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OPTIMAL CONTROL OF SYSTEMS OF
CONSERVATION LAWS AND APPLICATION

TO NON-EQUILIBRIUM TRAFFIC STEERING

Denis Jacquet Carlos Canudas de Wit
Damien Koenig

Laboratoire d’Automatique de Grenoble
BP. 46, 38 402, St. Martin d’Hères, France

Abstract: This paper proposes an optimization algorithm to solve iteratively
optimal control problems involving systems of conservation laws. The irregularity
of their solution requires a specific variational analysis that have direct implications
on the numerical implementation. This method is applied to the control of non-
equilibrium traffic using the Payne-Whitham and the Aw-Rascle-Zhang model.
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1. INTRODUCTION

Many physical systems are modelled by a system
of conservation laws that takes the form of an
hyperbolic partial differential equation. When the
dynamics is nonlinear as in traffic, aerodynamics,
meteorology and elasticity, the distributed state
of the system may develop discontinuities that
propagate in time even for smooth initial and
boundary conditions.

The mathematical theory of conservation laws
has undergone tremendous improvements in the
last 30 years and an abondant literature is avail-
able for the one-dimensional Cauchy problem
(Bressan, 2000). Moreover, dedicated integration
schemes that handle the lack of regularity are
available (Godlewski and Raviart, 1996). Though
the behavior of boundary conditions is well under-
stood for scalar problems, their treatment is less
clear for systems (Dubois and LeFloch, 1988) and
ghost cells are usually used in numerical schemes.

Optimal control of conservation laws has already
been treated in the literature. (Messmer and Pa-
pageorgiou, 1994) propose an optimal traffic con-
trol algorithm by first discretizing the dynamics

and then using general purpose nonlinear opti-
mization routines. Nevertheless, the discretiza-
tion step is questionable as accurate discretization
procedures as the Godunov scheme (Godlewski
and Raviart, 1996) can not be put in a form
suitable for control as a difference equation or
an ordinary differential equation. (Sanders and
Katopodes, 2000) propose an adjoint based op-
timal control algorithm to steer shallow-water
systems but disregard the possible discontinuities
in the linearization and adjoint calculus though
such phenomena may happen. If shocks are not
common in irrigation channels, they are in traffic
as shown on field measurements with strong con-
gestions, making their treatment compulsory. The
contribution of this paper is to take into account
the possible development of discontinuous waves
in computing an optimal (or suboptimal) control
for systems of conservation laws.

Distributed traffic models on a bounded domain
x ∈ [0, L] and with aggregated lanes are used in
this paper. Freeway traffic fulfils the car conser-
vation principle and can be modelled by conser-
vation laws where the state may be the vehicle
density ρ(x, t), the average speed v(x, t), the flow



φ(x, t) = ρ(x, t)v(x, t) or any combinaison of these
variables. In traffic applications, a discontinuity
in the state (as in ρ) models a congestion wave
that propagates along the traffic stream. There
exists two classes of non-equilibrium traffic mod-
els. The first one proposed in (Payne, 1971) and
(Zhang, 1998) concerns isotropic models where
the information can travel forwards and back-
wards with respect to a vehicle in the steam. Fol-
lowing the criticism of (Daganzo, 1995), the Aw-
Rascle-Zhang (ARZ) model have been proposed
in (Aw and Rascle, 2000), (Zhang, 2002) and
extended in (Greenberg, 2001). To our knowledge,
no controller of any kind have been proposed for
the ARZ model.

Optimal control is an appealing framework for
traffic control problems as the main objective is
to maximize the infrastructure usage. A classical
approach in optimal control of linear partial dif-
ferential equations (Lions, 1971) is to use adjoint
calculus to characterize the necessary conditions
of optimality. For nonlinear problems, the same
approach can be used iteratively on the linearized
dynamics. Nevertheless, it is not clear for con-
servation laws if the dynamics can be linearized
given the irregularity of the fields they generate.
(Bardos and Pironneau, 2003) used distributional
calculus to compute a linearization of conservation
laws with respect to a parameter in the initial con-
dition. (Godlewski and Raviart, 1999) proposed a
variational analysis with respect to a perturba-
tion in the initial condition by differentiating the
PDE and the Rankine-Hugoniot jump condition.
The authors proposed in (Jacquet et al., 2005)
a different approach for scalar conservation laws
based on their weak formulation and considering
the piecewise-C1 structure of their solution. This
paper is an extension of these results to systems
of conservation laws.

