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Nicolas OLLINGER and Gaétan RICHARD **

Laboratoire d’informatique fondamentale de Marseille (LIF),
Aix-marseille Université, CNRS,
39 rue Joliot-Curie, 13 013 Marseille, France.

Abstract. Signals are a classical tool of cellular automata construc-
tions that proved to be useful for language recognition or firing-squad
synchronisation. Particles and collisions formalize this idea one step fur-
ther, describing regular nets of colliding signals. In the present paper, we
investigate the use of particles and collisions for constructions involving
an infinite number of interacting particles. We obtain a high-level con-
struction for a new smallest intrinsically universal cellular automaton
with 4 states.

Introduction

Cellular automata were introduced by J. von Neumann [11] in the forties to study
self-reproduction. They consist of a parallel computation model in discrete time
based on an infinite grid of regular cells (endowed with a state chosen among
a finite alphabet) interacting synchronously with each other. Even if it is well
known that such systems have a great computational power, one outstanding
question is to find the smallest universal cellular automaton. In fact, there exist
two kind of universality: Turing universality consists in “simulating” any Turing
machine whereas intrinsic universality consists in simulating any other cellular
automaton.

For a detailled survey of universality of cellular automata, see [8]. For dimen-
sion two or above, the intrinsically universal cellular automaton constructed by
E. R. Banks [1] (2 states) is optimal. For dimension one, the result of M. Cook [2]
(2 states) is optimal for the case of Turing universality. However, this cellular
automaton does not achieve the stronger notion of intrinsic universality, leaving
a gap between Turing universality and intrinsic universality since the best result
on intrinsic universality is with 6 states [6].

All the preciously mentioned constructions use meta-structures known as
particles and collisions. Those elements are the core of algorithmic on cellular
automaton and were heavily studied by J. Mazoyer and V. Terrier [5] . For
constructions, a formal approach has been proposed in [9]. With this method, it
was possible to obtain [10] a new high-level proof of the result of M. Cook. In this
paper, we use this formalism to construct quite simply an intrinsically universal

* Work suppoted by a grant of the French ANR
** corresponding author: Gaetan.Richard@lif.univ-mrs.fr



2 Nicolas OLLINGER and Gaétan RICHARD

cellular automaton with 4 states narrowing the gap between Turing universality
and intrinsic universality. The rule of the automaton is constructed to ensure the
presence of particles and collisions with a predictable behavior. The technical
part of the proof is to encode information with those elements to simulate any
cellular automaton. Thus this proof is quite alike complexity NP-completeness
proofs.

In section 1, we first recall definitions of cellular automata and different
types of universality and then introduce the formalism used for particles and
collisions. In section 2, we construct the rule of the cellular automaton and show
how particles and collisions can be used. In section 3, we discuss in more details
the encoding used and finish the proof.

1 Cellular automata, universality and self-organisation

In this paper, we only consider cellular automata in dimension one, with the three
nearest neighbours. Therefore, a cellular automaton is a pair (S, f) where S is a
finite set of states and f : S3 — S is the local transition function. The automa-
ton act on elements ¢ € SZ (called configurations) by F(c); = f(ci—1,¢i,Cit1)-
Moreover, a cellular automaton is said to be one-way if the local function does
not depend on its third argument. A space-time diagram D is a bi-infinite se-
quence of configurations obtained in the dynamics of cellular automaton. More
formally, it can be seen as an element of sz satisfying Vi,j € Z,D(i,j + 1) =
f (D(Z - 17j)’D(i7j)7D(i + 17j)>'

Unless many other known computation systems, cellular automata act on
infinite configurations and do not posses any halting property. These two prop-
erties have led to several different definitions of universality. One position is to
simulate Turing machine by using “ad-hoc” properties. General scheme of dif-
ferent suggested properties was summarised by B. Durand and Zs. Roka [3].
Turing universality requires that, for each Turing machine, there exist a com-
putable function that transforms each input word of the Turing machine into
a ultimately periodic initial configuration and another computable function to
decide halt such that the initial configuration eventually reachs a configuration
with halting property if and only if the Turing machine eventually halts on the
input word.

The other approach is to simulate any other cellular automata evolution.
Intuitively, a cellular automaton simulates another one is the space-time diagram
of the latter can be “embedded” into the former. Formally, a cellular automaton
A = (S, f) simulates a cellular automaton B = (T, g) if there exists [, m,n € N
and t : S' — S partial onto! application such that Ve € T% F™(t71(d)) C
t=1(G™(d)). That is, up to encoding by ¢, F™ contains the dynamic of G™. With
this notion of simulation, it is possible to define intrinsic universality.

