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Reduced-order observer design for
descriptor systems with unknown inputs

M. Darouach, M. Zasadzinski and M. Hayar
CRAN - CNRS URA 821 - Université de Nancy I

186, rue de Lorraine, Cosnes et Romain, 54400 FRANCE

Abstract  : A new method for the design of reduced-order observers for descriptor systems with
unknown inputs is presented. The approach is based on the generalized constrained Sylvester
equation. Sufficient conditions for the existence of the observer are given.

1. Introduction
The problem of observers design for standard systems with unknown inputs has received

considerable attention in the last  two decades ([1]-[4] and references therein). This problem is
of great importance in theory and practice since there are many situations where disturbances or
partial inputs are inaccessible. In [5] a technique for computing an efficient solution for the
unknown input observer design is given. This solution uses the constrained Sylvester equation.
The usage of constrained and coupled Sylvester equation in automatic control is well-known [6],
[7], and [8]. Recently, a great deal of work has been devoted to the observer design for
descriptor systems and many approaches to design such observers exist [9]-[16]. In [9] a
method based on the singular value decomposition and the concept of matrix generalized inverse
to design a reduced-order observer has been proposed. In [11] the generalized Sylvester
equation was used to develop a procedure for designing reduced-order observers. In [12] a
method based on the generalized inverse was presented. Observers for continuous descriptor
under less restrictive conditions and using only a straightforward matrix manipulation have been
presented in [17], [18]. Observers for discrete-time descriptor systems have been developed in
[14], [16].

However, only few results have been presented to design observers for descriptor systems
with unknown inputs [19], [20], and [21]. Descriptor systems are very sensitive to slight input
changes, and the presence of unmeasurable disturbances or unknown inputs is very detrimental
to the design of observers. This fact justifies the importance of the observers design for
descriptor systems in presence of unknown inputs. On the other hand, many practical systems
can be described by descriptor models, and the fault diagnosis of these systems may be based
on the unknown input observer design.

In [19] and [20] only square singular systems have been considered under the regularity
condition. In addition, the strong observability [19] and the modal observability [20] have been
assumed. In [21], a coordinate transformation is used to design a reduced-order observer.

In this paper, we present a new method to design a reduced-order observer for continuous-
time descriptor systems subject to unknown inputs and unknown measurement disturbances. As
in [21] systems considered are in a general form and less restrictive conditions are required.
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2. Statement of the problem
Consider the linear time-invariant  descriptor system

E* x
.
  = A* x + B* u  + F* w (1.a)

y* = C* x + G* w (1.b)

where x ∈ Rn, u ∈ Rk, w ∈ Rq and y* ∈ Rp are the state vector, the control input vector, the

unmeasurable input vector and the output vector respectively. E* ∈ Rmxn, A* ∈ Rmxn, B* ∈

Rmxk, F* ∈ Rmxq, G* ∈ Rpxq, and C* ∈ Rpxn are known constant matrices. We assume that
rank E* = r < n, and without loss of generality rank [C*   G*] = p.

Assumptions. In the sequel we assume that

i) rank 



F*

G*   = q ≤ p

ii) rank 






E* A* F* 0
0 E* 0 F*
0 C* G* 0
0 0 0 G*

  - rank 



E* F*

0  G*   = n + q

These conditions are not restrictive. Condition i) can always be met by redefining the

unknown input. If rank 



F*

G*   = s < q, then we have  



F*

G*   w = 





F1*

G1*   v, where 





F1*

G1*   is of

full column rank, and v can be considered as a new unknown input. Condition ii) generalizes the
condition of the impulse observability of singular square systems (i.e. m = n and det E* = 0)
when F* = G* = 0.

For m = n, E* = I, and G* = 0, system (1) becomes a standard one with unknown inputs, in
this case condition ii) can be written as

rank 



I F*

C* 0   = n + q or equivalently rank C*F* = rank F* = q

which is the condition generally assumed in the standard observer for unknown input systems
[1]-[4].

Now, since rank E* = r, there exists a non-singular matrix P such that

P E* = 


E

0  , P A* = 



A

A1
 , P B* = 



B

B1
  and P F* = 



F

F1
 

with E ∈ Rr.n
 and rank E = r. Then system (1) is restricted system equivalent (r.s.e) to

E x
.
  = A x + B u + F w (2.a)

y = C x + D w (2.b)

where y = 



-B1u

y*   ∈ Rt, C = 



A1

C*   ∈ Rt.n and D =  



F1

G*   ∈ Rt.q, with t = m + p - r.