2. NON-EQUILIBRIUM TRAFFIC MODELS
AND THEIR SOLUTION

We propose to build our design on the two main
inviscid non-equilibrium models that have been
proposed in the literature. The first one is the
isotropic model proposed by Payne (Payne, 1971),
which have the form







∂tρ + ∂x(ρv) = 0

∂tv + v∂xv +
c2

ρ
∂xρ =

Ve(ρ) − v

τ

(1)

with c the constant traffic sound speed, Ve(·) the
equilibrium velocity and τ the relaxation param-
eter. In the Payne model, information propagates
at wave speeds given by λ1 = v − c < v and
λ2 = v + c > v, which explains its isotropic prop-
erty. It has two genuinely nonlinear fields and may

develop shock waves (discontinuities with different
density and speed values on both sides).

The second class concerns the anisotropic mod-
els proposed by Aw-Rascle-Zhang (ARZ) in (Aw
and Rascle, 2000; Zhang, 2002; Greenberg, 2001).
These models correct the isotropy of the Payne
model and has not been much studied either by
the mathematics or the traffic engineering com-
munities. It has the form

{

∂tρ + ∂x(ρv) = 0

∂t

(

v+P (ρ)
)

+v∂x

(

v+P (ρ)
)

=
Ve(ρ) − v

τ

(2)

where we get for different pressure terms P (ρ)

(1) the Aw-Rascle model for P (ρ) = ργ , γ > 0,
(2) the Zhang model for P (ρ) = −V (ρ).

In such models, one field is genuinely nonlinear
with wave speed λ1 = v − ρP ′(ρ) ≤ v and
the other is linearly degenerate with wave speed
λ2 = v. Consequently, they are anisotropic as
both waves travel at velocities smaller or equal
to the traffic velocity and the discontinuities that
may appear are either shock waves or contact
discontinuities (discontinuity in the density with
the same velocity on both sides).

The solution structures of (1) and (2) are rather
different as (1) have 2 genuinely nonlinear fields
while (2) has a linearly degenerate and a gen-
uinely nonlinear field. However, both models can
be put with simple algebraic manipulations in the
form of a 1-dimensional couple of conservation
laws and then manipulated in this general frame-
work. Moreover, (1) and (2) should be extended
to take into account the presence of on and off
ramps along the freeway. These inhomogeneities
are modelled though Dirac source terms in the
density equation. The ith on-ramp has a contri-
bution uiΨi(ρ) with ui(t) its metering rate and
Ψi(·) a smoothed saturation limiting the inflow
for large mainlane density. The ith off-ramp has
a contribution −βiφ with βi(t) its known or es-
timated split ratio. The well-posedness of con-
servation laws with such irregular source terms
is not established at present. Nevertheless, some
preliminary results are available (Greenberg et
al., 1997) and this approach was successful in
controlling equilibrium traffic modelled by a scalar
conservation law (Jacquet et al., 2005).

The extended Payne model writes

∂t

(

ρ
φ

)

+ ∂x





φ
φ2

ρ
+ c2ρ



 =











Nu
∑

i=1

δx̂i
uiΨi(ρ) −

Nβ
∑

i=1

δx̌i
βiφ

Φe(ρ) − φ

τ











(3)



with ρ and φ = ρv the conserved variables.
Similarly, the ARZ model writes

∂t

(

ρ
ω

)

+ ∂x





ω − ρP (ρ)
ω2

ρ
− ωP (ρ)



 =











Nu
∑

i=1

δx̂i
uiΨi(ρ) −

Nβ
∑

i=1

δx̌i
βi(ω − ρP (ρ))

Φe(ρ) − ω + ρP (ρ)

τ











(4)

with ρ and ω = ρ(v+P (ρ)) its conserved variables.
For the ARZ model, the flow variable is noted
φ = φ(ρ, ω) = ω−ρP (ρ). Both of these models are
in conservative form and have an irregular source
term due to the on and off ramps.

As the states ρ, φ and ω are discontinuous at
the ramp locations x = x̂i and x = x̌j , the
products δx̂i

Ψi(ρ), δx̌i
φ and δx̂i

(ω−ρP (ρ)) should
be defined appropriately. From traffic heuristics,
the saturation Ψi(·) should apply to the maximal
value of the density around x = x̂i at on-ramps
and the flow is considered from its left limit, i.e.
as x ↑ x̌j , at off-ramps.

