Use of upper bound delay estimate in stability analysis and robust control compensation in networked control systems

Jean-Philippe Georges, Nikolai Vatanski, Eric Rondeau, Sirkka-Liisa Jämsä Jounela

To cite this version:

Jean-Philippe Georges, Nikolai Vatanski, Eric Rondeau, Sirkka-Liisa Jämsä Jounela. Use of upper bound delay estimate in stability analysis and robust control compensation in networked control systems. 12th IFAC Symposium on Information Control Problems in Manufacturing, INCOM 2006, May 2006, St Etienne, France. pp.CDROM. hal-00101537

HAL Id: hal-00101537
https://hal.archives-ouvertes.fr/hal-00101537
Submitted on 27 Sep 2006
Abstract: Recent interest in networked control systems (NCS) has instigated research in various areas of both communication networks and control. The analysis of NCS has often been performed either from the network, or the control point of view and not many papers exist were the analysis of both is done in the same context. Here a simple overall analysis is presented. In the paper the procedure of obtaining the upper bound delay value in the switched Ethernet network is proposed and the obtained delay estimate is used in stability analysis of the feedback loop and in the control compensation. The upper bound delay algorithm is based on the network calculus theory, the stability analysis uses the small gain theorem, and control compensating strategy is based on Smith predictor, where however the upper bound delay is utilised in obtaining the delay estimate.

Keywords: Networked control systems, real time systems, industrial communication, network calculus, delay compensation

1. INTRODUCTION

Process automation systems of the future and even those currently in use today, will consist of a large number of intelligent devices and control systems connected by local or global communication networks. In these networked control systems (NCSs) communication between process, controllers, sensors and actuators is performed through the network. The primary benefits from developing the systems from point-to-point systems towards the NCS like systems are reduced system wiring, ease of system diagnosis and maintenance, and increased system agility.

However, for real-time processes, care should be taken when implementing a NCS. In such processes the insertion of the communication network in the feedback control loop introduces an additional either constant or time varying delay that makes the analysis and design of the NCS more complex. Conventional control theories with many ideal assumptions, such as synchronized control and non-delayed sensing and actuation, must be re-evaluated before they can be applied to NCSs.

There are three main directions in approaching the problem of network induced delays in NCS: One way is to design a controller without regard to the delay and then to design a scheduling procedure so that the delay is minimized. The second approach is to study the NCS problem as an integration of network and control design. This paper addresses the third approach where the control strategy is designed so that it compensates a priori the networked-induced delay. During the last years the topic has been actively researched and several compensation strategies have been proposed. Extensive state of art articles and surveys have been published, see (Tipsuwan and Chow, 2003) and (Richard, 2003). The delay compensation methodologies proposed apply ideas from the following control theory fields: robust control (Göktas, 2000), LQG-optimal control (Nilsson, 1998), LMI based control (Li et al., 2004). More specific strategies include: fuzzy logic based control (Almutairi et al., 2001), gain adaptation of controllers (Tipsuwan and Chow, 2002), Smith
predictor based compensation (Bauer et al., 2001) to
name few.

However, usually in the papers it has been assumed
that the information about the network effect on
timeouts (delay distribution, uncertainty, deviation
from mean value, missing value rate) is known in
advance and the information is used in the design or
synthesis of the control law. In only few papers the
whole procedure of obtaining information about the
delay and using it in control system design and
synthesis is given. That is, the estimation of network
properties and using these in control compensation is
still usually done in networking and control
communities separately.

This paper addresses the gap that still exists between
two communities. In this paper the procedure of
obtaining information about the delay (the upper bound) in the network is presented and the obtained
value is utilized in feedback loop stability analysis
and in the control compensation. The delay algorithm
presented applies ideas from network calculus
theory, the stability analysis uses small-gain theorem
and the compensating strategy is based on well
known Smith predictor time delay compensation,
where however the upper bound delay is used in
obtaining the delay estimate based weighting functions from robust control theory.

The paper is organized as follows: Chapter 2 is
dedicated to introducing the upper bound delay
estimation algorithm. In Chapter 3 stability analysis
procedure is presented. In Chapter 4 the delay
compensation strategy is introduced. Chapter 5
consists of the results and discussion. The paper ends
with a concluding section in Chapter 6.

