Hypothesis H and the prime number theorem for automorphic representations

Jie Wu, Yangbo Ye

To cite this version:

HAL Id: hal-00097153
https://hal.archives-ouvertes.fr/hal-00097153
Submitted on 21 Sep 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Hypothesis H and the prime number theorem for automorphic representations

JIE WU (Nancy) & YANGBO YE 1 (Iowa)

Dedicated to Jean-Marc Deshouillers on the occasion of his sixtieth birthday

Abstract. For any unitary cuspidal representations π_n of $GL_n(\mathbb{Q}_A)$, $n = 2, 3, 4$, respectively, consider two automorphic representations Π and Π' of $GL_6(\mathbb{Q}_A)$, where $\Pi_p \cong \wedge^2 \pi_{4,p}$ for $p \neq 2, 3$ and $\pi_{4,p}$ not supercuspidal, and $\Pi' = \pi_2 \boxtimes \pi_3$. First, Hypothesis H for Π and Π' is proved. Then contributions from prime powers are removed from the prime number theorem for cuspidal representations π and π' of $GL_m(\mathbb{Q}_A)$ and $GL_{m'}(\mathbb{Q}_A)$, respectively. The resulting prime number theorem is unconditional when $m, m' \leq 4$ and is under Hypothesis H otherwise.

Keywords. Hypothesis H, functoriality, prime number theorem

§ 1. Introduction

Recent developments in functoriality by the Langlands-Shahidi method have many profound applications in prime distribution. To name a few, we recall a recent proof of Hypothesis H for any cuspidal representation of $GL_4(\mathbb{Q}_A)$ and for Sym$^4(\pi)$ by Kim [2], where π is an automorphic cuspidal representation of $GL_2(\mathbb{Q}_A)$. Here Hypothesis H predicts the convergence of a certain Dirichlet series associated with $(L'/L)'(s, \pi \times \tilde{\pi})$ taken over prime powers.

More precisely, let $\pi = \otimes_p \pi_p$ be a unitary automorphic cuspidal representation of $GL_m(\mathbb{Q}_A)$. Or more generally, let π be an automorphic representation irreducibly induced from unitary cuspidal representations, i.e., $\pi = \text{Ind } \sigma_1 \otimes \cdots \otimes \sigma_k$, where σ_j is a cuspidal representation of $GL_{m_j}(\mathbb{Q}_A)$, with $m_1 + \cdots + m_k = m$. The local component π_p with $p < \infty$ can be parameterized by the Satake parameters $\text{diag}[\alpha_\pi(p, 1), \ldots, \alpha_\pi(p, m)]$. For $\nu \geq 1$ define

$$a_\pi(p^\nu) = \sum_{j=1}^m \alpha_\pi(p, j)^\nu.$$

Let $\tilde{\pi}$ be the contragredient representation of π, and $L(s, \pi \times \tilde{\pi})$ the Rankin-Selberg L-function. Then for $\Re s > 1$, we have (see [10], RS 1)

$$\left(\frac{L'}{L}\right)'(s, \pi \times \tilde{\pi}) = \sum_{n=1}^\infty \frac{(\log n)\Lambda(n)|a_\pi(n)|^2}{n^s}.$$

1 Project sponsored by the National Security Agency under Grant Number H98230-06-1-0075. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation herein.

2000 Mathematics Subject Classification. Primary 11F70.
Here $\Lambda(n) = \log p$ if $n = p^r$ and $\Lambda(n) = 0$ otherwise, so that the series in (1.2) is taken over primes and prime powers.