! Usually, t~! is requested to be one-one. Here, we choose to use this lighter version
for convenience. It is an open (and very interesting) question to know whether those
two definitions are equivalent.
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Definition 1. A cellular automaton is said to be intrinsically universal if it can
simulate any other cellular automaton.

The notion of intrinsic universality is stronger than the notion of Turing uni-
versality in the sense that every intrinsic universal cellular automata is Turing
universal but the converse is false. Therefore, it is not surprising that the intrin-
sic universality problem (i.e., given a cellular automaton 2(, decide whether 2
is intrinsically universal) is undecidable [7|. Throughtout the paper, universality
always refers to intrinsic universality.

As many others constructions, we heavily rely on particles and collisions to
encode and compute information. To define these objects, we use the approach
developed in [9] seeing space-time diagrams as tilings of SZ* with local con-
straints. Therefore, we need to introduce some concepts from discrete geometry:
a coloring C is an application from a subset Sup(C) C Z? to S. Such color-
ing is said finite if Sup(C) is finite. Three natural operations on colorings are
translation of a coloring C by a vector u € Z? defined by (u - C)(z + u) = C(2);
disjoint union of two colorings C and C’ with Sup(C) N Sup(C’) = @ defined by
C @ C'(z) = C(z)(resp. C'(z)) for all z € Sup(C’)(resp. Sup(C’)); at last, restric-
tion of a coloring C to D C Z? is denoted by C\p- With those elements, let us
give definitions of the three used structures of self-organisation.

(a) A background (b) A particle (c¢) A collision

Fig. 1. Examples of structures present in self-organisation

First structures are two-dimensional backgrounds (see Fig.1a) which are triplets
B = (C,u,v) where C is a finite coloring and u,v two non-collinear vectors en-
suring that @i,j622 (iu + jv) - C is a space-time diagram (this space-time dia-
gram is often also referred as % when no confusion is possible). These struc-
tures mostly serve to “fill” empty space in constructions. Among backgrounds,
one-dimensional particles travel (see Fig.1b). Particles are quadruplets P =
(C,u,B;,B,.) where C is a finite coloring, u a vector, B; and 9B, two back-
grounds ensuring that 7 = @, ., ku - C separates the plane in two 4-connected
domains L and R (L being the left-one according to u) so that B, ©Z @ %TR
is a space-time diagram. Particles are often used to convey part of informa-
tion either alone or in groups consisting of parallel particles. Last but not least,
collisions (see Fig.lc) are pair (C,L) where C is a finite coloring, L is a fi-
nite sequence of n particles P, = (B;,C;, u;, B)), satisfying the following condi-
tions: first, consecutive particles on the list agree on their common background
(Vi € Zy, B, = B;;1), then particles and finite perturbation form a star
(I =Co® @iezn,keN ku; - C; cuts the plane in n 4-connected zones and For
all i € Zn, C ® @y (kui - C; @ kuiqy - Cipq1) cuts the plane in two 4-connected
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zones. Let P; be the one right of ;) and at last, € = Z&EP, B p, is a space-time
diagram.

To describe easily complex space-time diagrams, one idea is to symbolise
particles as lines and collisions as points, giving birth to a planar map called
catenation scheme as the one in upper-left corner of Fig. 3. Formally, a catenation
scheme is a planar map whose vertices are labeled by collisions and edges by
particles which are coherent with regards to collisions. Since catenation schemes
are symbolic representations, it is not clear that there exist associated space-time
diagrams. In fact, to go back from a catenation scheme to a “real” space-time
diagram, one must give explicit relative positions of collisions as, for example,
by giving the number of repetitions for each particle (edge) of the scheme. Such
set of integers is called affectation and is said to be valid is the resulting object
is a space-time diagram. The main result on catenation scheme is that set of
valid affectations can be computed from finite catenation schemes.

Theorem 1 ([9]). Given a finite catenation scheme, the set of valid affectations
is a computable semi-linear set.

In this paper, the constructed automaton is based on particles and collisions
and thus, heavily relies on the methodology used for catenation scheme. However,
since the particles and collisions are explicitly constructed, they are very small
and posses many good combinatorial properties. Therefore we do not need the
whole power of catenation scheme and can often give simpler arguments for our
specific case. The rest of the paper is devoted to construct the automaton and
prove it is intrinsically universal. This is done in two steps: first, we explicit the
automaton and show, using catenation scheme, that it can somehow “simulate”
the local behavior of any automaton. Then, we show how to assemble those local
simulations into a global one.

