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BESSEL-TYPE FUNCTIONS OF MATRIX VARIABLES
SALEM BEN SAID

ABSTRACT. We compute explicitly a certain type of hypergeometric function of
matrix variables given as an integral of a Gaussian-type kernel. In the case of one
variable, this function is related to the modified Bessel function of the third kind.

1. INTRODUCTION

This paper deals with explicit computations of certain hypergeometric functions
of matrix variables associated with the linear groups U(p, ¢) and Sp(2n,R). Further,
integral formulas over the group of unitary matrices are given. To be more specific
about our result, let us take the case of U(p, q).
I, 0
0 —1
copies of (+1) and ¢ copies of (—1) along the diagonal. Define U(p, q) as the set of
invertible matrices g € M(n,C) such that g1, ,9* = I, ,, where g* = g".

For diagonal matrices o = diag(ay,...,a,) and B = diag(f,...,,), such that
a; + B; # 0, we define

For pge Nand n =p+gq, let I, = ] be the diagonal matrix with p

Cpaler, B) = / exp|tr(diaglex, 8](99") ))dg.

U(p,q)

Here “tr” means the usual trace of a matrix, and “exp” is the exponential function.
If p=¢q =1, we can easily show that

Cala, B) = cola+ ﬁ)_1/2K1/2(Oé +0),
where K, (z) is the modified Bessel function of the third kind

_2/2 00 I/*%

T € 1 t

K, (2)=4/——F——— e (14— dt,
(2) \ 22F(u+%)/0 ¢ 2( +z>

for Re (1/ + %) > 0 and |arg z| < m. As we can see, the function ¢, , is a multivariate
analogue of the modified Bessel function. To compute ¢, ,, the main idea is to write
(p.q as an integral over the unit ball ®,, = {z € M(p,¢;C) | det(l, — zz*) > 0},
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2 SALEM BEN SAID

and to use the polar decomposition of ®, ,. In doing this, we also obtain the explicit
formula of

oFo(S,T) = / exp[tr(uSu*T)|du
U(m)

for m x m-diagonal matrices S and T. Here U(m) denotes the set of unitary ma-
trices u € M(m,C). It turns out that (Fy(S,T) was introduced by A. T. James in
[JAMES, 1964] as a generalization of the usual hyperfunction (Fy(S) = exp[tr(.S)].

The family of §, , was introduced by Sahi [SAHI, 1992] in a more general setting.
These are Sahi’s e, 4 Gaussian functions. These functions play an essential role
in Sahi’s construction of small representation. Also, this family of hypergeometric
functions was investigated, in the general setting, by the author and Barchini in
[BARCHINI-BEN SAID, 2002], where we obtained lower and upper bounds that give
information about the growth and singularities of the functions ep 4.

The following notations will be used through out the paper. For a matrix x we

write ¥ = 7' where ' is the transpose of x. If xy, 25, ..., 7, are complex num-
bers, diag (z1, z,...,x,) denotes the diagonal matrix of size r x r. If x and y are
—_———

rXr
two square matrices of size r X r and s X s, respectively, exp [tr(z + y)] denotes

exp|tr(x)] expltr(y)] where “exp” is the exponential function. For r,s € N, the el-
ement I, ¢ is the diagonal matrix diag [I,; —I], where Iy is the N x N identity
matrix. For » € N, S, denotes the group of permutations.

2. THE U(p, q)-CASE
Let p,q € N, and assume that ¢ > p. We define

U(p,q) ={ g€ GL(n,C) | 909" = Ipg } (n=p+q),

where GL(n,C) denotes the set of n X n-invertible matrices. For g = [ é 15) } €
U(p, q), the defining condition of U(p, q) implies the following relations

(a) AA* — BB* =1, (e) C=DB*A*!
(b) CC*—-DD*=—1, (f) B=AC*D*!
(c) A*A—-C*C =1, (g) C=D"'B*A
(d) B*'B—D*D=—1I, (h) B=A"'C*D.

For all a = diag(a,...,q,) with a; > 0, and B = diag(f, ..., [,) with 5, > 0,
let

Gyl B) = / exp|—tr (diag[a,ﬁ] (gg*)_l)]dg.

U(p,q)
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A B
For g = [ D

. oot [ alAA*+ BBY) a(-AC* — BD")
diag[ex, B](99") " = { B(—CA*— DB*) B(CC*+ DD*)

Therefore, by the relations (a) and (b) we have

tr (diagle, B(gg*) ") = tr (a(AA* + BB*) + B(CC* + DD*))
= tr (a(24A" — I,) + B(2DD* — 1,)).