Hypothesis H. (Rudnick and Sarnak [10]) For any fixed $\nu \geq 2$,
\[
\sum_{p} \frac{(\log p)^2 |a_{\pi}(p^r)|^2}{p^{\nu}} < \infty.
\]

Hypothesis H is trivial for $m = 1$. When $m = 2$ it follows from bounds toward the Ramanujan conjecture $|\alpha_{\pi}(p,j)| \leq p^\theta$ with $\theta = 7/64$ (see [9]), another result based on the Langlands-Shahidi method proved by Kim and Sarnak in [1]. For $m = 3$, Hypothesis H follows from the Rankin-Selberg theory [10]. The GL_4 case was proved by Kim [2] based on his proof of the (weak) functoriality of the exterior square $\wedge^2 \pi$ from a cuspidal representation π of $GL_4(\mathbb{Q}_A)$ (see [1]). Beyond GL_4, the only known special case for Hypothesis H is the symmetric fourth power $\text{Sym}^4(\pi)$ of a cuspidal representation π of $GL_2(\mathbb{Q}_A)$, which is an automorphic representation of $GL_5(\mathbb{Q}_A)$.

The first goal of the present paper is to prove Hypothesis H for two types of automorphic representations of $GL_6(\mathbb{Q}_A)$.

Theorem 1. Let π be a cuspidal representation of $GL_4(\mathbb{Q}_A)$. Denote by T the set of places consisting of $p = 2, 3$ and those p at which π_p is supercuspidal. Let Π be the automorphic representation of $GL_6(\mathbb{Q}_A)$ such that $\Pi_p \cong \wedge \pi_p$ if $p \not\in T$, according to [1]. Then Hypothesis H holds for Π.

Theorem 2. Let π_1 (resp. π_2) be a cuspidal representation of $GL_2(\mathbb{Q}_A)$ (resp. $GL_3(\mathbb{Q}_A)$). Let Π' be the automorphic representation of $GL_6(\mathbb{Q}_A)$ equal to $\pi \boxtimes \pi_2$ according to [3]. Then Hypothesis H holds for Π'.

As an application, one can use Hypothesis H to deduce the following Mertens’ theorem for automorphic representations, or the so-called Selberg orthogonality conjecture, from unconditional results on similar sums taken over primes and prime powers:

(1.3) \[
\sum_{p \leq x} \frac{|a_{\pi}(p)|^2}{p} = \log \log x + O(1);
\]

(1.4) \[
\sum_{p \leq x} \frac{a_{\pi}(p)a_{\pi'}(p)}{p} = O(1),
\]

when $\pi \not\cong \pi'$. Here (1.3) was proved by Rudnick and Sarnak [10], while (1.4) was proved by Liu, Wang and Ye ([6], [4]). Results in (1.3) and (1.4) played crucial roles in the n-level correlation of nontrivial zeros of automorphic L-functions and random matrix theory ([10], [5], [7]).

Another application of Hypothesis H is on the prime number theorem for automorphic representations. For any self-dual cuspidal representation π of $GL_m(\mathbb{Q}_A)$, Liu, Wang and Ye [4] showed that there is a constant $c > 0$ such that

(1.5) \[
\sum_{n \leq x} \Lambda(n)|a_{\pi}(n)|^2 = x + O(x \exp(-c\sqrt{\log x})).
\]
In [8], Liu and Ye proved that
\[\sum_{n \leq x} \Lambda(n) a_\pi(n) \pi'(n) \]
\[(1.6) \]
\[= \begin{cases}
\frac{x^{1+i\tau_0}}{1+i\tau_0} + O(x \exp(-c\sqrt{\log x})) & \text{if } \pi' \equiv \pi \otimes |det|^{\tau_0} \text{ for some } \tau_0 \in \mathbb{R}; \\
O(x \exp(-c\sqrt{\log x})) & \text{if } \pi' \not\equiv \pi \otimes |det|^{\tau} \text{ for any } \tau \in \mathbb{R},
\end{cases} \]
where \(\pi \) and \(\pi' \) are cuspidal representations of \(GL_m(\mathbb{Q}_\ell) \) and \(GL_{m'}(\mathbb{Q}_\ell) \), respectively, such that at least one of them is self-dual.

The second goal of the present paper is to use Hypothesis H to remove terms on prime powers from the left side of (1.6) and deduce a prime number theorem over primes.

