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Abstract

In this overview article, we study the first positive eigenvalue of the

Dirac operator in a unit volume conformal class. In particular, we discuss

the question whether the infimum is attained. In the first part, we explain

the corresponding variational problem. In the following parts we discuss

the relation to the spinorial mass endomorphism and an application to

surfaces of constant mean curvature. The article also mentions some open

problems and work in progress.

1 The associated variational problem

Let (M, g0) be a compact n-dimensional Riemannian manifold equipped with
a fixed spin structure that will not be mentioned explicitly in the notation,
dimM = n ≥ 2. Let [g0] be the set of all metrics conformal to g0 having
volume 1. For any metric g = f 2g0 ∈ [g0] we obtain a spinor bundle ΣgM and
a Dirac operator Dg : Γ(ΣgM) → Γ(ΣgM). We identify ΣgM with Σg0M such
that [Hit74, Hij86, Hij01]

Dgϕ = f−1Dg0ϕ,

|ϕ|g = f (n−1)/2|ϕ|g0 .

In particular, with this identification the kernel of the Dirac operator is confor-
mally invariant.

We study the first positive eigenvalue of the Dirac operator as a function
on [g0], e.g. we are interested in the supremum and the infimum.

At first, one can show that the first positive eigenvalue of the Dirac operator
λ+

1 (g) is not bounded from above. Indeed in [ACHH] we construct a sequence
of so-called Pinocchio metrics. Pinocchio metrics are a sequence of metrics
(gn) conformal to g0 with an almost cylindrical part whose length tends to ∞
for n → ∞ as indicated in Figure 1. Some analytic arguments involve that
lim inf λ+

1 (gn) > 0, but νn := n
√

vol(M, gn) → ∞. Hence, ν−2
n gn is a sequence

of metrics in [g0], such that λ+
1 (ν−2

n gn) → ∞. As a result of these arguments
we obtain

sup
g∈[g0]

λ+
1 (g) = ∞.
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Figure 1: Pinocchio metrics with growing cylindrical part (= growing nose).

Now, let us turn our attention to the infimum of λ+
1 (g). We define

λ+
min(M, [g0]) := inf

g∈[g0]
λ+

1 (g).

This invariant satisfies λ+
min(M, [g0]) ≤ λ+

min(S
n) = (n/2)ω

1/n
n where the sphere

carries the standard Riemannian metric, and where ωn denotes its volume
[Hij86, Bär92, Amm03b, GH06].

The infimum λ+
min(M, [g0]) is always positive, i.e. the first eigenvalue is uni-

formly bounded away from 0. This result is due to J. Lott if the Dirac operator
is invertible [Lot86], for the general case see [Amm03b]. In order to prove this
result it is helpful to reformulate the problem as a variational problem. Namely
we define the conformally invariant functional

F(ϕ) =
‖Dϕ‖2

L2n/(n+1)∫
〈Dϕ,ϕ〉 .

One then shows that
λ+

min(M, [g0]) := inf F(ϕ)

where the infimum runs over all spinors of regularityH
2n/(n+1)
1 with

∫
〈Dϕ,ϕ〉 >

0. Note that due to the boundedness of the Sobolev embedding H
2n/(n+1)
1 ↪→

L2n/(n−1) and due to the Hölder inequality the denominator
∫
〈Dϕ,ϕ〉 is con-

tinuous on H
2n/(n+1)
1 . The infimum of F is attained iff λ+

1 (g) attains its in-
fimum in a “generalized” metric. By a generalized metric we mean a (2, 0)-
tensor of the form f2g0, where f is a real function that may have zeros (see
[Amm03c, Amm03a] for details). We obtain the following result.

THEOREM 1.1 ([Amm03a]). Let α := 2/(n− 1) if n ≥ 4, and let α ∈ (0, 1) if
n ∈ {2, 3}. Assume that

λ+
min(M, [g0]) < λ+

min(Sn) (1.2)

holds.

(A) Then there is a spinor field ϕ ∈ C2,α(ΣM) ∩ C∞(Σ(M \ ϕ−1(0))) on
(M, g0) minimizing F among all spinors with

∫
〈Dϕ,ϕ〉 > 0. In particular,

after possibly adding an element of the kernel of D, the minimizer satisfies
the Euler-Lagrange equation of F :

Dg0ϕ = λ+
min |ϕ|2/(n−1)ϕ, ‖ϕ‖2n/(n−1) = 1.
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(B) There is a generalized metric g conformal to g0 with volume 1 such that

λ+
1 (g) = λ+

min.