Let ®,, be the domain defined by
Dy =1T¢€ M(p,q,C) | det(l,—TT")>0}.

The measure du(T") = det(l, —TT*)"P~9dT is the U(p, ¢)-invariant measure on D, ,
where dT" is the Lebesgue measure on ®, .
The map U(p, q) — D,,, defined by

| A B I
(4 8] e
is a homeomorphism. Using the relations (a),..., (g) and (h), we can write AA* =

(I, — TT*)~' and DD* = (I, — T*T)~".

Next, we write U(N) = U(N,0). It is well known that for all functions F' defined

on U(p,q), such that F(gk) = F(g) for all k£ € [ U(()p) U(()q)

function F*:®,, — C defined by F¥(T) = F(g) such that

F(g)dg = FYT)du(T).
[ Fg= [ Frim

p,q

}, there exists a

Therefore, if F(g) = exp|[—tr(diag[e, B](gg*)~1)], there exists a complex valued func-
tion F* on @, , such that

FYT) = exp[—tr(al2(l, - TT) ™ — L] + B2(I, - T*T) "' — I])]
= exp[—tr (a(l, — TT*) 'L, + TT*) + B(I, — T*T) (I + T*T))]
= exp [~tr (a+B+2a(l, — TT*)'TT* +28(1, - T*T)"'T*T)] .

By [Hua, 1963], for T' € ®,,, there exists u € U(p) and v € U(q) such that
T = ulAv, where

A= - o | eM(p, g R)
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and 1 > XA\ > Ay >--- >\, > 0. Hence

TT* = diag [A],..., \] u’, T*T =v* diag [A,...,A2,0,...,0] v.
— N ~~ o
pPXp gxq

Therefore F* can be written in terms of u, v and A as
FY(T) = exp[—tr(a + B)] exp (—Qtr(u_lau(lp - AA*)_IAA*))
exp (—2tr(v™!Bu(I; — A*A)TIA*A)).
Consider the map ¢ : ©,, — T taking each 7" € ©,,, to the collection of the
eigenvalues of v/TT*. The image of the Lebesgue measure dT' on D,p,q With respect

to the map 1 is the measure on T given by
p

c I =222 an,

1<i<j<p i=1

for some constant ¢. Thus, the image of the measure du(T") = det(l, — TT*)"P~%dT
is

p
(2.1) c I 2= 22T P (- a3 radn,.

1<i<j<p i=1

Hence, the function ¢, ,(a, B) is given by
Gula,B) = c exp[—tr(a+ 03)] / / / exp (—Qtr(u—lau(Ip — AA*)—lAA*))
Ulp) JU(g) /T

- exp (—2tr(v ' Bu(I; — A*A)TTATA)) -

p p
[T =X TN a— a7 [ dhdudv.

1<i<j<p i=1 i=1
Let
22 22
2.2 A:=2(I, — AN)TTAA* = di L. P
22) (1, ~ AN) s | 2
P::P
and
22 2)2
2.3 B :=2(I, — A*A)"'A*A = di L P_0,...,0].
(23) (1, A°A) P A
axq
2)2
It will be convenient for us to define new coordinates z; = (1—1/\2> Then the set

T={A | 1>X>X>--->)\,>0} becomes the set
X = { diag(z1,29,...,2p) | 21 > 29> >12,>0}.
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The measure (2.1) in the coordinates x; has the form
P
c H (zi — x;)° H x} Pdx;,
1<i<j<j i=1

and the function ¢, ,(a, 8) can be written as

GaleB) = ¢ espl-tr(a+ )] | ; / . [ expl=tr(u @) exp(—tr(o™ BuB)
p q

p

H (z; — z;)° H ! Pdx;dudv,

1<i<j<p i=1

where A and B are given by (2.2) and (2.3).
Now we turn our attention to the integral formula over U(p) and U(q). For this
we need to introduce some terminology.

For a multi-parameter ¢ = (ty,%s,...,tyx), the Vandermonde polynomial is de-
fined by D(t) = H (t; —t;). Let £ = (¢y,...,0y) € NN, The Schur polynomial
1<i<j<N

Sp(t1,...,ty) is defined by
det(t; ™ ) 1cijen
D(t)

For more details on Schur polynomials, we refer to [MACDONALD, 1979, Chapter I].
We also need the following lemma.

Se(tl, cooty) =

Lemma 2.1. (cf. [HuA, 1963], Theorem 1.2.1) Let the power series
fily) =) a? yr.
k=0

Then for all (y1,ya,...,yn) the following identity holds

(. _ (4) ¢
det (fz(yj))lgi,jgjv = Z det <a£j >1§i,j§N det <yi )ISMSN )
U1 >0a>-->0n>0
where £1, 05, ..., N are integers.