2. UPPER BOUND DELAY ESTIMATION

Here, the switched Ethernet network as an example
of NCS network is used. Ethernet network are
nowadays more and more used also in control. In this
context it is important to understand the behaviour of
the network to be able to control the network
performances, such as delays (Georges et al., 2004).

Communication network upper bound delay
estimation algorithm presented in this paper applies
ideas from network calculus theory, see (Cruz
(1991); Le Boudec, and Thiran (2001); Jasperneite
et al., 2002). For more details of the algorithm, see
(Georges et al., 2005).

The communication network is represented as a
network of the interconnected switches and each
switch is modelled on the other hand as a
combination of basic components: multiplexers,
demultiplexers and FIFO queues, see Fig. 1.

The traffic coming to the switch, both periodic and
aperiodic, is modelled as a “leaky bucket controller”.
That is, data will arrive at the switch only if the level
of the amount of data in the buffer of the switch is
less than the maximum buffer size and the data
leaves the switch at the constant rate.

Fig. 1. Model of a 2 ports-switch in full duplex mode
based on shared memory and a cut-through
management.

Next, the procedure of obtaining the upper bound
delay over the network will be explained in more
details. In the Section 2.2 it will be explained how to
obtain a maximum delay for crossing a single
Ethernet switch. And in the following section, the
procedure of obtaining end-to-end delays in the
network based on the delays over the switches will
be given.

2.1 Maximum delay for crossing Ethernet switch

To obtain upper bound delay for crossing a single
Ethernet switch first the upper bound delays over
basic components should be determined. In this
Section we will show how to obtain the upper bound
delay for FIFO multiplexer, FIFO queue, and
demultiplexer basic components. The upper bound
delay over the switch is then the sum of the upper
bound delays over the basic components:

\[D_{\text{switch}} = D_{\text{max}} + D_{\text{queue}} + D_{\text{output}} \] \hspace{1cm} (1)

Upper bound delay over a FIFO multiplexer. The
first step in calculating the delay over a multiplexer
is determining the arrival curves of the traffic coming
to the component and the service curves provided by
the component. With the assumption that the traffic
follows the leaky bucket controller, these curves are
affine and have form of:

\[b(t) = \sigma + \rho t \] \hspace{1cm} (2)

Where \(\sigma \) is maximum amount of data that can arrive
in a burst and \(\rho \) is an upper bound of average rate of
the traffic flow. The typical arrival and service
curves are shown in Fig. 2.

The next step is determining the upper bound
backlog in the multiplexer. The backlog is the
number of bits accumulated in the component and it
is a measure of congestion over the component. For
the arrival and service curves in Fig. 2 the upper
bound backlog occurs at time \(t \) and can be calculated
from

\[b_1(t) + b_2(t + L/C_2) - C_{out}t \] \hspace{1cm} (3)

Where \(b_1 \) and \(b_2 \) are arrival curves of stream 1 and
2 at time \(t \), \(L \) is the maximum length of frames, \(C_2 \) is
capacity of import port 2, and \(C_{out} \) is capacity of the
output link.

...
Fig. 2. Arrival and service curves and backlog evolution inside two-input FIFO multiplexer.

When the upper bound backlog over the component is known, the upper bound delay over the multiplexer component is then obtained by dividing the maximum backlog value by the capacity of the output link of the multiplexer.

This procedure can be summarized as follows:

In a FIFO m-inputs multiplexer the delay for any incoming bit from the stream i is upper-bounded by:

$$D_{\text{max},i} = \frac{1}{C_{\text{out}}} \cdot \min_{k} B_{\text{max},k}$$

(4)

Where $B_{\text{max},k}$ is upper-bound of the backlog in the bursty periods u_k.

For $k = i$, (that is b_i is bigger than b_j) the bursty period is defined by $u_i = \sigma_i(C_i - \rho_i)$ and the backlog is upper-bounded by:

$$B_{\text{max},i} = \sum_{z=1}^{m} \left(\sigma_i + \rho_i \left(u_i + \frac{L_i}{C_z} \right) \right) + u_i(C_i - C_{\text{out}})$$

(5)

Where σ_i is burstiness of stream i, ρ_i is average rate of arrival of data of stream i, L_i is maximum length of frames of stream i and C_i is capacity of import port i.

