

(11)

In the third case with again c = 0 the recurrence coefficients are

λn = (3n+ 1)(3n+ 2)2, µn = (3n)2(3n+ 1), n ≥ 0,

and the corresponding Nevanlinna matrix N2(z) is given by






Ã2(z) =

∫ 1

0

σ2(ρθ̂(u))

ρ2
du, B̃2(z) = −σ0(ρθ0),

C2(z) =
3
√

3

2π

∫ 1

0

σ1(ρθ̂(u))

ρ
du, D2(z) =

3
√

3

2π
ρ σ2(ρθ0).

(12)

All the functions are seen to be entire upon use of relation (6) and the couples B̃ and D
exhaust all possible couples made out of the four entire functions ρ−lσl(ρθ0), ρ

2−lσl+1(ρθ0)
with l = 0, 1.

3 Some applications

As an application of the previous results, we will discuss two significant aspects of the
Nevanlinna matrices: their growth at infinity and the asymptotics of the N-extremal spec-
tra.

3.1 Growth at infinity of the Nevanlinna matrix

The growth at infinity of the entire functions is described mainly in terms of the order η,
type σ, and Phragmén-Lindelöf indicator h(θ). Let us begin with
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Proposition 1 The Nevanlinna matrices N0, N1 and N2 have the same order η and type
σ given by

η =
1

3
, σ = θ0 =

∫ 1

0

du

(1 − u3)2/3

Proof :

As shown in [2] the order and type of all the elements of a given Nevanlinna matrix are
one and the same. Hence it will be sufficient to determine them for the simplest elements
i.e. for D0 and D1 since D2 is proportional to D1. Using the expansions (6) we can write

Dl(z) =
∞∑

n=1

(−1)n−1 ξ(l)
n zn,

with

ξ(0)
n =

3
√

3

2π

θ3n−2
0

(3n− 2)!
, ξ(1)

n =
3

B(2
3
, 2

3
)

θ3n−1
0

(3n− 1)!
, (13)

and then we compute the order η and type σ from [4]

η = lim
n→∞

n lnn

|ln|ξn||
, σ =

1

eρ
lim
n→∞

n |ξn|ρ/n. (14)

Using Stirling’s formula one obtains the results stated above.
Let us turn ourselves to the Phragmén-Lindelöf indicator, which is defined by

hf (θ) = lim
r→∞

ln |f(reiθ)|
rρ

. (15)

We will prove that the Nevanlinna matrices N0, N1 and N2 have the same Phragmén-
Lindelöf indicator. To this end we first prove

Proposition 2 The two entire functions B̃0 and B̃1 have the same Phragmén-Lindelöf
indicator: h(θ) = θ0 cos( θ−π

3
), θ ∈ [0, 2π[.

Proof :

We will use the relation

σ0(ζ) =
1

3

(
e−ζ + ejζ + ejζ

)
, j = ei

π

3 . (16)

For z = reiθ we have ζ = ρ θ0 = u eiθ/3 with u = r1/3 θ0
Elementary algebra gives

|e−ζ | = e−u cos( θ

3
), |ejζ| = eu cos( θ+π

3
), |ejζ| = eu cos( θ−π

3
).

For θ ∈ [0, 2π[ we have the inequalities

cos(
θ − π

3
) > − cos(

θ

3
), cos(

θ − π

3
) ≥ cos(

θ + π

3
), (17)

hence we get

3|σ0(ue
iθ/3)| = O(γ eu cos( θ−π

3
)), u→ ∞,
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with γ = 1, θ ∈]0, 2π[ and γ = 2, for θ = 0. This allows to compute the indicator

h(θ) = θ0 cos(
θ − π

3
), θ ∈ [0, 2π[. (18)

The argument is similar for σ1 which is given by

σ1(ζ) =
1

3

(
−e−ζ + j ejζ + j ejζ

)
.