Theorem 3. Let \(\pi \) and \(\pi' \) be as above. (i) If \(m, m' \leq 4 \), then
\[\sum_{p \leq x} (\log p) a_\pi(p) \pi'(p) \]
\[(1.7) \]
\[= \begin{cases}
\frac{x^{1+i\tau_0}}{1+i\tau_0} + O(x \exp(-c\sqrt{\log x})) & \text{if } \pi' \equiv \pi \otimes |det|^{\tau_0} \text{ for some } \tau_0 \in \mathbb{R}; \\
O(x \exp(-c\sqrt{\log x})) & \text{if } \pi' \not\equiv \pi \otimes |det|^{\tau} \text{ for any } \tau \in \mathbb{R},
\end{cases} \]
(ii) If \(\max(m, m') \geq 5 \), (1.7) is true under Hypothesis H with error terms replaced by \(O(x/\log x) \).

We remark that (i) is an unconditional result.

§ 2. Proof of Theorems 1 and 2

Lemma 2.1. Let \(\pi \) be a unitary cuspidal representation for \(GL_m(\mathbb{Q}_\ell) \), or an automorphic representation irreducibly induced from unitary cuspidal representations. Then for any \(\nu_0 \geq (m^2 + 1)/2 + 1 \), \(\epsilon > 0 \), and integer \(\ell \geq 0 \),
\[(2.1) \]
\[\sum_{\nu \geq \nu_0, \nu' \leq x} (\log p) |a_\pi(p')|^2 \ll x^{1-2/(m^2+1)+1/\nu_0} \log x, \]
\[(2.2) \]
\[\sum_{p} \frac{(\log p)^\ell |a_\pi(p)|^2}{p^{1+\epsilon}} < \infty. \]

Proof. From (1.1) and the bound toward the Ramanujan conjecture ([10])
\[(2.3) \]
\[|a_\pi(p, j)| \leq p^{1/2-1/(m^2+1)} \quad (j = 1, \ldots, m), \]
we know that
\[|a_\pi(p')|^2 \leq m^2 p^{1-2/(m^2+1)} \nu. \]

Then
\[\sum_{\nu \geq \nu_0, \nu' \leq x} (\log p) |a_\pi(p')|^2 \leq m^2 \sum_{\nu_0 \leq \nu' \leq 2 \log x} p^{1/2-1/(m^2+1)} \nu \]
\[\ll m x^{1-2/(m^2+1)+1/\nu_0} \log x. \]
Eqn. (2.2) follows from the fact that the \(\ell \)th-derivation of \(\log L(s, \pi \times \pi') \) converges absolutely for \(\Re s > 1 \). \[\square \]
Lemma 2.2. Let π' (resp. π'') be a unitary cuspidal representation, or an automorphic representation irreducibly induced from unitary cuspidal representations, for $\text{GL}_{m'}(\mathbb{Q}_k)$ (resp. $\text{GL}_{m''}(\mathbb{Q}_k)$). Let $\nu \geq 2$ be an integer and \mathcal{P} a set of prime numbers. If there are fixed constants $\delta' \in (0, 1]$ and $\delta'' \in (0, \frac{1}{2}]$ such that

$$\left| a_{\pi'}(p^\nu) \right|^2 \ll_{\nu, \epsilon} |a_{\pi''}(p)|^2 p^{(1-\delta')(\nu-1) + p^{(1/2-\delta'\nu)}}$$

for all $p \in \mathcal{P}$, then for any $\epsilon > 0$ we have

$$\sum_{p^\nu \leq x, p \in \mathcal{P}} (\log p) |a_{\pi'}(p^\nu)|^2 \ll_{\nu, \epsilon} x^{1-\delta}$$

with $\delta := \min\{\delta'/2 + \delta' - \epsilon, \delta''\}$.