The generalized metric has the form g = |ϕ|4/(n−1)g0 where ϕ is a solution
of the Euler-Lagrange equation in (A). The generalized metric is smooth
outside the zero set of the conformal factor.

(C) If n = 2, then the zero set of the conformal factor of g, denoted Sg, is
finite. The generalized metric is smooth everywhere including in the zero
set Sg. Furthermore,

#Sg < genus(M).

In particular, if M is diffeomorphic to a 2-torus, then g is a metric in the
ordinary sense.

Roughly speaking, the inequality (1.2) avoids concentration of minimizing
sequences for our functional.

Inequality (1.2) is strongly related to the Yamabe problem. The Yamabe
problem [Yam60] is the problem to find a metric of constant scalar curvature
in the given conformal class [g0]. It has been solved affirmatively in [Tru68],
[Aub76], [Sch84], see also the well-written overview article [LP87]. The most
difficult step in the solution of the Yamabe problem is to show that any manifold
not conformal to the standard sphere satisfies

Y (M, [g0]) < Y (Sn) (1.3)

It is a direct consequence of Hijazi’s inequality [Hij86] that inequality (1.2)
implies inequality (1.3). Hence, proving (1.2) for a given conformal spin mani-
fold (M, [g0], χ) provides an alternative proof for the solvability of the Yamabe
problem.

Obviously, one would like to determine all conformal manifolds (M, [g0]) and
all spin structures on M such that (1.2) holds. Unfortunately, this problem is
widely open. It is not known whether (1.2) holds for all manifolds not conformal
to Sn. However, some special cases are known. We will explain some of them
in the following sections.

2 The spinorial mass endomorphism

We assume in this section that the Weyl curvature W of (M, g0) vanishes in a
neighborhood of a point p ∈ M . This is equivalent to saying that there is a
metric g ∈ [g0] that is flat on a small ball Bε(p) centered in p.

Furthermore, we assume that the Dirac operator on M is invertible. The
integral kernel of the inverse of the Dirac operator will be denoted as GD(x, y) ∈
Hom (ΣyM,ΣxM), which is a smooth ΣM � ΣM -valued function on M ×M \
{(x, x) |x ∈M}. In particular we obtain

∫

M

〈GD(x, y)(ϕ0), Dψ(x)〉 dx = 〈ϕ0, ψ(y)〉
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for all smooth spinors ψ ∈ Γ(ΣM) and ϕ0 ∈ ΣyM , y ∈ Bε(p).
We work in normal coordinates for g based in p. As the metric g is flat on

Bε(p), we can trivialize the spinor bundle on Bε(p) by parallel sections. With-
out explicitly stating it, we identify ΣyM and ΣxM , x, y ∈ Bε(p) via parallel
transport along a path from x to y in Bε(p). Similarly, x− y can be identified
with a vector in TpM ∼= TxM ∼= TyM , and hence Clifford multiplication by
x− y defines an endomorphism in End(ΣpM).

With these trivializations we then obtain on Bε(p) for ϕ0 ∈ ΣyM

GD(x, y)ϕ0 = − 1

ωn−1

x− y

|x− y|n · ϕ0 + v(x, y)ϕ0,

where (x, y) 7→ v(x, y) is a smooth End(ΣpM)-valued function on Bε(p)×Bε(p).
The section x 7→ αg(x) := v(x, x) of the bundle End(ΣM |Bε(p)) is called the

mass endomorphism of (M, g) on Bε(p). The index g indicates that it depends

on the choice of g ∈ [g0]. (One can show, that αg(x)dvol
n−1

n
g (x) is invariant

under conformal changes g, hence αg(x)dvol
n−1

n
g (x) yields a well-defined smooth

section defined on the interior of {x ∈ M |Wx = 0}.) The self-adjointness of
the Dirac operator implies that αg(x) is a self-adjoint endomorphism of ΣxM ,
hence its eigenvalues are real.

Furthermore, in dimension n 6≡ 3 mod 4 there is a real linear endomorphism
of ΣM anticommuting with the Dirac operator, and hence with αg(x). Thus,
in this case, the spectrum of αg(x) is symmetric with respect to 0.

In dimension n ≡ 3 mod 4, this is not the case, as we will see at the example
of the real projective space RP 4k+3.