With appropriate initial and boundary conditions
on the domain (x, t) ∈ (0, L)×(0, T ), these models
can be rewritten as a couple of conservation laws
with a finite dimensional control variable u ∈ R

Nu

in the source term






∂ty + ∂xf(y) = s(y,u)
y(x, 0) = yI(x)
y(0, t) ∼ yUp(x) and y(L, t) ∼ yDo(x)

(5)

or with y1 and y2 the conserved quantities
{

∂ty1 + ∂xf1(y1, y2) = s1(y1, y2, u1, ..., uNu
)

∂ty2 + ∂xf2(y1, y2) = s2(y1, y2, u1, ..., uNu
)

In (5), y = (ρ φ)T or y = (ρ ω)T is the
state vector depending on the system we con-
sider (Payne or ARZ), f(y) is the flux function
and s(y,u) the source term. The symbol ∼ un-
derlines the fact that boundary conditions are
only proposed and may not apply depending on
the trace of y at the boundaries. The theoreti-
cal treatment of boundary conditions for systems
of nonlinear conservation laws can be found in
(Dubois and LeFloch, 1988) and its numerical
counterpart in (Godlewski and Raviart, 1996).
Equation (5) should be interpreted in the weak
sense (Bressan, 2000) to allow for the development
of discontinuous waves, i.e.

0 =

∫ T

0

∫ L

0

{

y·∂tθ+f(y)·∂xθ+s(y,u)·θ
}

dxdt +

∫ L

0

y(x, 0) · θ(x, 0)dx ,∀ θ ∈ C1
0 (]0, L[×[0,∞[) (6)

with C1
0 the space of continuously differentiable

functions with compact support. Theoretically,
Equation (6) gives a solution in the space BV

of functions with bounded variations (Bressan,
2000). Nevertheless, physical problems usually
lead to piecewise-C1 solutions with a finite num-
ber of differentiable curves of discontinuity. We
use this setting in this paper as it is more appro-
priate for the problem at hand.

3. OPTIMAL CONTROL OF SYSTEMS OF
CONSERVATION LAWS

In this section, we propose to compute the gradi-
ent of the abstract optimal control problem

Min
u

J (y,u) Subj. to (5) (7)

with the cost functional defined by

J (y,u) = Jobs(y) + Jbar(u)

=

∫ T

0

∫ L

0

g(y) dxdt−γ

Nu
∑

i=1

∫ T

0

ln(ui(1 − ui))dt

(8)
where g(·) weights the distributed value of the
state. Jobs(y) defines the traffic management ob-
jective while Jbar(u) ensures with a barrier tech-
nique that u ∈ [0, 1]Nu , the metering rates being
bounded quantities.

The program to compute the gradient is the
following. First, we perform a linearization of (5).
Then, we compute the adjoint system, taking into
account the piecewise-C1 structure of the solution.
Finally, the adjoint identity is used to evaluate
gradients of the cost functional with respect to
the decision variable u.

Taking into account the real time constraint and
the adaptation requirement of the method, this
gradient evaluation routine can be used in the
following two ways:

• Receding horizon: At time t, ∇uJ is used
iteratively to find the local minimum of (7)
on the time horizon [t, t + T1]. Then the
optimal control strategy u∗ is applied in the
time window [t, t+T2] with T2 ≤ T1. At time
t + T2, the same procedure is applied.

• Instantaneous control: At time t, ∇uJ is
computed for an horizon T and we apply the
updated control u[t,t+T ] = u[t−T,t] −∇uJ .

The linearization of (5) is given by






∂tỹ+∂x(Df(ȳ)ỹ)=Dys(ȳ, ū)ỹ+Dus(ȳ, ū)ũ
ỹ(t=0) = 0
ỹ(x=0)=0 and ỹ(x=L)=0 when applicable

(9)
where the perturbed variables u = ū + ũ and
y = ȳ + ỹ were plugged in the weak formulation
(6) and the nonlinear terms removed after some
Taylor expansions. We recall that the solution ȳ
of (5) is a vector of 2 piecewise-C1 fields, each field
having the same curves of discontinuity Γi param-
eterized in time by the shock locations si(t), i.e.