2 The automaton and elementary block

In this section, we present the automaton and show how it can “somehow” simu-
late any local transition function of one-way cellular automaton in an elementary
block. Before going on with this block, one point to notice is that it is sufficient to
simulate one-way cellular automata to be intrinsically universal. Therefore, our
elementary block is constructed such that it takes three inputs (one transition
function and two arguments) and outputs three values (one transition function
and two “copies” of the result).

To provide a good view of the automaton, all needed materials are depicted
in Fig. 2 and Fig. 3. The first figure gives explicit local transition function and
particles, whereas the second one gives the catenation scheme along with all
interesting extracts of corresponding space-time diagram. The rest of this section
is devoted to describe and explain the contents of these two figures. The local
transition function is fully depicted on the top of Fig. 2. In fact, it is not a real
transition rule since some cases (denoted by white ) are not used and thus can
take arbitrary values.
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Fig. 2. Local rule and particles



Nicolas OLLINGER and Gaétan RICHARD

<X X
L0 00 202020 50 %020 20 %0 % 20 %0 % %0 20% %0 20 % %020 %0 %20 %0 % Lo te Y tetetedotedel XX s
e R RIRRRRLILRLRLAILILIK e toee! 5
e 0090 0RIRRRRRRIRIIIIIIILRRRRRIK OIS 000! %
B R BRSS! < R SIS 0% X
SR IL RIS dogesesss XS X
S SRR RRL XL RIS X%
QSRR SRS SR B S 0000 %0%% SR R BRLRIIBELLR I o
e O o % De%e%e %% RBRRXBLIRBLAK,
SRR IR I IR, 2585 OO e e oo ot tu ettt
SRR L LN KKK Do e o e st osete®) %
KRR X B B BB CRRRK DO e e e eSS s 385
SREL RS, QL R IR a6 R IRRIIRRIIKRIEIIKLLRKS
NQ“QNO“Q“QNOOQQrQQVNQQVN 0“0”0”0"0 RIS R R RIS
AL IR, KRS SERSRIASS s resets IR,
oot otetotetetes ot 2K XIS G ] S O O R IR IR
RGBS, odelele oS ete e 0% K, R LIS,
RIS 0%0%% SBERIRIOHERIKS SBARKS S IRRRIRXL B RLHIG
SGRIHRRHARKX B R B CRIKL SOOERKRLS S ORI RLRRE
RIS, XXX SEELIRIEIES 385 % SRS
oo e te e te et o taso bt 2K CSALISIAS ool Soteles OO O 0%,
SRR % RIIIIKEKKS OIS &5 LS SRS
B RRRRES 5 X % RBETES
CLRRHLHILIR % SRRRXRLLRLRRLHKRKS
SORRAILIGULIALIB B B AR BILIRAKIALIKRIAXRNS B X 5 RIS
G e R R R S I RRRRIRLRKS A X RS <
RIS IIR S ILSIIILIILLIIIKK 05! X RIS IRIKIRN
3> RGO OBBORESIEOORRRKRR X K 3 RSB
% %, o% XX X XSRS R R 8,
S R R R T e QL L P00 e K 0SS B B 000000000, 20300y 90000 90t SR AN IR
e o000 o Oat 0 L BB BRI
e S e el e O SRR o SRS
XXRIKK B OIS RO IO 00X IRIIIKRNXX LK RS =
SRR LS BIRCE S BRSNS IIRRIIKBELRRAXKIBELKS = o
RS e IR I MR g N S I IR I X X IR RS BRSSO RS, 5L
QSRR BB IR S PRI, LSRRI HLKNK R, X X%
R BB B ALK SIS RIILIEEKLKS 5% o
O A e RIS R 5 35588
QR 2% R, e XX, ,
R R IS Aot BRI
L SO SR R SR SRS S K gagegsders e Lo
RIS SR SR SR Ry ooy SRR SRS SR SR SRS
ISR L IR S, A < SRS SR SRR S ek 5
RRRLRLLCLRRRREAL * SORRERSS X
o etetatetetete®; QRIS QGERK

0020}
%S
00
S
<%

%
Sadatototetet: s

%%
X5
%%
xS
S
0o
%
9%
55
&
»