EXAMPLE 2.1. (Real projective space.) Suppose that (M, g0) is the real pro-
jective space RP 4k+3, k ∈ N ∪ {0} with its standard metric with universal
covering π : S4k+3 → RP 4k+3. The projective space RP 4k+3 carries two spin
structures. For one of the spin structures n/2 is in the spectrum of the Dirac
operator, and the corresponding eigenspinors are so-called Killing spinors to
the constant −1/2, i.e. spinors ψ satisfying

∇Xψ = −1

2
X · ψ.

The value −n/2 is not in the spectrum. For the other spin structure, −n/2 is in
the spectrum with eigenspinors being Killing spinors to the constant 1/2, and
n/2 is not in the spectrum. (See [Bär96, Section 4] for more informations about
real projective spaces and other quotients of spheres.)

For each spin structure, we obtain a fiberwise isomorphism of vector bundles

π∗ : ΣpS
4k+3 → Σπ(p)RP

4k+3.

This allows us to calculate

GD
RP 4k+3(πx, πy) ◦ π∗ = π∗ ◦GD

S4k+3(x, y) + π∗ ◦GD
S4k+3(x,−y), (2.2)
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where −y denotes the antipodal point of y. In order to calculate αg(y) for
some g ∈ [g0] we perform a stereographic projection. The first summand π∗ ◦
GD

S4k+3(x, y) ◦ (π∗)
−1 goes over into the euclidean Green function

− 1

ωn−1

x− y

|x− y|n · .

Hence, αg(y) = 0 is equivalent to GD
S4k+3(y,−y) = 0, and using Moebius

transformations it is clear that if GD
S4k+3(y,−y) did vanish then the conformal

change formula for GD
S4k+3 would imply that GD

S4k+3 vanishes everywhere. Hence
αg(y) 6= 0. On the other hand, the isotropy group of the Spin(4k+ 4) action on
S4k+3 in the point y is the subgroup Spin(4k+ 3). This isotropy subgroup acts
on ΣyRP 4k+3. It is the unique irreducible representation of Spin(4k + 3) and
commutes with αg(y). Hence, by Schur’s lemma αg(y) = λ Id where λ ∈ R\{0}.
On the other hand, it is easy to see that changing the spin structure changes
the sign of the spinorial mass endomorphism.

THEOREM 2.3 ([AHM03]). Let (M, g0) be a Riemannian spin manifold, flat
in a neighborhood of p ∈ M , with invertible Dirac operator. If the spinorial
mass endomorphism α(p) has a positive eigenvalue, then (1.2) holds.

If α(p) has a negative eigenvalue, then the same result holds if we replace
everywhere the first positive eigenvalue by the first negative one, namely

inf
g∈[g0]

∣∣∣λ−1 (g)
∣∣∣ < n

2
ω1/n

n . (2.4)

With this inequality, we can conclude in analogy to Theorem 1.1 that |λ−
1 (g)|

attains its infimum, and that one obtains a solution of the Euler-Lagrange equa-
tions.

COROLLARY 2.5. Let (M, g0) be a (locally) conformally flat Riemannian spin
manifold of dimension n with invertible Dirac operator. Assume that the spino-
rial mass endomorphism does not vanish everywhere on M .

(1) If n 6≡ 3 mod 4, then (1.2) and (2.4) hold,

(2) If n ≡ 3 mod 4, then (1.2) or (2.4) hold.

Note that the “or” in the second case is not an “exclusive or”.
One of the major problems around the spinorial mass endomorphism is that

we need results that provide sufficient conditions for the non-vanishing of α.
We conjecture that for generic metrics the mass endormorphism should not

vanish everywhere. A way to study this conjecture in dimensions 3 and 4 might
be to study the perturbative methods explained in [Mai97].

In dimension n ≡ 3 mod 4, a criterion for the non-vanishing of the spinorial
mass endomorphism arises from the amazing connection of the spinorial mass
endomorphism to the regularization of the trace of D−1. Let us assume that
(M, g0) is conformally flat, i.e. that the Weyl curvature vanishes everywhere.
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For any y ∈ M let gy ∈ [g0] be a flat metric that coincides with g0 in y. In
[Oki01] it is shown that the regularized trace TR(D−1) satisfies

TR(D−1) =

∫
tr αgy (y) dy

if n ≡ 3 mod 4. Okikiolu’s approach is tightly related to techniques devel-
opped in [KV95], but while Kontsevich and Vishik’s techniques apply mainly to
regularized traces of pseudo-differential operators of non-integer order, Okikiolu
managed to control regularized traces of integer order by using a clever splitting
of pseudo-differential operators into an “even” and an “odd” part. Okikiolu’s
work was motivated by calculating variation formulae for regularized traces.