One can easily prove that assumption i) is equivalent to rank 


F

D   = q.
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Let rank D = q1 ≤ q , then there exist two non-singular matrices U and V such that

U D V =   





Iq1  0

0   0  .

System (2) can now be written as

E x
.
  = Φ x + B u  + F11 y1 + F12 w2 (3.a)

y1 = C11 x +  w1 (3.b)
y2  = C12 x (3.c)

where 





y1

y2
  = Uy, 






C11

C12
  = UC, w = V 






w1

w2
  , F V = [F11   F12] , and Φ = A - F11 C11.

One can easily obtain rank C12 = p1 = t - q1 from rank [C*   G*] = p and the above matrix
decomposition.

Our aim is to design an observer in the form

z
.
  = Π z + L1 y1 + L2 y2 +H u (4.a)

x̂  = M z + N y2 (4.b)

where z ∈ Rn-p1.
The problem of the observer design is reduced to finding matrices Π, L1, L2, H, M and N

such that the estimate x̂  converge asymptotically to the state x.

3. Reduced-order observer design
In this section we present a new method to design a reduced-order observer for singular

system (1) with unknown inputs. The solution of this problem is given in the following theorem.

Theorem 3.1.   Let T be an (n- p1).r matrix such that
T Φ -  Π T E = L2 C12 (5.a)
T F12 = 0 (5.b)

where det 



TE

C12
  ≠ 0.

Then for
H = T B (5.c)
L1 = T F11 (5.d)

and





TE

C12
 [ ]M N   = 









In-p1

0

0 Ip1
 (5.e)

we have
 x̂(t)  - x(t) = M eΠt (z(0) - TE x(0)).

The convergence of the reduced-order observer is obtained when Π is a stability matrix.

Since this theorem is easy to prove, its proof is omitted.
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Equation (5.a) is the so called generalized Sylvester equation, which must be satisfied under
the constraint (5.b).

Define the following non-singular matrix





R

C12
  = 









In-p1

Κ

0 Ip1
 



TE

C12
 (6)

where Κ is an (n-p1).p1 arbitrary matrix and R is an (n-p1).n matrix of full row rank, then we
have

T E = R - K C12 (7)

Equations (5.b) and (7) can be written as

[ T   K ] 





E   F12

 C12   0   = [ R  0 ] (8)

The solution of this equation depends on the rank of matrix 





E   F12

 C12   0  . The solution exists if

rank 





E   F12

 C12   0   = n + dim w2.

We can now establish the following result.

Lemma 3.1. For systems (1) and (3) we have the following statements:

1) rank 





E F12

C12 0   = n + dim w2 if and only if assumption ii) is satisfied.

2)  rank 





sE - Φ -F12

C12 0   = rank 



sE* - A* -F*

C* G*   - q1, ∀s ∈ C.

Proof. 1) Define the following non-singular matrices

U1 = 








P  0   0   0

0   P   0   0
0   0   Ip   0
0   0   0   Ip

  , V1=  








Q   0   0   0

0   Q   0   0
0   0   Iq  0
0   0   0   Iq

  , U2 = 



P   0

0   Ip
 , V2 = 



Q   0

0   Iq
 ,

U3 = 








U  0   0

0   Ir  0
0   0   U

 , V3 = 








In   0   0

0   V   0
0   0   V

  , U4 = 



Ir  0

0   U  , V4 = 



In   0

0   V   and
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U5 = 






Ir F11   0
0   Iq1   0

0   0   Ip1

 ,

then from assumption ii) we obtain

 rank U1 






E* A* F* 0
0 E* 0 F*
0 C* G* 0
0 0 0 G*

  V1 - rank U2 



E* F*

0  G*   V2 = n + q

or equivalently rank 








C D 0

E 0 F
0 0 D

  - rank D = n + q, since E is of full row rank.

Then rank U3 








C D 0

E 0 F
0 0 D

  V3 - rank U D V = n + q, it follows that

rank 





E F12

C12 0   = n + dim w2 (9)

2) We have the following relations

rank 



sE* - A* -F*

C* G*  = rank U2 



sE* - A* -F*

C* G*   V2

= rank U4 



sE - A -F

C D   V4

= rank U5 






sE - Φ -F11 -F12
C11 Iq1 0

C12 0 0
  

= rank 





sE - Φ -F12

C12 0   + q1 (10)♦

Now, equation (7) can be written as

[ T   K]  



E

C12
  = R (11)

It follows from (9) that rank 



E

C12
  = n, then the general solution of (11) is therefore given by
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[Τ   Κ] = R 



E

C12
  

+
 + Y (Ir+p1 - 



E

C12
  . 