Γi = {(si(t), t) : t ≥ tIi }. Given the linearization
procedure we used, (9) should be interpreted in
the weak sense. It can be shown as in (Jacquet et
al., 2005) that its solution has singular measures
at the discontinuity locations in ȳ. Homogeneous
initial and boundary conditions are provided when
applicable for the linearized system as they are
provided to the original problem and cannot be
changed. Note that the boundary conditions are
applicable for the incoming characteristics vari-
ables (Godlewski and Raviart, 1996) identified by
the eigenvalue decomposition of the matrix Df(ȳ).

The adjoint equation PDE⋆(λ) = 0 is computed
using the identity <λ, PDE(y)>=<PDE⋆(λ), y>
where the duality paring < ·, · > is similar to
the L2 scalar product and the adjoint equation
is obtained using Green’s formula (integration
by parts). The technicality here is to use the
following generalization of the Green’s formula for
piecewise-C1 fields

∫

Ω

g.divf = −
∫

Ω\∪iΓi

∇g · f +

∫

∂Ω

g.f · ν

+

Ns
∑

i=1

∫ tF
i

tI
i

−[g.fx]|x=si(t)
+ ṡi(t)[g.ft]|x=si(t)

Following this framework, the adjoint equation is
then defined by

<λ, ∂t̃y+∂x(Df(ȳ)ỹ)−Dys(ȳ,ū)ỹ−Dus(ȳ,ū)ũ>=

< ỹ,−∂tλ−Df(ȳ)T ∂xλ − Dys(ȳ,ū)T λ >

+

∫ L

0

[

λT ỹ
]T

0
dx +

∫ T

0

[

λT Df(ȳ)ỹ
]L

0
dt

+

Ns
∑

i=1

∫ T

tI
i

ṡi

[

λT (ỹ − Df(ȳ)ỹ)
]

|x=si(t)
dt

− < ũ, Dus(ȳ,ū)⋆λ >= 0
(10)

with [ξ]|x=s the jump in ξ at x = s. The gradient
of the cost functional with respect to the control
variable u can then be evaluated using the follow-
ing theorem.

Theorem (Gradient evaluation)

The gradient ∇uJ of the optimal control problem
(7-8) along the trajectory defined by (ū, ȳ) is

∇uJ (ū, ȳ)=Dus(ȳ,ū)⋆λ−γ





1/ū1−1/(1 − ū1)
.

.

.

1/ūNu
−1/(1 − ūNu

)





(11)
with the adjoint variable λ defined by














−∂tλ − Df(ȳ)T ∂xλ − Dys(ȳ,ū)T λ = g′(ȳ)
λ(t = T ) = 0
λ(x = 0) = λ(x = L) = 0 when applicable
λ|Γi

= 0
(12)

Note that Dus(ȳ,ū)⋆ is the transpose of Dus(ȳ,ū)
where Dirac distributions are replaced by point-
wise evaluations.

Proof:

The first variation of the cost in (7-8) with respect
to y is given by J̃y =<g′(ȳ), ỹ>. By setting







−∂tλ − Df(ȳ)T ∂xλ − Dys(ȳ,ū)T λ = g′(ȳ)
λ(t = T ) = 0
λ|Γi

= 0

the remaining terms in the identity (10) are

<g′(ȳ), ỹ>=<ũ, Dus(ȳ,ū)⋆λ>−
∫ T

0

[

λT Df(ȳ)ỹ
]L

0
dt

To remove the second term, the applicability of
the boundary conditions (Godlewski and Raviart,
1996) for the linearized dynamics (9) and the
adjoint equation (12) should be studied. In non-
conservative form, (9) and (12) can be rewritten
∂tỹ+Df(ȳ)∂xỹ=Sy and ∂τλ−Df(ȳ)T∂xλ=Sλ with
Sy and Sλ some source terms and τ the reversed
time. Let note Df(ȳ) = TΛT−1 the eigenvalue
decomposition of Df(ȳ). The splitting of the op-
erator Λ = Λ− + Λ+ in its negative and positive
eigenvalues tells which characteristic variable can
be assigned. We have for the remaining term

λT Df(ȳ)ỹ = λT TΛT−1ỹ

= λT TΛ−T−1ỹ + λT TΛ+T−1ỹ

Consider for instance the boundary x = 0. As
homogeneous boundary conditions apply to the
linearized equation, we have Λ+T−1ỹ|x=0 = 0
where Λ+ selects the appropriate characteristic
variables. It remains