Proof. By (2.4) and the Rankin-Selberg theory, for any $\eta > 0$ we can write

$$\sum_{p^\nu \leq x, p \in \mathcal{P}} (\log p) |a_{\pi'}(p^\nu)|^2 \ll_{\nu, \epsilon} \sum_{p^\nu \leq x, p \in \mathcal{P}} (\log p) |a_{\pi''}(p)|^2 p^{(1-\delta')(\nu-1) + x^{1/2+1/\nu-\delta'\nu}}$$

$$\ll_{\nu, \epsilon} x^\eta \sum_{p^\nu \leq x, p \in \mathcal{P}} (\log p) |a_{\pi''}(p)|^2 + x \sum_{x^{\delta'} < p^\nu \leq x, p \in \mathcal{P}} (\log p) |a_{\pi''}(p)|^2 + x^{1-\delta''\nu}.$$

By (2.2) with $\pi = \pi''$ and $\ell = 1$, it follows that

$$\sum_{p^\nu \leq x, p \in \mathcal{P}} (\log p) |a_{\pi''}(p)|^2 \ll 1$$

and

$$\sum_{x^{\delta'} < p^\nu \leq x, p \in \mathcal{P}} (\log p) |a_{\pi''}(p)|^2 \leq \frac{1}{(x^{\eta/\nu})^{\delta'(\nu-1)-\epsilon}} \sum_{x^{\delta'} < p^\nu \leq x, p \in \mathcal{P}} (\log p) |a_{\pi''}(p)|^2 \ll_{\nu, \epsilon} x^{1-\delta''(\nu-1)-\epsilon/\nu}.$$

Inserting these two estimates into the preceding inequality, we find

$$\sum_{p^\nu \leq x, p \in \mathcal{P}} (\log p) |a_{\pi'}(p^\nu)|^2 \ll_{\nu, \epsilon} x^\eta + x^{1-\eta[\delta'(\nu-1)-\epsilon/\nu] + x^{1-\delta''\nu}}.$$

Taking $\eta = \nu/(1 + \delta'\nu - \delta') + \epsilon$, we obtain

$$\sum_{p^\nu \leq x, p \in \mathcal{P}} (\log p) |a_{\pi'}(p^\nu)|^2 \ll_{\nu, \epsilon} x^{\nu/(1+\delta')(\nu-1) + \epsilon} + x^{1-\delta''\nu} \ll_{\nu, \epsilon} x^{1-\delta'/(2+\delta') + \epsilon} + x^{1-\delta''\nu} \ll_{\nu, \epsilon} x^{1-\delta}.$$

In the second inequality, we have used the fact that $\nu \geq 2$. \hfill \Box

Remark. In proving Hypothesis H, an inequality of the form of (2.4) plays a crucial role. Lemma 2.2 has more flexibility as π'' is allowed to be different from π'.
Lemma 2.3. Let Π' be either Π or Π as in Theorems 1 and 2. Then for any $\varepsilon > 0$, we have

$$
\sum_{\nu \geq 2, \, p^\nu \leq x} (\log p) |a_{\Pi'}(p^\nu)|^2 \ll_{\varepsilon} x^{1-1/38+\varepsilon}.
$$

Proof. In view of (2.1) with the choice of $m = 6$ and $\nu_0 = [37 \times 38/39] + 1$, it suffices to show that for any fixed $\varepsilon > 0$ and $\nu \geq 2$ we have

$$
\sum_{p^\nu \leq x} (\log p) |a_{\Pi'}(p^\nu)|^2 \ll_{\nu, \varepsilon} x^{1-1/38+\varepsilon},
$$

First let us consider the case of Π. Let $\pi = \otimes \pi_p$ be a cuspidal automorphic representation for $GL_4(A\mathbb{Q})$. Recall that Π is irreducibly induced from unitary cuspidal representations. Let S_0 be the set of places where Π_p is tempered. Then

$$
\sum_{p \in S_0} (\log p)^2 |a_{\Pi}(p^\nu)|^2 < \infty.
$$

Eqn. (2.8) is also true if we replace S_0 by T, which is given in Theorem 1, because at most two terms for $p = 2, 3$ will then be added to (2.8).

