On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles

Steeve Zozor 1 Christophe Vignat 2, 3
1 GIPSA-SIGMAPHY - SIGMAPHY
GIPSA-DIS - Département Images et Signal
2 GIPSA-SA-IGA - SA-IGA
GIPSA-DA - Département Automatique, GIPSA-DIS - Département Images et Signal
Abstract : In this paper we revisit the Bialynicki-Birula & Mycielski uncertainty principle and its cases of equality. This Shannon entropic version of the well-known Heisenberg uncertainty principle can be used when dealing with variables that admit no variance. In this paper, we extend this uncertainty principle to Renyi entropies. We recall that in both Shannon and Renyi cases, and for a given dimension n, the only case of equality occurs for Gaussian random vectors. We show that as n grows, however, the bound is also asymptotically attained in the cases of n-dimensional Student-t and Student-r distributions. A complete analytical study is performed in a special case of a Student-t distribution. We also show numerically that this effect exists for the particular case of a n-dimensional Cauchy variable, whatever the Renyi entropy considered, extending the results of Abe and illustrating the analytical asymptotic study of the student-t case. In the Student-r case, we show numerically that the same behavior occurs for uniformly distributed vectors. These particular cases and other ones investigated in this paper are interesting since they show that this asymptotic behavior cannot be considered as a "Gaussianization" of the vector when the dimension increases.
Type de document :
Article dans une revue
Physica A: Statistical Mechanics and its Applications, Elsevier, 2007, 375, pp.499-517. 〈10.1016/j.physa.2006.09.019〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00096865
Contributeur : Steeve Zozor <>
Soumis le : mercredi 20 septembre 2006 - 14:37:35
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48

Identifiants

Citation

Steeve Zozor, Christophe Vignat. On classes of non-Gaussian asymptotic minimizers in entropic uncertainty principles. Physica A: Statistical Mechanics and its Applications, Elsevier, 2007, 375, pp.499-517. 〈10.1016/j.physa.2006.09.019〉. 〈hal-00096865〉

Partager

Métriques

Consultations de la notice

329