Unfortunately, it seems even harder to calculate TR(D−1) than to calculate
the mass endomorphism itself. Hence, this criterion has not admitted strong
applications until today for our problem.

3 Surfaces

For hypersurfaces in R
n+1 there is another useful criterion for proving (1.2)

which is particularly helpful for surfaces in R
3. We will restrict to surfaces here,

but similar techniques also apply in higher dimensions. The idea relies on the
spinorial Weierstrass representation, [KS96], see also [Fri98], [Bär98] for more
recent approaches, and see also [Amm03a, Section 9] for a history overview and
further references.

Suppose that (M, [g0]) is a compact Riemann surface and that the universal

covering M̃ admits a periodic branched conformal immersion F : M̃ → R
3. By

“periodic”, we mean that there exists a group homomorphism h : π1(M) → R
3

such that
F (γ · x) = F (x) + h(γ)

where γ · x denotes the image of x under the action of the Deck transformation
γ ∈ π1(M).

If all branching points have even branching order, then the immersion F
induces a spin structure on M . Let us explain this in more details: Let J be
the complex structure on M and (X, JX) be a frame on M . Then outside the
branching points

(
dF (X)

|dF (X)| ,
dF (JX)

|dF (JX)| ,
dF (X)

|dF (X)| ∧
dF (JX)

|dF (JX)|

)

is a frame in SO(3). Pulling back the double cover SU(2) → SO(3) defines a spin
structure on M \ {branching points}. The spin structure does not extend over
the branching points of odd order. However, if we assume that all branching
points have even order, the spin structure extends to all of M . We obtain a
spinor bundle. We can use the restriction of a parallel spinor of unit length as
explained in [Bär98] in order to obtain a spinor ϕ on M satisfying

Dϕ = H |ϕ|2ϕ |ϕ|2 = |dF |.
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We will call this spinor the spinor induced by the immersion F . Hence, if
kerD = {0}, then an easy Rayleigh quotient type argument implies that

(λ+
min(M, [g0]))

2 ≤
∫
H2,

where the integral has to be taken with respect to the volume measure induced
from R

3, and ranges over a fundamental domain of M .
The integral is the famous Willmore integral of F . It is not hard to prove

that if F is the lift of a map M → R
3 (i.e. h ≡ 0), then

∫
H2 ≥ 4π. Hence, we

do not get (1.2) in this case. However there are many Riemann surfaces together

with branched conformal immersions F : M̃ → R
3 with non-trivial periodicity

map h for which we obtain
∫
H2 < 4π, and the resulting bound is exactly (1.2)

for surfaces.
Alternatively, one can use perturbative methods [Mai97], or surgery methods

[AH06a, AH06b] to prove (1.2) in some cases.
Now, let us assume that for a Riemann surface inequality (1.2) is satisfied.

Then the functional attains its minimum, and the minimizer ψ satisfies the
Euler-Lagrange equation

Dψ = λ+
min|ψ|2ψ

with ‖ψ‖L4 = 1. Earlier in this section, we have explained how to get from a
periodic conformal immersion to a spinor on (M, g) satisfying Dψ = H |ψ|2ψ.
This construction from a branched conformal immersion to a solution of Dψ =
H |ψ|2ψ can be inversed. Namely by writing ψ = (ψ+, ψ−) and by setting

α := Re



ψ+ ⊗ ψ+ + ψ− ⊗ ψ−

iψ+ ⊗ ψ+ − i ψ− ⊗ ψ−

2iψ+ ⊗ ψ−


 ∈ Γ(T ∗M ⊗R R

3).

one obtains a closed R
3-valued 1-form α, and this form is the differential of a

periodic branched conformal map F : M̃ → R
3 with induced spinor ψ.

We obtain the following result.