λ|Tx=0Df(ȳ)ỹ|x=0 = λ|Tx=0TΛ−T−1ỹ|x=0

= ỹ|Tx=0T
−T Λ−TT λ|x=0

Let note −Df(ȳ)T = PΠP−1. With appropriate
eigenvalue ordering and eigenvector normaliza-
tion, we have Π = −Λ, implying that Π− = Λ+

and Π+ = Λ−, and TT = P−1. Applying homo-
geneous boundary conditions to the reversed time
adjoint equation implies that

Π+P−1λ|x=0 = Λ−TT λ|x=0 = 0

so λTDf(ȳ)ỹ=0 and the times of active boundary
conditions for (9) and (12) are complementarity.
∇uJ=Dus(ȳ,ū)⋆λ+∇uJbar concludes the proof.¤

An interesting interpretation of the adjoint based
gradient evaluation is the following. g′(y) is used
to trigger the adjoint variables where improve-
ments are possible. Then, the adjoint value is
transported backwards using the adjoint equation
towards regions where decision variables are avail-
able. Note that λ(t = T ) = 0, λ(x = 0) = 0
and λ(x = L) = 0 make sense as no improvement
come form the boundaries. λ|Γi

= 0 implies that a
virtual boundary is needed at the shock locations
due to the entropy condition (Bressan, 2000) that
requires a value on both side of Γi for one charac-
teristic field (Jacquet et al., 2005). Note that this



virtual boundary condition requires a numerical
shock detection routine for ȳ.

An optimal (or suboptimal) control can be ob-
tained with the following iterative steepest gra-
dient descent algorithm. Iterations on the barrier
parameter γ can be added.

Require: u := uinit, ǫ
while ||∇uJ || > ǫ do

Compute y from (5)
Compute λ from (12)
Compute ∇uJ from (11)
Normalize ∇uJ
Update u := u−∇uJ with crude line search

end while

4. APPLICATION TO OPTIMAL RAMP
METERING

Meaningful objectives for traffic applications are

• maximize the Vehicle-Miles-Travelled (VMT)

JVMT(y) = −
∫ T

0

∫ L

0

φ(x, t) dxdt

• minimize the Total-Travel-Time (TTT)

JTTT(y) = −
∫ T

0

∫ L

0

ρ(x, t) dxdt

For the Payne model (3), the parameters of the
linearized dynamics are














































Df(ρ̄, φ̄) =





0 1

c2 − φ̄2

ρ̄2

2φ̄

ρ̄





Dys(ρ̄, φ̄, ū) =





∑

δx̂i
ūiΨ

′
i(ρ̄) −

∑

δx̌i
βi

Φ′
e(ρ̄)

τ
−1

τ





Dus(ρ̄, φ̄, ū) =

(

δx̂1
Ψ1(ρ̄) · · · δx̂Nu

ΨNu
(ρ̄)

0 · · · 0

)

For the ARZ model (4), they are






















































Df(ρ̄, ω̄) =





−P (ρ̄) − ρ̄P ′(ρ̄) 1

− ω̄2

ρ̄2
− ω̄P ′(ρ̄)

2ω̄

ρ̄
− P (ρ̄)





Dys(ρ̄, ω̄, ū) =




∑

δx̂i
ūiΨ

′(ρ̄)−
∑

δx̌i
βi(−P (ρ̄)−ρP ′(ρ̄)) −

∑

δx̌i
βi

Φ′

e(ρ̄) + P (ρ̄) + ρ̄P ′(ρ̄)

τ
−

1

τ





Dus(ρ̄, ω̄, ū) =

(

δx̂1
Ψ1(ρ̄) · · · δx̂Nu

ΨNu
(ρ̄)

0 · · · 0

)

Note that as soon as ρ̄, φ̄, ω̄, ū and β are
known, the entries of the matrices Df , Dyf and
Duf become simple piecewise-C1 functions that
depends on x and t only.