E

C12
  

+
 ) (12)

where 



E

C12
  

+
 is the generalized inverse of matrix 



E

C12
 , given by 



E

C12
  

+
 = Δ [ET C12

T],

where Δ = (ETE  + C12
TC12 )-1 and Y is an arbitrary matrix of appropriate dimension.

From equation (12), we have

T = R Δ ET + Yϕ (13)

where ϕ = 








Ir  - EΔET

-C12ΔET  . Substituting (13) into (5.b) gives

Y ϕ F12 = - R Δ ET F12 (14)

The solution of this equation exists if ϕ F12 is of full column rank. We now state the following
result.

Lemma 3.2. The matrix (ϕ F12) is of full column rank if and only if assumption ii) is satisfied.

Proof. Define the following full column rank matrix

S = 














E

C12
 
+

(Ir+p1 - 



E

C12
 . 



E

C12
 
+
)

 ,

then from lemma 3.1 we have

rank 





E F12

C12 0  = n + dim w2

= rank S 





E F12

C12 0  

it follows that rank ϕ F12 = dim w2  if and only if assumption ii) is verified. ♦

From lemma 3.2 the solution of (14) is given by

Y = -R Δ ET F12 (ϕ F12)+ + Z (Ir+p1 - (ϕ F12) (ϕ F12)+) (15)

substituting  (15) into (13) gives
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T = R Δ ET - R Δ ET F12(ϕ F12)+ϕ + Z (Ir+p1 - (ϕ F12) (ϕ F12)+) ϕ (16)

where Z is an arbitrary matrix.

Now, from (5.a) and (5.e) we have

Π = T Φ M (17)
L2 = T Φ N (18)

Substituting (16) into (17) gives

Π = Ω + Z Γ (19)

where Ω = R Δ ETΦ M  - R Δ ETF12 (ϕ F12)+ϕ Φ M (20)
and Γ = (Ir+p1 - (ϕ F12) (ϕ F12)+) ϕ Φ M (21)

If the pair (Ω, Γ) is detectable, one can design a reduced-order observer from the standard
methods, in the form (4).

In the sequel, we will give sufficient conditions for the existence of the reduced-order
observer.

Lemma 3.3. Under the assumption rank 



E

C12
  = n, the reduced-order observer (4) exists if

rank 





sE - Φ -F12

C12 0   = n + dim w2, ∀s ∈ C, Re(s) ≥ 0 (22)

Proof. First note that rank 





sE - Φ -F12

C12 0   = rank 






Ir 0 0
0 Ip1 -sIp1
0 0 Ip1

 






sE - Φ -F12

sC12 0
C12 0

 

= rank 






sE - Φ-F12

sC12 0
C12 0

 

Now, define the following matrices S1 = 













R

C12
 . 



E

C12
 
+

0

(Ir+p1 - 



E

C12
 . 



E

C12
 
+
) 0

0 Ip1

 ,

S2 = 





M N 0

0 0 -Idimw2
 , and S3 = 









In-p1 0 -RΔETF12(ϕF12)+

0 Ip1 -C12ΔETF12(ϕF12)+

0 0 (ϕF12)+

0 0 Ir+p1 - (ϕF12)  (ϕF12)+

 ,
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then we have

rank 






sE - Φ -F12

sC12 0
C12 0

  = rank S1 






sE - Φ-F12

sC12 0
C12 0

  S2

= rank 









sIn-p1 - RΔETΦΜ (sR - RΔETΦ)Ν RΔETF12

-C12ΔETΦΜ (sC12  - C12ΔETΦ)Ν C12ΔETF12
-ϕΦM -ϕΦN ϕF12

0 Ip1 0

 ,

= n + dim w2, ∀s ∈ C, Re(s) ≥ 0,

Since R M = In-p1 and C12 M = 0, then it follows that

rank  








sIn-p1 - RΔETΦΜ RΔETF12

-C12ΔETΦΜ C12ΔETF12
-ϕΦ M ϕF12

  = dim w2 + n - p1, ∀s ∈ C, Re(s) ≥ 0

or equivalently

rank S3 








sIn-p1 - RΔETΦ Μ RΔETF12

-C12ΔETΦΜ C12ΔETF12
-ϕΦM ϕF12

 

