P. Colli-franzone, L. Guerri, M. Pennacchio, and B. Taccardi, Spread of excitation in 3-D models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry, Mathematical Biosciences, vol.147, issue.2, pp.131-171, 1998.
DOI : 10.1016/S0025-5564(97)00093-X

P. Colli-franzone, L. Guerri, and B. Taccardi, Modeling ventricular excitation: axial and orthotropic anisotropy effects on wavefronts and potentials, Mathematical Biosciences, vol.188, issue.1-2, pp.191-205, 2004.
DOI : 10.1016/j.mbs.2003.09.005

P. Colli-franzone, L. Guerri, and S. Tentoni, Mathematical modeling of the excitation process in myocardial tissue: influence of fiber rotation on wavefront propagation and potential field, Mathematical Biosciences, vol.101, issue.2, pp.155-235, 1990.
DOI : 10.1016/0025-5564(90)90020-Y

D. B. Geselowitz and W. T. Miller, A bidomain model for anisotropic cardiac muscle, Annals of Biomedical Engineering, vol.210, issue.3-4, pp.191-206, 1983.
DOI : 10.1007/BF02363286

R. Gulrajani, M. Trudel, and J. Leon, A Membrane-Based Computer Heart Model Employing Parallel Processing, Biomedizinische Technik/Biomedical Engineering, vol.46, issue.s2, pp.20-22, 2001.
DOI : 10.1515/bmte.2001.46.s2.20

C. Henriquez, Simulating the electrical behavior of cardiac tissue using the bidomain model, Crit. Rev. Biomed. Engr, vol.21, pp.1-77, 1993.

D. A. Hooks, K. A. Tomlinson, S. G. Marsden, I. J. Legrice, B. H. Smaill et al., Cardiac Microstructure: Implications for Electrical Propagation and Defibrillation in the Heart, Circulation Research, vol.91, issue.4, pp.331-338, 2002.
DOI : 10.1161/01.RES.0000031957.70034.89

J. Keener and K. Bogar, A numerical method for the solution of the bidomain equations in cardiac tissue, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.8, issue.1, pp.234-241, 1998.
DOI : 10.1063/1.166300

G. Lines, M. Buist, P. Grottum, A. Pullan, J. Sundnes et al., Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Computing and Visualization in Science, vol.5, issue.4, pp.215-239, 2003.
DOI : 10.1007/s00791-003-0101-4

G. Lines, P. Grottum, and A. Tveito, Modeling the electrical activity of the heart: A Bidomain Model of the ventricles embedded in a torso, Computing and Visualization in Science, vol.5, issue.4, pp.195-213, 2003.
DOI : 10.1007/s00791-003-0100-5

B. Roth, Approximate analytical solutions to the bidomain equations with unequal anisotropy ratios, Physical Review E, vol.55, issue.2, pp.1819-1826, 1997.
DOI : 10.1103/PhysRevE.55.1819

B. Roth, Meandering of spiral waves in anisotropic cardiac tissue, Physica D: Nonlinear Phenomena, vol.150, issue.1-2, pp.127-136, 2001.
DOI : 10.1016/S0167-2789(01)00145-2

E. J. Vigmond, M. Hughes, and L. L. Plank, Computational tools for modeling electrical activity in cardiac tissue, Journal of Electrocardiology, vol.36, pp.69-74, 2003.
DOI : 10.1016/j.jelectrocard.2003.09.017

Y. Bourgault, M. Ethier, and V. G. Leblanc, Simulation of Electrophysiological Waves with an Unstructured Finite Element Method, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.649-661, 2003.
DOI : 10.1051/m2an:2003051

L. Clerc, Directional differences of impulse spread in trabecular muscle from mammalian heart., The Journal of Physiology, vol.255, issue.2, pp.335-346, 1976.
DOI : 10.1113/jphysiol.1976.sp011283

O. Schmidt, Biological information processing using the concept of interpenetrating domains, Information Processing in the Nervous System ch, pp.325-331, 1969.

L. Tung and M. I. , A bidomain model for describing ischemic myocardial D-C potentials, 1978.

L. Ambrosio, P. Colli-franzone, and G. Savar, On the asymptotic behaviour of anisotropic energies arising in the cardiac bidomain model., Interfaces Free Bound, pp.231-266, 2000.

J. Neu and W. Krassowska, Homogenization of syncitial tissues, Crit. Rev. Biomed. Engr, vol.21, pp.137-199, 1993.

M. Pennacchio, G. Savaré, and P. Colli-franzone, Multiscale modelling for the bioelectric activity of the heart

P. Colli-franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level Evolution Equations, Semigroups and Functional Analysis: in memory of, Brunello Terreni, vol.50, pp.49-78, 2002.

R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophysical Journal, vol.1, issue.6, pp.445-465, 1961.
DOI : 10.1016/S0006-3495(61)86902-6

G. Beeler and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, The Journal of Physiology, vol.268, issue.1, pp.177-210, 1977.
DOI : 10.1113/jphysiol.1977.sp011853

D. Di-francesco and D. Noble, Simulations of Ionic Currents and Concentration Changes, Phil. Trans. R. Soc. Lond, pp.353-398, 1985.

C. Luo and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circulation Research, vol.68, issue.6, pp.1501-1526, 1991.
DOI : 10.1161/01.RES.68.6.1501

D. Noble, A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials, The Journal of Physiology, vol.160, issue.2, pp.317-352, 1962.
DOI : 10.1113/jphysiol.1962.sp006849

A. Panfilov and R. Aliev, A simple two-variable model of cardiac excitation, Chaos Solitons and Fractals, vol.7, issue.3, pp.293-301, 1996.

J. Roger and A. Mcculloch, A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE Transactions on Biomedical Engineering, vol.41, issue.8, pp.41-743, 1994.
DOI : 10.1109/10.310090

D. Henry, Geometric theory of semilinear parabolic equations, LNM, vol.840, 1981.
DOI : 10.1007/BFb0089647

J. Smoller, Shock waves and reaction-diffusion equations, 1983.

L. Amour and T. Raoux, The Cauchy problem for a coupled semilinear parabolic system, Nonlinear Anal, pp.891-904, 2003.

F. Dickstein and M. Escobedo, A maximum principle for semilinear parabolic systems and applications, Nonlinear Anal, Theory Methods), vol.45, issue.7, pp.825-837, 2001.

F. R. Guarguaglini and R. Natalini, Global existence and uniqueness of solutions for multidimensional weakly parabolic systems arising in chemistry and biology, Commun. Pure Appl. Anal, vol.6, issue.1, pp.287-309, 2007.

J. H. Petersson, On global existence for semilinear parabolic systems, Nonlinear Analysis, vol.60, issue.2, pp.337-347, 2005.
DOI : 10.1016/S0362-546X(04)00350-5

S. Snoussi and S. Tayachi, Global existence, asymptotic behavior and self-similar solutions for a class of semilinear parabolic systems, Nonlinear Analysis: Theory, Methods & Applications, vol.48, issue.1, pp.13-35, 2002.
DOI : 10.1016/S0362-546X(00)00170-X

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 1988.

J. Lions, Résolution de quelquesprobì emes aux limites non-linéaires, Dunod, 1969.

P. Raviart and J. Thomas, IntroductionàIntroductionà l'analyse numériaue deséquationsdeséquations aux dérivées partielles, 1992.

H. Brezis, Analyse fonctionnelle, Théorie and applications, 1983.

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, 2001.