For $k \neq i$ (that is b_i is smaller than b_j) such $1 \leq k \leq m$, we have $u_k = \sigma_i(C_i - \rho_i) - L_i/C_i$ and

$$B_{\text{max},i} = \sum_{z=1}^{m} \left(\sigma_i + \rho_i \left(u_k + \frac{L_i}{C_z} \right) \right) + u_i(C_i - C_{\text{out}}) - \rho_i \frac{L_i}{C_i} + L_i$$

(6)

Upper bound delay over a FIFO queue. For the FIFO queue the delay of any byte is upper-bounded by:

$$D_{\text{queue}} = \frac{1}{C_{\text{out}}} \left(C_{\text{in}} - C_{\text{out}} \right) \sigma_{\text{in}}$$

(6)

Upper bound delay over a demultiplexer. The demultiplexer has one input link and two or more output links. Its function is to split the streams that arrive to the input ports and to route them to the appropriate output ports. In Ethernet, this consists of reading the destination address at the start of the frame and to selecting the output port associated to its destination in the forwarding table. Due to the Spanning Tree Protocol, only one path is activated to go from one point to another. Therefore it is assumed that the routing step is instantaneously achieved. Thus the demultiplexer does not generate delays.

2.2. Maximum end-to-end delays for crossing a switched Ethernet network

In the previous section, upper-bounded delay equations for crossing a switch have been proposed. In the equations, the maximum delay value D depends on the leaky bucket parameters: the maximum amount of traffic σ that can arrive in a burst and the upper bound of average rate of the traffic flow ρ. In order to calculate the maximum delay over the network, it is necessary that the envelop (σ, ρ) is known at every point in the network. However, as shown in the Fig. 3, only the initial arrival curve values (σ^0, ρ^0) are known and the values for other arrival curves should be determined. To calculate all arrival curve values the following equations can be used:

$$\sigma_{\text{out}} = \sigma_{\text{in}} + \rho_{\text{in}} D$$

(7)

$$\rho_{\text{out}} = \rho_{\text{in}}$$

For example for the arrival curve (σ^0, ρ^0) in Fig. 3 the envelop after the first switch is:

$$\left(\sigma^0, \rho^0 \right) = \left(\sigma^0 + \rho^0 D_{\text{switch}}, \rho^0 \right)$$

(8)

Now it possible to summarize the procedure of obtaining the maximum end-to-end delays in a switched Ethernet network. The algorithm is the following:

1. Identify all streams on each station and determine the initial leaky bucket values.
2. Identify the route of each stream. In switched Ethernet networks, paths are determined by the spanning tree protocol.
3. On each switch, formulate output burstiness equations for all streams.
4. Define the equation systems of form $A \Psi = \Phi$ or $a_1 \sigma_1 + a_2 \sigma_2 + \ldots + a_m \sigma_m = \delta$.
5. Solve the burstiness values.
6. Determine the end-to-end delay in the network from the equation

$$D_j = \frac{\sigma_j^0 - \sigma_j^0}{\rho_j}$$

(9)

where h is the number of crossed switch.

Fig. 3. Burstiness along a switched Ethernet network.
3. STABILITY ANALYSIS USING UPPER BOUND DELAY ESTIMATE

The upper bound delay estimate obtained can be utilised in checking whether the feedback system may become unstable under such delay. In this section a simple procedure of stability analysis of control loop with time varying delays is shortly presented. The criterion used is from (Kao and Lincoln, 2004).