If $p \notin S_0 \cup T$, the Satake parameters of π_p are in one of the following forms:

$$
\begin{align*}
S_1 & : \text{diag}[u_1p^a, u_2p^a, u_1p^{-a}, u_2p^{-a}], & \text{where } & 0 < a \leq \frac{1}{2} - \frac{1}{17}, \\
S_2 & : \text{diag}[u_1p^a, u_2, u_3, u_1p^{-a}], & \text{where } & 0 < a \leq \frac{1}{2} - \frac{1}{17}, \\
S_3 & : \text{diag}[u_1p^{a_1}, u_2p^{a_2}, u_1p^{-a_1}, u_2p^{-a_2}], & \text{where } & 0 < a_2 < a_1 \leq \frac{1}{2} - \frac{1}{17},
\end{align*}
$$

where u_1, u_2, u_3 are complex numbers of absolute value 1 and we have suppressed their dependence on p for the simplicity of notation. As in [1], the corresponding Satake parameters of $\Pi_p \simeq \Lambda^2 \pi_p$ are as follows:

$$
\begin{align*}
S_1 & : \text{diag}[u_1u_2p^{2a}, u_1u_2, u_1^2, u_2, u_1u_2, u_1u_2p^{-2a}], \\
S_2 & : \text{diag}[u_1u_2p^a, u_1u_3p^a, u_1^2, u_2u_3, u_1u_2p^{-a}, u_1u_3p^{-a}], \\
S_3 & : \text{diag}[u_1u_2p^{a_1+a_2}, u_1u_2p^{a_1-a_2}, u_1^2, u_2, u_1u_2p^{-(a_1-a_2)}, u_1u_2p^{-(a_1+a_2)}].
\end{align*}
$$

Since Π is an automorphic representation for $GL_4(A\mathbb{Q})$ which is irreducibly induced from unitary cuspidal, (2.3) gives

$$
\begin{align*}
0 < 2a & \leq \frac{1}{2} - \frac{1}{37} & \text{if } p \in S_1, \\
0 < a & \leq \frac{1}{2} - \frac{1}{37} & \text{if } p \in S_2, \\
0 < a_2 < a_1 & \leq \frac{1}{2} - \frac{1}{37} & \text{if } p \in S_3, \\
\text{and } a_1 + a_2 & \leq \frac{1}{2} - \frac{1}{37} & \text{if } p \in S_3.
\end{align*}
$$

If $p \in S_1$, then

$$
\begin{align*}
|a_{\Pi}(p^\nu)| &= |(u_1u_2)^\nu (p^{2a\nu} + p^{-2a\nu} + 2) + u_1^\nu + u_2^\nu| \leq p^{2a\nu} + 5, \\
|a_{\Pi}(p)| &= |u_1u_2(p^{2a} + p^{-2a} + 2) + u_1^2 + u_2^2| \geq p^{2a}.
\end{align*}
$$

From these and (2.3) with $m = 6$, we deduce that

$$
|a_{\Pi}(p^\nu)|^2 \leq (|a_{\Pi}(p)|^\nu + 5)^2 \ll_{\nu} |a_{\Pi}(p)|^{2\nu} + 1 \ll_{\nu} |a_{\Pi}(p)|^2 p^{(1-2/37)(\nu-1)} + 1,
$$

Hypothesis H and the prime number theorem

5
where the implied constants are all independent of p.

Similarly if $p \in S_2$, then

$$|a_\Pi(p^\nu)| = |u_1^*(u_2^a + u_3^b)(p^{\alpha\nu} + p^{-\alpha\nu}) + u_2^2\nu + (u_2u_3)^\nu| \leq 2p^{\alpha\nu} + 4, \quad |a_\pi(p)| = |u_1(p^a + p^{-a}) + u_2 + u_3| \geq p^a - 2.$$

These and (2.3) with $m = 4$ imply

$$(2.11) \quad |a_\Pi(p^\nu)|^2 \leq 2(|a_\pi(p)| + 2)^{2\nu} + 4 \ll_{\nu} |a_\pi(p)|^{2\nu} + 1 \ll_{\nu} |a_\pi(p)|^{2\nu}p^{(1-2/17)(\nu-1)} + 1.$$