REKE

3RRIRKS CRRELII IR0
XKL IR CRRLILALR
30RRRRKS QIR K STRRRRR =
CRXHXK 30X B RILXKKS ~—
%% % % . RROOSSSRSSL
X 0000 o%% K ', 00 0 %%
XRXRXKK % 0058 SO0 e FRIRERKS
%% <) o OSSR e Sa e 8 MuC B e
% X e X 8 < QXX M o A R g AR 8RR RRC S,
O eegoaise SSBRIN B RR OE HCRRERLIEN
XK dogades R RIS KX B XX g XX g SR TR B Bl e < B
5% 2 KL IKKK WK < R IR R R e
% O e g oo e O o O 0o %

0% OO A O e O O e 0 0]

s SRRSO SIRLIRRS:

% o R R B ILRS

¥ < BRC RC SR BRY
< PSSO K X S K PSS K R XSS Sm S B B

30BN X LY B,
KXW XX OGICHX AR ARK XXX R Rl R !
BSRRIRIHIERIIKRRRKRRRRIOERRAR

2
38
&2

S

eSSt

X
KX
29593

5
K5 3B
5 o808
X 2008
85X
o tels
2%, ool KK
S030% K oms 040
XX BB 0 S
SOOI Pt O siler b % Vit

B
Poot oo ety tatetett

SO0, SO O 9
QRIS RGBS IR
2RI 2O0RRGE AILGE 58

<%
O O Y OBK K RO
et Teost

LXK oS,
e aSo oot tade ok o8
e OO R  SoaS e aoe 1% %t % g%
000, SeSeisatet, et ratel, el
SRR BN,
SRR SIS B0
SIS ISELXILRRR SR R B S RS R SRS
SR IEBERIRIIKAL BT X K X G X X R
RS BELLRRRRIKKS SRS B AL R
Saooet: et %t et ettt %S SRR RIS RIS S
XIS 2R DO g O OO 90 e 0 S0
LIRSS S S T XTSI T,
ototatet0eY. a0 %% pPotetetete! SR RO SIS
R XRERIKX I XX SXARX AKX XXX X GELRIHLLLRRS
GBS s tolotetevetet O oo teP e o e o O ettt e et tote]
KSR RLLLKS RIS R IR
X % %0%4 Q SRR R XX X X K RSB
ools ps O o e %%
XX p BESERRILSISSRIKK

Fig. 3. Constructed block and collisions



A Particular Universal Cellular Automaton 7

Even if giving the rule could be sufficient, the next part is devoted to give
intuitions behind local transition function to ease understanding of the automa-
ton. The first part is devoted to present background and particles used in the
construction. Those structures are depicted in the corresponding part of Fig. 2.
For each structure, we give a meaningful extract of space time, its name along
with used local transition function cases. The formal definition can be trivially
extracted from those diagrams.

One main specificity of our cellular automaton is that, contrary to other
known constructions, it does not use a uniform background but a bi-colored
check-board (B). With this new approach, we need two states (instead of one)
for background but this allows us to have a greater range of particles since each
remaining state can lead to two distinct particles according to its alignment
within the background. Thus, with the two remaining states, we can construct
four different particles (i, i), i, i)) Furthermore, since background has two
different phases, one can construct an additional particle (1) by taking advantage
of the gap between the two phases. Those are the main particles used in the
construction.

To encode information, the basic idea is to use groups of parallel particles that
we call signals, depicted in the corresponding section of Fig. 2. In those group,
information can be encoded in two different ways: either by the number and type
of the particles used or by relative position between those particles. Here, we use
both approaches. As noted before, we need to encode three main information:
the left state (i.e., state of the left neighbour) is encoded in unary by the number
of (regularly spaced) u particles (signal [). The same way, the center state is
encoded in unary by the number of (regularly spaced) M particles (signal m).
For the local transition function, it is seen as an array of integers and encoded by
spaces between particles ] (signal R): the j-th element of the array corresponds
to the space between the j-th and the j+ 1-th particle of the signal. To be exact,
the space is counted by the sum of numbers of [/l between two consecutive B
and two (for the previously mentioned states). This way of counting may seem
a little obscure but is chosen to give nice formulae in the end of this section. In
the rest of the paper, names of symbols are also used when speaking of encoded
values.

During computation, other kind of signals are appearing: First, a mirror copy
of signal R (R’) which encode the same information using ] particles (going
in the opposite direction). At last, an altered version R (of R') appear. In this
altered version, some of the leftmost M particles are replaced by B. Due to
choice of background and particles, our automaton has a special property which
makes the proof a lot easier. Contrary to many other cellular automata, we have
no synchronisation problems.