Using the results stated above, the gradient eval-
uation of the VMT objective for both models is

∇ui
JVMT = Ψi(ρ̄(x̂i, t))λ1(x̂i, t) − γ

(

1

ūi

−
1

1 − ūi

)

(13)

For the Payne model, the adjoint system is










−∂tλ1−

(

c2−
φ̄2

ρ̄2

)

∂xλ2=
∑

δx̂i
ūiΨ

′

i
(ρ̄)λ1+

Φ′

e(ρ̄)

τ
λ2

−∂tλ2−∂xλ1−
2φ̄

ρ̄
∂xλ2 =−

∑

δx̌i
βiλ1−

1

τ
λ2−1

(14)

For the ARZ model, the adjoint is


























−∂tλ1 +
(

P (ρ̄) + ρ̄P
′

(ρ̄)
)

∂xλ1 +

(

ω̄2

ρ̄2
+ ω̄P

′

(ρ̄)

)

∂xλ2 =
∑

δx̂i
ūiΨ

′

(ρ̄)λ1−
∑

δx̌i
βi(−P (ρ̄)−ρP

′

(ρ̄))λ1

+
Φ′

e(ρ̄) + P (ρ̄) + ρ̄P ′(ρ̄)

τ
λ2 − P (ρ̄) − ρ̄P (ρ̄)

−∂tλ2−∂xλ1−

(

2ω̄

ρ̄
−P (ρ̄)

)

∂xλ2 = −

∑

δx̌i
βiλ1−

1

τ
λ2−1

(15)

They are both linear hyperbolic systems in non-
conservative form that can be integrated using the
schemes given in (Godlewski and Raviart, 1996).

The gradient keep the same form as (13) for
the TTT objective and only the source terms of
the adjoint equations (14) and (15) are slightly
modified as g′ = (−1 0)T in this case.

5. NUMERICAL IMPLEMENTATION

Several specific methods have been proposed to in-
tegrate conservation laws. We propose here to use
the Roe average method with an upwind scheme
(Bermudez and Vazquez, 1994) as it capture accu-
rately discontinuities and is devoid of oscillating
behavior. The time stepping algorithm is

yn+1
i = yn

i − ∆t

∆x

(

f̃(yn
i ,yn

i+1) − f̃(yn
i−1,y

n
i )

)

+ ∆t s̃(yn
i−1,y

n
i ,yn

i+1) (16)

with f̃(·) the numerical flux given by

f̃(yn
i ,y

n
i+1)=

1

2

(

f(ỹi+1/2)− |Df(ỹi+1/2)|(yi+1 −yi)
)

and s̃(·) the numerical source term given by

s̃(yn
i−1,y

n
i ,yn

i+1) =

1

2

(

I + Df(ỹi−1/2)|Df(ỹi−1/2)|
)yn

i−1 + yn
i

2

+
1

2

(

I − Df(ỹi+1/2)|Df(ỹi+1/2)|
)yn

i + yn
i+1

2

where |A| = T diag(|λi|) T−1 with A = TΛT−1.
ỹi+1/2 is the Roe average at the cell interface
i/i + 1. For the Payne model, Roe averages are















ρ̃i+1/2 =
√

ρiρi+1

ṽi+1/2 =

√
ρivi +

√
ρi+1vi+1√

ρi +
√

ρi+1

φ̃i+1/2 = ρ̃i+1/2ṽi+1/2

The linear adjoint equation (12) is simulated
backwards in time with the following upwind
method.



λn−1
i = λn

i − ∆t

∆x

(

− Df(ȳn
i )T

)+

(λn
i − λn

i−1)

− ∆t

∆x

(

− Df(ȳn
i )T

)−

(λn
i+1 − λn

i ) + ∆t Sλ

where A+ = TΛ+T−1 and A− = TΛ−T−1. For all
partial differential equations, the boundary condi-
tions are implemented through ghost cells forced
to the boundary data, their applicability being
directly handled by the discretization methods.

We provide below a simulation example with
the VMT objective for a single on-ramp that
creates a congestion with a constant inflow of
400 veh/h during 5 min on a 5 km freeway
section. The optimizer gives the flow improvement
depicted in Figure 1 with the ramp flow of Figure
2 computed in 20 iterations. The new metering
rate releases slowly the vehicle and enables to
delay the flow drop upstream of the on-ramp
location. The improvement is rather local in space
due to the finite speed of propagation.

Fig. 1. Initial (left) and optimized (right) flows.

Fig. 2. Optimized control (left) and Jobs (right).

6. CONCLUSION

This paper proposed an optimal control algorithm
for system of conservation laws based on adjoint-
based gradient evaluations. The contribution of
the paper is to take into account the piecewise-C1

structure of the flow generated by conservation
laws and the specific nature of the boundary
conditions that are not applicable for all times.
A traffic application was presented that computes
the ramp metering rates given the initial and
boundary conditions only. Improvement in the
numerical algorithm are currently under study.
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