Finally if $p \in S_3$, then

$$|a_\Pi(p^\nu)| \leq 2p^{(a_1+a_2)\nu} + 4, \quad |a_\Pi(p)| \geq p^{a_1+a_2} - 1,$$

from which we deduce, as before,

$$(2.12) \quad |a_\Pi(p^\nu)|^2 \leq 2(|a_\Pi(p)| + 1)^{2\nu} + 4 \ll_{\nu} |a_\Pi(p)|^{2\nu} + 1 \ll_{\nu} |a_\Pi(p)|^{2\nu}p^{(1-2/37)(\nu-1)} + 1.$$

Now we apply Lemma 2.2 with the choice of parameters

$$(\pi', \pi'', \delta', \delta'') = \begin{cases} (\Pi, \Pi, \frac{2}{17}, \frac{1}{2}) & \text{if } \mathcal{P} = S_1 \text{ or } S_3, \\ (\Pi, \pi, \frac{2}{17}, \frac{1}{2}) & \text{if } \mathcal{P} = S_2, \end{cases}$$

to write

$$(2.13) \quad \sum_{p^\nu \leq x, p \in S_3} (\log p)|a_\Pi(p^\nu)|^2 \ll_{\nu} \begin{cases} x^{1-1/38+\varepsilon} & \text{if } j = 1, 3, \\ x^{1-1/19+\varepsilon} & \text{if } j = 2, \end{cases}$$

Now the required estimate (2.7) for Π follows from (2.10) and (2.13).

Next let us turn to the case of Π'. Let $\pi_1 = \oplus_p \pi_{1,p}$ (resp. $\pi_2 = \oplus_p \pi_{2,p}$) be a cuspidal representation of $GL_2(\mathbb{Q}_p)$ (resp. $GL_3(\mathbb{Q}_p)$). We may just consider those p such that at least one of π_1,p and π_2,p is not tempered. Then the Satake parameters of π_1,p and π_2,p are as follows:

$\pi_1,p : \text{diag}[u_1p^a, u_1p^{-a}]$, where $0 \leq a \leq \frac{2}{37},$

$\pi_2,p : \text{diag}[u_2p^b, u_3, u_2p^{-b}]$, where $0 \leq b \leq \frac{1}{2} - \frac{1}{17},$

where u_1, u_2, u_3 are complex numbers of absolute value 1. Thus the Satake parameters of $\Pi'_p = \pi_1,p \otimes \pi_2,p$ are:

$$\text{diag}[u_1u_2p^{a+b}, u_1u_2p^{b-a}, u_1u_3p^a, u_1u_3p^{-a}, u_1u_2p^{-(b-a)}, u_1u_2p^{-(a+b)}]$$

with

$$(2.14) \quad 0 < a + b \leq \frac{1}{2} - \frac{1}{17}.$$

Then

$$(2.15) \quad |a_{\Pi'}(p^\nu)| = |(u_1u_2)^\nu(p^{(a+b)\nu} + p^{(a-b)\nu} + p^{(b-a)\nu} + p^{-(a+b)\nu}) + (u_1u_3)^\nu(p^{a\nu} + p^{-a\nu})|. $$
Hypothesis H and the prime number theorem

From (2.15) we can see that

\[(2.16) \quad |a_{\Pi}(p^\nu)| \leq 6p^{a+b}\nu, \quad |a_{\Pi}(p)| \geq p^{a+b} - p^a.\]

Thus in view of (2.14), (2.16) and the fact that \(a \leq \frac{7}{37}\), we can deduce

\[(2.17) \quad |a_{\Pi'}(p^\nu)|^2 \ll (|a_{\Pi'}(p)| + p^b)^{2\nu} \ll \nu \quad |a_{\Pi'}(p)|^{2\nu} + p^{2a}\nu \ll \nu \quad |a_{\Pi'}(p)|^{(1-2/37)(\nu-1)} + p^{(1/2-9/32)\nu}.\]

Applying Lemma 2.2 with \(\pi' = \pi'' = \Pi'\), \(\delta' = \frac{2}{37}\) and \(\delta'' = \frac{9}{32}\), we now conclude that

\[\sum_{p^\nu \leq x} (\log p)|a_{\Pi'}(p^\nu)|^2 \ll x^{1-1/38+\varepsilon}.\]

This completes the proof. \(\square\)

The proof of Theorems 1 and 2.