Lemma 1. When two of the particles (or signals) described above collide, oc-
curring collision is always the same.

Proof. As studied by J. P Crutchfield et al. [4], the number of ways two particles
(or signals) can collide depends on the relative position between those two par-
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ticles. Possible relative positions takes into account repetition vectors of those
particles and constraints induced by backgrounds. In our case, repetition vectors
are either (1,1), (0,2) or (—1,1) which suggests the possibility of two distinct
collisions. However, the background forbids one of those possibility leaving only
one possible case. a

With this very strong property, we can focus on symbolic behavior. Let us go
and construct the dynamic. The scheme of elementary block is depicted in Fig. 3
(along with extracts of all induced collisions). The block is made the following
way: left and right borders are delimited by 1} particle. At the bottom, we have
a left state signal [, a rule R and a center state signal m. The left state signal
is going through the rule (collision f) and then collides with center state signal
(collision ¢). This collision outputs an unused copy of the left signal to the right.
This signal is erased when encountering the right border (collision g). Collision
¢ is also sending a signal encoding the the sum of left and center state to the
left. This new signal is encountering (collision d) the mirror copy R’ (created
when R crossed the left border during collision b). During collision d, as many
particle of R are altered® than encoded value (i.e., the sum of left and center
signals). The signal embedding the sum is destroyed by the collision whereas the
altered rule R proceed to the right. After crossing another rule R (collision e),
the altered rule R collides with the right border and produces at the same time
a new center state signal and a left state signal (located right of the border) in
collision a.

Additional cases needed for each collision in the local transition function
are made explicit at the bottom of Fig. 3. This scheme gives us a symbolic
block which somehow “computes” the rule. Now, let us prove that this symbolic
behavior does really correspond to a valid space-time diagram and look at the
details at the computed function. The following proposition deals with the first
problem by ensuring that, under reasonable conditions, the scheme of symbolic
block is a valid space-time diagram. Moreover, it gives some additional results
on regularity of this block.

Proposition 1. For any encoded rule R which contains only even number greater
that four, for any reasonable encoded value in left and right state signal (i.e. they
are not null and their sum is less that the number of integers encoded in R) the
scheme of the symbolic block correspond to a valid space-time diagram. More-
over, the size of the space time diagram does mot depend on the encoded states
and those blocks can tile the plane.

Proof. First of all, previous lemma ensures us that collisions occurring have all
the same behavior; non null condition ensures that all particles exist. The proof
that collisions are valid can be directly deduced from extracts given in Fig. 3.
Due to the fact that constraints are local, periodicity considerations are sufficient
to prove the validity of collisions occurring. The case of collisions ¢, e, f and g

2 Last alteration is an erasing rather than a change of the particle but this does not
change the behavior
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is easily get rid of since the perturbation inside the collision is periodic: adding
one (or more) particles is the same as increasing the size of the periodic portion
of the collision. Collision b requires space between particles ] to be greater than
four. For collision d, the constraint is just that there are at least one particles ]
left (i.e. sum of left and right values is less that the number of integers encoded
in R). The last significant point is in collision a: since the vertical portion in the
collision has periodicity (0,4), it requires that inter-space in R being even (this
inter-space is of course the same as in R). If all these constraints are respected
(which is the case for our proposition) then the resulting catenation scheme is a
valid space-time diagram.

Now let us fix R, this implies that encoded values in states signals are
bounded. Therefore, all signals are of bounded size and thus can be rendered
“nearly punctual” by increasing the size of the cell. With this, it is sufficient to
take relative positions of signal as in the scheme of Fig. 3 to achieve same size
blocks.

The last point is to prove that such space-time diagrams, associated to ele-
mentary blocks, tile the plane. First remark is that symbolic blocks already tile
the plane. Now if we look in details, border are left untouched by all collisions
and rule signals are only shifted of a constant when encountering a border. This
implies that crossings of rule signals and border (collisions b) form a regular grid
on the plane. At last, position of all other collisions only depends on a small
number of neighbour points on this grid. It is directly visible for e and a. Posi-
tions of collisions f, g and ¢ also depend on a’ but its position is fixed by previous
case. At last, collision d depends on ¢ which was already treated. a

With this result, we have an elementary block able to do simple computation
according to a rule R and which can tile the plane. Before combining those
elementary blocks in the next section, we must first study exactly which function
is computed by our block. For the same periodicity reason than previously, it is
sufficient to look at what happens in the case of collision a in Fig. 3.