Now we are in position to compute the integral over the compact groups U(p)
and U(q).

Proposition 2.2. (i) For A = diag (z1,...,2,), and for a = diag (o, ..., q,), we
have

bl - det(e™ ") 1< <
/ exp[—tr(u—lauA)]du — (—1)T H(l _ 1)! <i,j<p ‘
) i=1 H (2 — xj) (o — )

1<i<j<p
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(ii) For B = diag(z1,22,...,2,;0,...,0), and for B8 = diag (01, B2,...,05,), we

e
have
a(q—1) 1
-z JJG-1)
exp[—tr(v™!BuB)]dv = =1 .
/U(q) Il @-x) [ Bi-8)
1<i<j<p 1<i<j<q
(_ﬁl)fﬁq—p e (_ﬁq)fﬁ-q—p
) _ ‘fp-i-q—p — :ﬂp-i-q—p
det X i ( ﬁl) ( 6(1)
Z pe (xz )1§ J<p (_ﬁl)q—p—l . (_6q)q—p—1
L>0g>>0p>0 H(EJ + q— p)l -
j=1 (=61) - (=B)
1 ce 1
where (1, ..., {, are integers.

Proof. (i) First, let us write the Taylor series of exp[—tr(u~tauA)] as a series of
Schur polynomials Sp, in the form

o!

exp[—tr(utauA)] = Z dp———Sp(p(—u'auA)),
S (£+0)!
where £ = ({1,...,0,),6=(p—1,p—2,...,0), dp = %, and p(g) stands for

the collection (2, ..., 2,) of the eigenvalues of g. Therefore,

Ia,A) = /U()exp[—tr(ulauA)]du

4! .
= Z de<£+§)!/[](p)5’e(p(—u auA))du

12>--2>4,2>0
S O 5y0)S,(-4)
= LY A (87 o\~ .
AN

To obtain the latter equality, we used the following well known functional equation
_ 1

| xafwuydu= 7 xp(o)ew)

Ul(p) L

where xp is the central function on U(p) whose restriction to the set of diagonal
matrices in U(p) is equal to Sp (for instance see [MACDONALD, 1979, Chapter I]).
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Using the determinant formula of Sp, we deduce

Ia,A) = L Z det(o‘fﬁp_j)lﬁi,jﬁp det(_xfj+p_j)1§i,j§p
D(e)D(=A4), o o (GL4p=Dil+p=2)---b)
_ ot 3 det (o) 12i<p det(—ay’ )i<ij<p
D(a)D(=4), “ | (! 0y
Let
_ o —ria = (_xl)ﬁ K
fila) =e —; o o
- @ _ (=m)" .
Using Lemma 2.1 where a,”’ = —we obtain
k!
det (e_xiaj>1§i,j§p = det (fi(aj))lgi,jgp
) _
= Z det<( xz') ) det(afj) o
01>>0,>0 G icijen Isij<p

Therefore, statement (i) holds.
(ii) Let B = diag(f,...,05,) and let X = diag (x1,...,2p; Tpt1,...,24) . Using

(.

q::q
statement (i), we have

det(e") 1< <4

IT @—-=) ]I (Bi—B;)

/ exp[—tr(v'BvX)dv = ¢,
U(q)

1<i<j<q 1<i<j<q
@ T
where ¢, = (=1)"7 H(@ — 1)!. Also, from the proof of statment (i), we have
i=1
(2.4)
det (e~i%) q det (a:fj

) y det ()
1<ij<q _ Z H o ISLIZ4 ot ((—ﬁi)gj)1<i,j<q'
H (1:7, - ZL']) l1>>Lg_1>£42>0 Jj=1 7 H (xl N wj) o
iy 1<i<j<q
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Now we set z, = 0 in (2.4). Then all terms with ¢, > 0 vanish, and we get

(2.4)
zq=0
g1 det (x‘fj> (=B o (=B
B H 1 ' /1<ij<e-1
— L1y =l | (=f)t e (=)
(>>0_1>0  j=1 H (zi — ;) H x; 1 e 1
1<i<j<q—1 =1
-1 o det (:c!frl) (=) e (=6
! 1<i,j<q—1 T

1

- Z H 7\ - — bg—1 ... — lg—1
0> >0_1>0  j=1 4! H (z; — ;) (=51) (=Ba)