Let \(\Pi''\) be either \(\Pi\) or \(\Pi'\). We can write

\[\sum_{p^\nu \leq x, \nu \geq 2} \frac{(\log p)^2|a_{\Pi'}(p^\nu)|^2}{p^\nu} = \sum_{j \geq 0} \sum_{2j+1 \leq p^\nu \leq 2j+1, \nu \geq 2} \frac{(\log p)^2|a_{\Pi'}(p^\nu)|^2}{p^\nu} \leq \sum_{j \geq 0} \frac{\log(2j+1)x}{2^j x} \sum_{2j < p^\nu \leq 2j+1, \nu \geq 2} (\log p)|a_{\Pi'}(p^\nu)|^2.\]

Using Lemma 2.3, we have

\[\sum_{p^\nu \leq x, \nu \geq 2} \frac{(\log p)^2|a_{\Pi'}(p^\nu)|^2}{p^\nu} \ll \sum_{j \geq 0} \frac{\log(2j+1)x}{2^j x} (2j+1)x^{1-1/38+\varepsilon} \ll \sum_{j \geq 0} \frac{\log(2j+1)x}{(2j+1)x^{1/38-\varepsilon}} \ll x^{-1/38+2\varepsilon}.\]

This implies the required result. \(\square\)

§ 3. Proof of Theorem 3

Theorem 3 follows immediately from (1.6) and the following lemma.

Lemma 3.1. Let \(\pi\) be a unitary automorphic cuspidal representation for \(GL_m(\mathbb{Q}_A)\).

(i) For each \(m \in \{1, \ldots, 4\}\), there is a constant \(\delta_m > 0\) such that

\[\sum_{p^\nu \leq x, \nu \geq 2} (\log p)|a_{\pi}(p^\nu)|^2 \ll x^{-\delta_m}.\]

(ii) If \(m \geq 5\), under Hypothesis H we have

\[\sum_{p^\nu \leq x, \nu \geq 2} (\log p)|a_{\pi}(p^\nu)|^2 \ll x / \log x.\]
Proof. In view of (2.1) of Lemma 2.1 with a suitable choice of \(\nu_0 \), it suffices to show, for fixed \(\nu \geq 2 \), that (i)

\[
(3.1) \quad \sum_{p^\nu \leq x} (\log p)|a_\pi(p^\nu)|^2 \ll_{\nu} x^{1-\delta_m},
\]

if \(m \leq 4 \), and (ii)

\[
(3.2) \quad \sum_{p^\nu \leq x} (\log p)|\alpha_\pi(p^\nu)|^2 \ll_{\nu} x / \log x
\]

if \(m \geq 5 \) under Hypothesis H.

First we prove (3.2):

\[
\sum_{p^\nu \leq x} (\log p)|\alpha_\pi(p^\nu)|^2 = \sum_{p^\nu \leq x^{1/2}} (\log p)|\alpha_\pi(p^\nu)|^2 + \sum_{x^{1/2} < p^\nu \leq x} (\log p)|\alpha_\pi(p^\nu)|^2 \\
\leq x^{1/2} \sum_{p^\nu \leq x^{1/2}} (\log p)^2|\alpha_\pi(p^\nu)|^2 + \frac{2x}{\log x} \sum_{x^{1/2} < p^\nu \leq x} (\log p)^2|\alpha_\pi(p^\nu)|^2
\]

which is \(\ll x / \log x \) under Hypothesis H.