Notice that we have also to use the obvious observation that f(z) and zνf(z) with ν ∈ R

have the same Phragmén-Lindelöf indicator.
As a check let us observe that the maximum value of the indicator agrees with the type

σ = θ0 determined above.
We conclude to

Proposition 3 The Nevanlinna matrices Nl, with l = 0, 1, 2 have the same Phragmén-
Lindelöf indicator (18).

Proof :

Using the results in [2], if 0 < η < ∞, 0 < σ < ∞ then Ãl, B̃l, Cl and Dl have the same
Phragmén-Lindelöf indicator for l = 0, 1, 2.

3.2 Asymptotic behaviour of the N-extremal spectra

The N-extremal mass point, for a given Nevanlinna matrix, are given by the roots of

t B(x) −D(x) = 0, t ∈ R ∪ {∞},

which is easily transformed into

t♯ B̃(x) +D(x) = 0, t♯ =
αt

t− α
. (19)

The positively supported measures correspond now to 0 ≤ t♯ ≤ ∞. The “minimal” mea-
sure ( t = 0 ) is mapped into t♯ = 0 and the Friedrich’s measure ( t = α ) is mapped into
t♯ = ∞. For negative t♯, as observed in [3] a single mass, negatively supported, appears.
Let us prove:

Proposition 4 The asymptotic behaviour of the N-extremal mass point is independent of
t♯, is the same for N0, N1 and N2 and is given by

xn =

(
2πn√
3θ0

)3

+ o(n3), n→ ∞. (20)

Proof :

Let us begin with N0. The explicit form of the relation (19) is

t̃ σ0(u) = u2 σ1(u), u = x1/3θ0,
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where t̃ is proportional to t♯. For t̃ = ∞ this relation becomes σ0(u) = 0 which leads to

cos

(√
3

2
u

)
= −1

2
e−3u/2 ⇒ un =

2π√
3
n+ O(1), n→ ∞ .

For 0 ≤ t̃ <∞ the eigenvalue relation can be written

cos

(√
3

2
u− π

3

)
=

1

2
e−3u/2 +

t̃

u2

(
1

2
e−3u/2 + cos

(√
3

2
u

)
eu/2

)
,

which gives √
3

2
un = (n+ 1/2)π + O(1) = nπ + O(1),

and for large n this is the same behaviour as for t̃ = ∞.
Let us proceed with N1. The explicit form of the relation (19) is now

t̃ σ1(u) = u2 σ2(u).

For t̃ = ∞ this relation becomes σ1(u) = 0 and leads to

cos

(√
3

2
u− π

3

)
=

1

2
e−3u/2,

which gives the required asymptotics. For 0 ≤ t̃ <∞, the eigenvalue equation becomes

cos

(√
3

2
u+

π

3

)
=

1

2
e−3u/2 +

t̃

u2

(
1

2
e−3u/2 − cos

(√
3

2
u− π

3

))
,

and this leads to
√

3

2
un = −π

3
+ (n+ 1/2)π + O(1) = nπ + O(1).

Let us conclude with N2. The explicit form of the relation (19) is now

t̃ σ0(u) = u σ2(u).

For t̃ = ∞ this relation becomes σ0(u) = 0 showing that the “minimal” spectrum of N0

does coincide with the “minimal” spectrum of N2, and has therefore the same asymptotics.
For 0 ≤ t̃ <∞, the eigenvalue equation becomes

cos

(√
3

2
u+

π

3

)
=

1

2
e−3u/2 − t̃

u

(
1

2
e−3u/2 + cos

(√
3

2
u

))
,

and this leads to √
3

2
un ∼ −π

3
+ (n+ 1/2)π = nπ + O(1),

concluding the proof.
Let us point out that the law xn = O(n3) is no surprise, since this implies that the

order of the Nevanlinna matrices is always 1/3 and this we knew from Proposition 1. The
significant result is the determination of the coefficient in front of n3.
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