1<i<j<g-1 |

After substituting ¢; by ¢; + 1, we obtain
(2.4)

zq=0

(_ﬁ1)£1+1 . ﬁglJrl

L=
—_

- det (xf] )
_ 3 1 1<i,j<q—1
l; +

lg—1+1
H>>0 120  j=1 (6 +1)! H (i — ;) (=By)fe e B
B 1

1<i<j<g—1 e 1

Setting now z,_; = 0 and repeating this process (¢ — p — 1)-times, we arrive at the
following sum: if z;, = 0,241 =0, ..., 2,41 = 0, then

¢
/ exp[—tr(v™ ' BvX)]dv = . E
U(q) Tg="=Tp4+1=0 H (ﬂz - ﬂj) 0 >03>>0,>0

1<i<j<q

(—ﬁl)fﬂrqu ( ﬂ
det <xfj>1<ij<p (=py)frrae ... (%)Hq—p

)£1+q 4

1<i<j<p (—ﬁl) (—ﬁq)
1 1

(After the work on this paper was completed, we learned that the argument
presented above for statement (i) was used earlier by G. Olshanski and A.M. Vershik
in [OLSHANSKI-VERSHIK, 1996].)
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Remark 2.3. The first statement of Proposition 2.2 can be proved in a number
of different ways. For instance, it can be obtained by using the Harish-Chandra
integral formula (some times also called HIZ integral) [HARISH-CHANDRA, 1957],
[GROSS-RICHARDS, 1989]. Another interesting way is to obtain the integral formula
over U(p) from the spherical function on GL(p,C) by a passage to the limit. For
more about the lattest way described above, and in a general setting of compact Lie
groups, we refere to the preprint [BEN SAID-QRSTED, 2003].

Next we turn to the computation of ¢, (e, 3). The proof of the following lemma
is obvious.

Lemma 2.4. Let i be a measure on R. Then

| et Ul det (oo dnten) - duton) = N det { [ fulolan()duto) |

whenever the right-hand side of the equation makes sense.

Using Proposition 2.2, the function ¢, ,(a, B) is given by

( s 7ﬁ — )
palce, B) I (- I Gi-8)
1<i<j<p 1<i<j<q
(_ﬁl)fﬁrqu (_ﬁ )glJrqu
(_ﬁl)éﬁrqu (_ﬁ )prrqu
: —By)a Pt _3\a—p—1
61>Z>zp>o g(ngrQ—p)‘ (=61) (—5,) X
(—=51) (—8,)
1 1

s £
/det(e T ) 1<ij<p det(z; )i<ij<p 1 () Hp P
i ] i -
X | | (% - xj)z 1<i<j<p i=1

1<i<j<p

k,m

Y
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Using Lemma 2.3, we deduce that

oy 0 p
/ det(e™"%) 1< j<p det(z;")1<ij<p [T (-] o e
i j i i
x H (2 — x;)? 1<i<j<p i=1

1<i<j<p

[ee]
¢ det ( / emixeﬁ"pdx)
0 1<i,5<p

L(l;+q—p+1)
¢ det ( ppw—]
& 1<i,j<p

(2

(4j +q—p)!
= C det (W s
¢ 1<i,5<p

where ¢ is a constant. Therefore

_ ¢ exp[—tr(a + B)] u 1
Cpﬂ(aa IB) H (067; B Olj) H (ﬂz . ﬁ]) €1>-~Z>€p>0 ]1;[1 (ﬁj +q —p)! X
1<i<j<p 1<i<j<gq
(_51)€1+q—p - <_ﬁq)€1+q—p
(_ﬁl)fpﬂrp - (_ﬁq)ﬁerqu ‘ B
x| (=B)TPTH e (=B)TPT | det <%)
T v 1<i,5<p
() (~6,) j
1 1
_ ¢ exp[—tr(a + 8)] Z
[T (i-ap T G-pp[Lairt o>t
1<i<j<p 1<i<j<q i=1

(_ﬁl)éwq—p (_ﬁq)ﬁﬁ-q—p

(_ﬁlprrlJ*P (_ﬁq)fﬁqu ]
(B e (=BT | det | -
i/ 1<i,j<p

aJ
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Lemma 2.5. (cf. [Hua, 1963], Theorem 1.2.3) Let ¢ > p > 0. The following identity

holds
yfﬁ-q—p R y§1+Q*P
ep—{-q—p . fp—‘;-q—p H (xl — .’L']) H (yz — yj)
Z det <x€j> qu—p—l yqq_p_l _ lsi<gsp 1<i<j<q

i 0 >0 "t 1<ig<p 4 Yq P4
1> >0, > : . : H H(1 — z;)

m . Y i=1 i=1

1 Ce 1

Using the above lemma, we obtain the following explicit expression for ¢, ,.