Next we prove (3.1) for \(m = 4 \), since other cases are easier. As before it suffices to consider the sum on the left side of (3.1) taken over \(p \neq 2, 3 \) with \(\pi_p \) being not tempered. Then for such a \(p \), \(\Pi_p \equiv \lambda^2 \pi_p \). There are then three possibilities.

If \(p \in S_1 \) as in (2.9), using \(\Pi_p \) we get \(0 < 2a \leq \frac{1}{2} - \frac{1}{17} \) as in (2.10). Then

\[
|\alpha_\pi(p^\nu)|^2 = |(u_1^\nu + u_2^\nu)(p^{a\nu} + p^{-a\nu})|^2 \leq 16p^{(1/2 - 1/37)\nu}.
\]

From this, we deduce that

\[
(3.3) \quad \sum_{p^\nu \leq x, p \in S_1} (\log p)|\alpha_\pi(p^\nu)|^2 \ll \sum_{p^\nu \leq x, p \in S_1} (\log p)p^{(1/2 - 1/37)\nu} \ll x^{1-1/37}.
\]

If \(p \in S_2 \), we have

\[
|\alpha_\pi(p^\nu)| = |u_1^\nu(p^{a\nu} + p^{-a\nu}) + u_2^\nu + u_3^\nu| \leq p^{a\nu} + 3,
\]

\[
|\alpha_\pi(p)| = |u_1(p^{a} + p^{-a}) + u_2 + u_3| \geq p^a - 2
\]

with \(0 < a \leq 1/2 - 1/17 \). Then

\[
|\alpha_\pi(p^\nu)|^2 \leq \{(|\alpha_\pi(p)| + 2)^\nu + 3\}^2 \ll_{\nu} |\alpha_\pi(p)|^{2\nu} + 1 \\
\ll_{\nu} |\alpha_\pi(p)|^{2\nu}p^{(1-2/17)(\nu-1) + 1}.
\]

Similarly if \(p \in S_3 \), then

\[
|\alpha_\pi(p^\nu)| = |u_1^\nu(p^{a_1\nu} + p^{-a_1\nu}) + u_2^\nu(p^{a_2\nu} + p^{-a_2\nu})| \leq 2p^{a_1\nu} + 2,
\]

\[
|\alpha_\pi(p)| = |u_1(p^{a_1} + p^{-a_1}) + u_2(p^{a_2} + p^{-a_2})| \geq p^{a_1} - 2p^{a_2}.
\]
From this, (2.3) with $m = 4$ and the last inequality of (2.10), we deduce that

\begin{equation}
|\pi(p')^2| \leq \{2(|\pi(p)| + 2p^2)^\nu + 2\}^2 \ll \nu|\pi(p)|^{2\nu} + p^{2\nu}
\ll \nu|\pi(p)|^2p^{(1-2/17)(\nu-1)} + p^{(1/2-1/37)\nu}.
\end{equation}

As before, we can apply Lemma 2.2 with the choice of parameters

\[(\pi', \pi'', \delta', \delta'') = \begin{cases}
(\pi, \pi, \frac{2}{17}, \frac{1}{2}) & \text{if } \mathcal{P} = S_2 \\
(\pi, \pi, \frac{3}{17}, \frac{1}{37}) & \text{if } \mathcal{P} = S_3
\end{cases} \]

to write

\begin{equation}
\sum_{p^e \leq x, p \in S_j} (\log p)|\pi(p')^2| \ll \nu x^{1-j/37} \quad (j = 2, 3).
\end{equation}

Now the required result follows from (3.3) and (3.6). \qed

Acknowledgments

The second author wishes to thank l’Institut Élie Cartan de l’Université Henri Poincaré (Nancy 1) for hospitality and support during the preparation of this article.

References

*Institut Elie Cartan, UMR 7502 UHP CNRS INRIA, Université Henri Poincaré (Nancy 1), 54506 Vandœuvre-lès-Nancy, France
E-mail: wujie@iecn.u-nancy.fr*

*Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242-1419, USA
E-mail: yey@math.uiowa.edu*