PROPOSITION 3.1 ([Amm03b]). Assume that the Riemann spin surface (M, g, σ)
satisfies

λ+
min(M, [g], σ) < 2

√
π. (3.2)

Then there is a periodic branched conformal cmc immersion F : M̃ → R
3. The

mean curvature is equal to λ+
min(M, [g], σ) and the area of a fundamental domain

is 1. The regular homotopy class of F is determined by the spin-structure σ. The
indices of all branching points are even, and the sum of these indices is smaller
than 2genus(M). In particular, if M is a torus, then there are no branching
points.

Examples.
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(a) Let (M, g) be a 2-dimensional torus. Via a conformal change we can achieve
that g is flat, i.e. M = R

2/Γ, equipped with the Euclidean metric. We

assume that the lattice Γ is generated by

(
1
0

)
and

(
x
y

)
, with y > 0.

The spinor bundle of a flat manifold is flat as well, hence the holonomy
is a map Γ → U(ΣpM). Indeed, the image of this map is contained in
{± Id}. We obtain a homomorphism χ : Γ → {± Id}. This homomorphism
characterizes the spin structure σ in the sense that two spin structures on
(M, g) are isomorphic iff the homomorphisms χ coincide, and to each such
homomorphism there is a spin structure. The case χ ≡ + Id corresponds
to the so-called trivial spin structure σtr, the other cases correspond to
non-trivial spin structures.

Let us concentrate in this summary to the case of a non-trivial spin structure
σ 6= σtr. After a possible rotation and rescaling, we can achieve that

χ

(
1
0

)
= Id χ

(
x
y

)
= − Id,

|x| ≤ 1

2
, y2 +

(
|x| − 1

2

)2

≥ 1

4
, y > 0.

The Dirac operator is always invertible.

One easily sees λ+
min(M, g, σ) ≤ π√

y . Hence, the proposition yields solutions

for y > 4
π . We conjecture that in some cases these minimizers are given (up

to rotation and translation) by the parametrized cylinder

F : R
2 → R

3

(
a
b

)
7→




√
y

2π cos 2πb
y√

y

2π sin 2πb
y

a√
y




However, in some cases, e.g. if x = 0 and 4/π < y < 1, the cylinders
are represented by solutions of the Euler-Lagrange equations, but these
solutions do no longer minimize the functional. We conjecture that in the
case x = 0, y < 1 minimizers correspond to the unduloid immersions (see
Figure 2). Recall that an unduloid is a surface of revolution of constant
mean curvature.

(b) If M has genus 2, then as in the case of the torus, the dimension of the kernel
is independent of the metric, however it depends on the spin structure. If
σ is a spin structure such that (M,σ) is spin-cobordant 0, then the Dirac
operator is invertible for any metric. Again, as in the torus case, one can
find for any ε > 0 a conformal class [g] on M with λ+

min(M, [g], σ) < ε and
one obtains periodic constant mean curvature surfaces.
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Figure 2: An unduloid in R
3, visualized by Nick Schmitt.

(c) If the genus is larger than 2, then the kernel of the Dirac operator on a
Riemannian spin manifold (M,σ) depends on the metric. For example if M
is a surface of genus 3 equipped with the spin structure σ and the conformal
structure g0 associated to the periodic conformal immersion with vanishing
mean curvature indicated in Figure 3.

This immersion induces a harmonic spinor on (M, g, σ). However, as (M,σ)
is spin-cobordant 0, there is a perturbation [gt] of the conformal structure
such that the Dirac operator on (M, gt, σ) has a trivial kernel for small t 6= 0
[Mai97]. In this case

lim
t→0
t6=0

λ+
min(M, [gt], σ) = 0,

hence there exist solutions of Dψ = c|ψ|2ψ. Such a solution is visualized in
Figure 4.

REMARK 3.3. For n ≥ 4, the geometric interpretation of the Euler-Lagrange
equations is unknown, however we have the following unpublished partial result.
Suppose that (M, g0) is a real-analytic 3-manifold, and ϕ a solution of the Euler-
Lagrange equation. Then there is a (non-complete) ricci-flat 4-dimensional
manifold (N, h) and an isometric embedding (M \ ϕ−1(0), |ϕ|2g0) into (N, h)
of constant mean curvature. We conjecture that (N, h) carries a parallel spinor.
Note that 4-manifolds with a parallel spinor are Ricci-flat Kähler manifolds.

Further informations and all our related publications can be found on the
webpage

http://www.berndammann.de/publications.
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Figure 3: A periodic branched conformal minimal surface, visualized by
K. Grosse-Brauckmann
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