Theorem 2.6. Let ¢ be a constant. For o = diag(cy, ..., ) and B = diag(f, . ..

such that a; + 3; # 0, the Bessel-type function (, ,(cx, B) is given by

Coaln, B) = co exp[—tr(a + B)]

11T +8)

i=1j=1

3. THE Sp(2n,R)-CASE
Let A
Sp(2n,R) = { g= [ = % ] e M(2n,C) | glpng” = Inn },
where A € GL(n,C) and B € M(n,C).

A simple calculation shows that all elements [ b } € Sp(2n, R) satisfy

B A
AA*— BB =1,  and A*A—B'B=1I,
For a diagonal matrix e = diag (a, ..., ), such that a; # 0, we write

Caler) = / exp|—tr (diag [ov; ] (99°) ) ]dg.
Sp(2n,R)

Remark 3.1. Forn =1 and a > 0
Gi(a) = co(4a) K1 (4a),
where K, (z) is the modified Bessel function of the third kind.

Let
9, ={T € Sym(n,C) | det(l, —TT) >0},

+54)

where Sym(n,C) denotes the set of n X n-symmetric matrices. The Sp(2n,R)-
invariant measure du(T) on ®,, is given by du(t) = det(l,, — TT)~"*VdT, where dT

is the Lebesgue measure on 9,,.
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Using the same method used in section 2, we can deduce that if
F(g) = exp[—tr (diag [, A (gg*)*l)], g € Sp(2n,R),
then there exists a function F* : ®,, — C such that
FYT) = exp|—2tr(at)] exp [—4tr (a(L, — TT)'TT)].

By [HuA, 1944], every symmetric matrix Z € Sym(n,C) can be written as Z =
ulu', where u € U(n) and A = diag (A\1,...,\,) with Ay > Xy > - >\, > 0.
Therefore the function F* can be written as

FYT) = exp[—2tr(ar)] exp [—4tr (au(l, — A*)"'A%u*)],

where A = diag (Ay, ..., A\y) with 1> XA > X > - >\, > 0and u € U(n).
As in section 2, we consider the map v : ©,, — Y. The image of the Lebesgue
measure d1' on ©,, with respect to ¢ is the measure on T given by

c 1] (Af—)\?)ﬁ)\id)\i,
1<i<j<n i=1

for some constant c¢. Thus the image of du(T) = det(I,, — TT)~"*tVdT is

n

c T F =) T —ah +an.

1<i<j<n i=1

Using the above notations and Proposition 2.2(i) for U(n), we obtain

Gla) = ¢ exp[—2tr(a)] /U( )/Texp [—4tr (ou(l, — A*) 7" A%u)]

IT =) ][ na =) " drdu

1<i<j<n i=1
- ¢ exp[—Qtr(a)]/ {/ exp [—tr (audiag [x1, ..., z,] u")] du}
X Wuwm)

H (x; — xj)dxy - - - dxy,.

1<i<j<n

—2t
_ C exp[ r(a)] / det(e_aixj)lgi,jgn dﬂfl e d$n,
X

I (-

1<i<j<n

where
X ={diag(z1,r2,...,2,) | 11> 29>+ >3, >0}.
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402
11—\
Since det(e™% ") 1< j<n = D s, €(T) [[i2; €7@, where S, is the group of permu-
tations, then

Cn(a) _ c exp[—2tr(a)] / Z 6(7‘) He_ar(i)l'idxi

To obtain the above second equality, we used the change of variable z; =

I (ai- G)on Lcy 7S L
1<i<j<n
C eXp 2tI' / / Z _,.(1) 1 a7(1)+"'+a7—(n)_1
_ g déy -+ - dé,
TESY
1§z<]§n
¢ exp[—2tr(a)] 1

a1y (Qr(1) + Qr()) - (@) + o0 F Q)

H (ai — o) 7e3,

1<i<j<n
To finish the computation of (,(a), we need the following lemma.

Lemma 3.2. (cf. [Hua, 1963], Lemma 6.3.1)
SRR | INCEES

Z €(7) 1 _ 1<i<j<N
L) (brry + be) - (brry + -+ L)) T w+e)

TESN
1<i<j<N

Using Lemma 3.2, the following theorem holds.

Theorem 3.3. Let ¢y be a constant. For a = diag(ay, ..., a,) such that «; # 0,
the Bessel-type function (,(a) is given by

exp[—2tr(o)]

1T (i + )

1<i<j<n

Cn(a) = co
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