Lemma 2. Let R(i)1<i<n be the value encoded in R andl (resp. m) be the one
encoded in | (resp. m); then the block leaves R unchanged and outputs m' and !’
with encoded values respectively R(1+¢)+14+c¢— (N +1) and R(I+¢)/2. O

This block computation is alike a cell in a cellular automaton except that it
sends different values for left and right states. This difference prevents us to give
a direct simulation and require quite additional work to get rid of this problem.
A better way to overcome this problem would be to alter the automaton or
use unused cases in the local transition function to ensure equality of outputs.
However, for the moment, we do not manage to do such a thing. Therefore we
present an alternative (and quite combinatorial) solution to use this elementary
blocks in intrinsic simulation in the next section.
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3 Simulation of cellular automata

To achieve intrinsic universality with our cellular automaton, the idea is to use
the constructed elementary blocks and encode information not directly but only
on portions of integers. First step is to remark that rather than working on only
one block, we can work on chain of two consecutive blocks chained by left output
(see Fig. 4). The new constructed element has three inputs (namely {,m, m) and
three outputs I’, m’ and m’ (not including rule). The key points is that we see
input as integers written in binary and work on bits of these integers. The basic
idea is to simulate a cell of a cellular automaton using [ and m has inputs, I
and m’ has outputs and maintaining the same constant value in all m and m’.

Fig. 4. Symbolic chaining of elementary blocks (encoding of state if ommited)

Let us take a one-way cellular automaton (S, f). Since f does not depends
on its third arguments, we can see it has an elements of S? — S. Every element
of S can be seen as a non null integer and written as a finite word of fixed size
k on binary alphabet denoted by s = sgsy ... s,_1. All values encoded in signals
can be seen as integers with 4 + 8k + 3 bits (including leading zeros). The first
four one are called header, the last three one are called footer and each inside
block of 8 (called digit) is used to encode one bit of the state. The size of the rule
N is chosen as 24183 _ 1. Only some portions of those encoding do support
information. Other portions contain garbage which prevents to achieve one-one
encoding.

The method used to encode and decode is depicted in Tab. 1. The encoding
of [ and m contains some junk but is chosen so that [ + m contains the whole
information about states encoded in [ and m. With this, it is possible to chose
the value of R(I +m) according to these states. Half of the bits of R(I + m) are
chosen to ensure the value of [°. The other half (denoted by symbol e) is used
to ensure correct values in m’ = R(I+m)+1+m — (N + 1). In the second cell,
one observe [ +m which has a different header and thus a different value of any
valid [ + m. Therefore, one can chose R(I° +m) as N —1° + 1 (note that this
value is even). With this choice, M’ = N —1°+1+1°+m - N —-1=m and I
is on the correct form. With this encoding, we can simulate any rule of cellular
automaton inside our cells. Leading to the following theorem:

Theorem 2. The cellular automaton presented in Fig 2 is intrinsically univer-
sal.
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header
N 1111
l

m

digits ) footer
11 11 11 11 ) 111
11 s0 11 00 ) L11

0101

N —1°+1]|101L ;0L 10 0L ) L10
U 0101 (J_J_ t0 L1 00 ) L1
1 denotes arbitrary value and e value to be fixed.
Table 1. Encoding of states inside values

(
(
(
(
(
l+m Olzz (
(
(
(
(L

0000 (Ll 00 Ll si0) L11
c 1000 00 00 00 00 ) 000
1lsl L1ls;l) L1l wherezz=01or 10
R(l+m) |10ee ( ;1 ee 11 ee ) 100
m/ 0000 (LL 00 L1 ¢0) LLl1
1° 010L Ltl 1L 11 11 ) L10
)

Proof. With the previously presented encoding, chains of elementary blocks can
encode any one-way cellular automaton local transition rule. Moreover, the en-
coding ensures conditions for proposition 1. Thus constructed elementary blocks
can tile the plane. If we associate to each cell of the simulated cellular automa-
ton space-time diagram the corresponding (up to garbage consideration) chain
of elementary blocks, we can simulate any other automaton. Last point is to note
that even if the simulation is not horizontal, the problem can be easily overcome
with standard tricks. ad

Conclusion

Our construction heavily relies on signals and manages to give a construction
with two disctint levels: local rule is constructed to ensure a set of particles and
collisons. Then, the simulation is made encoding the computation with this set.
This method allows us to have a clear and understandable construction which
separates the local and global aspect and gives us a new smallest intrisically
universal cellular automaton.
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