= rank 









sIn-p1 - Ω 0

-C12ΔETΦM + C12ΔETF12(ϕF12)+ϕΦM 0

(ϕF12)+ϕΦM Idimw2
Γ 0

 

= dim w2 + n - p1, ∀s ∈ C, Re(s) ≥ 0

which gives rank 






sIn-p1 - Ω

[ ]0 Ip1 Γ

Γ

  = n - p1, since C12ΔET = -[ ]0 Ip1  ϕ, and finally we have

rank 





sIn-p1 - Ω

Γ
  = n-p1, ∀s ∈ C, Re(s) ≥ 0

which is the detectability of the pair (Ω, Γ), and Π is a stability matrix. ♦

The above results leads to the following theorem.

Theorem 3.2. Sufficient conditions for the observer (4) to exist are assumptions i), ii) and

rank 



sE* - A* -F*

C* G*   = n + q, ∀s ∈ C, Re(s) ≥ 0 (23)

The proof can be straightforwardly deduced from lemma 3.1, 3.2 and 3.3, and is omitted.
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Remarks: i) Condition (23) generalizes the notion of stable transmission zeros of the square
singular systems.

ii) The minimal order ρ of the observer is given by : ρ = n - rank C12.
iii) Matrix Z in equation (19) can be chosen to make the poles of the observer have

specified locations if, in theorem 3.2, ∀s ∈ C, Re(s) ≥ 0 is replaced by ∀s ∈ C.
iv) The design of the observer presented in this paper requires only straightforward

matrix operations. A procedure to compute efficiently the observer matrices can be obtained

from the singular values decomposition of the full column matrices (ϕ F12) and 



E

C12
 . This

problem has not been presented in this paper, the reader can refer to [8] for more details on the
computations problems. ■

Now, we can summarize the procedure for designing the observer :

1) Choose an (n-p1).n matrix R such that 



R

C12
  is non-singular, this can be always

done, since C12 is of full row rank.

2) The matrix M can be obtained from (5.e) and (11)

M = 



R

C12
 
-1

 





In-p1

0  (24)

3) Compute

α = Ir+p1 - F12
 (ϕ F12)+ϕ, Δ = ( 



E

C12
 
T
 



E

C12
  )

-1
, Ω = R Δ ET α Φ M,

and Γ = ϕ α Φ M.

4) If the pair (Ω, Γ) is detectable, we can find Z such that the observer is asymptotically
stable, then we can compute Τ = (R Δ ET + Z ϕ) α.

5) The matrix N can be obtained from (5.e)

N = 



TE

C12
 
-1

 





0

Ip1
 (25)

6) Matrices H, L1 and L2 can be obtained from (5.c), (5.d) and (18).

4. Numerical example
The following example illustrates the above design method. Consider the singular system

(1) described by [19]
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E* = 






1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , A* = 






-1 1 0 0
-1 0 0 1
0 -1 -1 0
0 0 0 1

 , B* = 






1 0
0 1
0 0
1 0

 , F* = 






-1
0
0
0

 , G* = 


0

0  

and C* = 



1 0 0 0

0 0 1 1  

In this case the transformation matrix is P = I4. We obtain the r.s.e singular system (4)
described by

E = 








1 0 0 0

0 1 0 0
0 0 1 0

 , A =  








-1 1 0 0

-1 0 0 1
0 -1 -1 0

 , B = 








1  0

0  1
0  0

 , F = 








-1

0
0

 , D = 








0

0
0

 ,

C = 








0 0 0 1

1 0 0 0
0 0 1 1

  and y = 



-u1

y*  

Choose R = [ ]0 1 0 0  , then

M = 






0
1
0
0

 , Ω = 0 and Γ = 









γ0

-1/3
-1/3
-γ
1/3

  where γ ∈ R

For Π = - 1, we can choose Z = [ ]0 0 3 3 0 3  , then

T = [ ]0 1 1  , N = 






0 1 0
1 0 -1
-1 0 1
1 0 0

 , L1 = 0, L2 = [ ]1 -1 0   and H = [ 0    1 ].

Thus, the reduced-order observer is

z
.
  = - z + y1 - y2 + u2

x̂  = 








y2

z + y1 - y3
- y1 + y3

y1

 

5. Conclusion
We have presented a systematic design method for a reduced-order observer for linear

singular systems with unknown inputs. This method is based on the constrained generalized
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Sylvester equation. The existence conditions of the observer are given and generalize those
currently used for unknown inputs observer problem of singular systems.
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