Consider the single-input–single-output system with plant P and controller C, and the time varying delay in the control system. (The delay can be placed anywhere in the loop)

Assuming that the closed loop system is stable for zero delay, the following theorem gives simple criteria of stability for the system with an arbitrarily time-varying but bounded delay. For the closed loop system with continuous-time $P(s)$ and $C(s)$, the system is stable if the following inequality holds:

$$ 0, w ,1 \in \forall \cdot < + \infty \wedge \left\{ \begin{array}{l} \left(\frac{1}{UBD \cdot w} \right) P(jw)C(jw) \right. \\
\left. \left. < 1 \right\} \forall w \in [0,\infty] \right. \r
To increase the robustness of the Smith predictor, so that it is more suitable for the NCS environment where time delay varies, we use the following delay estimate obtained based on upper-bound delay value. This delay estimate has been originally proposed by Wang, et al., (1994) to represent uncertain delays in H_∞ framework in the design of robust controllers.

The delay can be approximated by

$$e^{-t\Delta} \approx 1 - \frac{\tau}{s} \Delta = 1 + w(s)\Delta|\Delta| \leq 1$$ \hspace{1cm} (13)

Where Δ describes uncertainty. However, instead of using $w(s)$ directly Wang, et al. proposed to use $\Delta(h)$ which is more robust to the delay errors:

$$w(h) = \frac{UBD \cdot s}{1 + UBD \cdot s / 3.465}$$ \hspace{1cm} (14)

5. TESTING RESULTS AND DISCUSSIONS

In the testing the network of four stations that were connected over a full duplex Ethernet switch was used. One station was dedicated for the real time process, one for the controller and two for generating overload traffic in the network. The structure of the system is shown in Fig. 6.

To calculate the upper bound delay, first, the initial leaky bucket values of each stream were identified. There are 6 messages sent periodically. The traffic sent from the process to the controller is given by $b_1(t)$, the traffic from the controller to the process by $b_2(t)$.

These traffics correspond to the frames of 72 bytes sent every 10ms. Upper-bounds for these traffics will be computed to obtain upper bounds, UBD_1 and UBD_2. We consider also background traffic $(b_3(t), b_4(t), b_5(t), b_6(t))$ from the stations to the process and to the controller in order to overload the network:

$$b_1(t) = b_3(t) = \sigma_1^0 + \rho_3t = 72 + 7200t$$ \hspace{1cm} (15)

Next, the route of each stream was identified and output burstiness equations were formulated. After solving the burstiness values the end-to-end upper bound delay for streams 1 and 2 are:

$$UBD_1 = UBD_2 = \frac{\sigma_1^0 - \sigma_1^0}{\rho_1} \approx 3.5 \text{ ms}$$ \hspace{1cm} (16)

Next, the upper bound delay was used in checking whether the system can become unstable under such delay. Consider the following real-time process and controller (time in ms):

$$P(s) = \frac{2}{(s + 5)(s + 0.2)}$$

$$C(s) = \frac{K_p + K_I}{s}, \quad K_p = 0.5, \quad K_I = 0.5$$

Using the upper bound delay the stability criteria presented in Eq. (10) for was calculated. The Bode diagram of the closed loop transfer function and the stability limit are shown in Fig. 7. From the figure it can be seen that the frequency response curve of the closed loop transfer function and the stability limit curve intercept. That is, at frequencies between 0.2-9 rad/ms the stability criteria doesn’t hold, and the feedback control loop becomes unstable at this frequency range. Thus, a delay compensation strategy is needed.

The delay compensation strategy based on Smith predictor presented in Fig. 4 was used. The model was assumed to be known, and the network delay in sensor and in actuator sides was assumed to vary randomly between zero and upper delay value estimate. The simulation result is presented in Fig. 8. In the figure three signals are shown; the set point, the system output in case no delay compensation is used, and the system output with the compensation strategy implemented. It can be concluded that even with such simple delay compensation strategy the effect of the network induced delay on the feedback control loop can be significantly reduced.
6. CONCLUSION

In this paper a simple overall analysis of the networked control system has been presented. A procedure of obtaining the upper bound delay value in the switched Ethernet network is presented and the obtained delay estimate is used in stability analysis of the feedback loop and in the control compensation. It can be concluded that upper bound delay estimate is an important measure of networked control system that can also be used design and synthesis of the control system.

ACKNOWLEDGEMENTS

This research has been conducted as a part of the Networked Control Systems Tolerant to Faults (NeCST) project IST-004303 that is partially funded by the EU. The authors gratefully acknowledge the support.

REFERENCES

